

Quantum Algorithms for Fast Correlation Attacks on LFSR-Based Stream Ciphers

Akinori Hosoyamada

NTT Secure Platform Laboratories

December 11th, 2024 @ Asiacrypt 2024

Summary

- Quantum algorithms on fast correlation attacks by relating classical FFT (FWHT) with QFT (Hadamard operator)
- In Q1, it seems hard to achieve meaningful speed-up
- In Q2, introducing a special attack model, an interesting speed-up is obtained by using Shor's alg. for discrete log
- Complexity in Q2 is $O(\ell^4/c^2)$ for ℓ -bit LFSR, if a linear approximation of correlation c is available
- First quantum attack on SNOW 2.0 faster than Grover and current best (quantum) fast correlation attack on SNOW 3G

Quantum Backgrounds and Motivation of Research

Quantum Attack Models for Symmetric Cryptosystems Q1

- Computers : Quantum
- Keyed oracles (enc, dec, prf, mac…) : Classical

■ Q2

- Both computers and keyed oracles are quantum: Quantum superposition queries are allowed
- Devastating polynomial-time attacks are possible (Even-Mansour, 4round Luby-Rackoff, etc, are completely broken)
- Some important Q1 attacks are based on Q2 attacks

Quantum Attack Models for Symmetric Cryptosystems Q1

() NT

- Computers : Quantum
- Keyed oracles (enc, dec, prf, mac…) : Classical

■ Q2

- Both computers and keyed oracles are quantum: Quantum superposition queries are allowed
- Devastating polynomial-time attacks are possible (Even-Mansour, 4round Luby-Rackoff, etc, are completely broken)
- Some important Q1 attacks are based on Q2 attacks

Studying Q2 attacks is important!

TT

ITT

ITT

Motivation of Research

- Fast correlation attack [Sie84,MS88]: One of the most important attacks on LFSR-based stream ciphers
- Many fast correlation attacks also utilize FWHT

Quantum speed-up for fast correlation attacks by combining classical Fourier transform (WHT) with QFT (Hadamard operator)?

© NTT CORPORATION 2024

10

Encryption procedure

- 2. Keystream generation
- 3. (Encryption)

LFSR	
additional	
registers	

Initialization

- 1. Load master key & IV
- 2. Update state many times

Initialization

- 1. Load master key & IV
- 2. Update state many times

Initialization

- 1. Load master key & IV
- 2. Update state many times

Initialization

- 1. Load master key & IV
- 2. Update state many times

initial state

Initialization

- 1. Load master key & IV
- 2. Update state many times

Linear feedback
LFSR
additional registers
Non-linear feedback

Generate key stream

 Z_0, Z_1

Generate key stream

Fast Correlation Attack

Alternative View

Alternative View

Alternative View

Result of the transmission

Result of the transmission

Idea:

If the noise is not too strong (\Leftrightarrow the linear correlation $Cor(s^{(0)}G, z)$ is large), the initial state of LFSR could be recovered by most-likelihood decoding

- Assume ℓ -bit LFSR and we have $\mathbf{z} = (z_0, \dots, z_{N-1})$ for some N
- G: the encoding matrix of the linear code (derived from LFSR), and $g_i \in \mathbb{F}_2^{\ell}$: the i-th column of G

Define $\Psi : \mathbb{F}_2^{\ell} \to \mathbb{C}$ by

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le N-1 \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^{z_i}$$

then we have

$$(WHT(\Psi))(\mathbf{x}) \propto Cor(\mathbf{x}G, \mathbf{z})$$

- Assume ℓ -bit LFSR and we have $\mathbf{z} = (z_0, \dots, z_{N-1})$ for some N
- G: the encoding matrix of the linear code (derived from LFSR), and $g_i \in \mathbb{F}_2^{\ell}$: the i-th column of G

Define $\Psi : \mathbb{F}_2^{\ell} \to \mathbb{C}$ by

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le N-1 \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^{z_i}$$

then we have

$$(WHT(\Psi))(\mathbf{x}) \propto Cor(\mathbf{x}G, \mathbf{z})$$

This value is large iff x equals the initial state of LFSR $s^{(0)}_{43}$

© NTT CORPORATION 2024

- 1. Collect the key stream $\mathbf{z} = (z_0, \dots, z_{N-1})$
- 2. Compute and store the value $\Psi(w)$ for all w
- 3. Apply FWHT to Ψ , obtaining $(WHT(\Psi))(x)$ for all x
- 4. Output x with the largest $|(WHT(\Psi))(x)| (\rightarrow we get s^{(0)}!)$

- 1. Collect the key stream $\mathbf{z} = (z_0, \dots, z_{N-1})^N$
- 2. Compute and store the value $\Psi(w)$ for all w
- 3. Apply FWHT to Ψ , obtaining $(WHT(\Psi))(x)$ for all x
- 4. Output x with the largest $|(WHT(\Psi))(x)| (\rightarrow we get s^{(0)}!)$

- 1. Collect the key stream $\mathbf{z} = (z_0, \dots, z_{N-1})^N$
- 2. Compute and store the value $\Psi(w)$ for all $w 2^{\ell}$
- 3. Apply FWHT to Ψ , obtaining $(WHT(\Psi))(x)$ for all x
- 4. Output x with the largest $|(WHT(\Psi))(x)| (\rightarrow we get s^{(0)}!)$

- 1. Collect the key stream $\mathbf{z} = (z_0, \dots, z_{N-1})^N$
- 2. Compute and store the value $\Psi(w)$ for all $w = 2^{\ell}$
- 3. Apply FWHT to Ψ , obtaining $(WHT(\Psi))(x)$ for all $x \ell \cdot 2^{\ell}$
- 4. Output x with the largest $|(WHT(\Psi))(x)| (\rightarrow we get s^{(0)}!)$

- 1. Collect the key stream $\mathbf{z} = (z_0, \dots, z_{N-1})^N$
- 2. Compute and store the value $\Psi(w)$ for all $w 2^{\ell}$
- 3. Apply FWHT to Ψ , obtaining $(WHT(\Psi))(x)$ for all $x \ell \cdot 2^{\ell}$
- 4. Output x with the largest $|(WHT(\Psi))(x)| (\rightarrow we get s^{(0)}!)$ small

Decoding procedure:

- 1. Collect the key stream $\mathbf{z} = (z_0, \dots, z_{N-1})^N$
- 2. Compute and store the value $\Psi(w)$ for all $w = 2^{\ell}$
- 3. Apply FWHT to Ψ , obtaining $(WHT(\Psi))(x)$ for all $x \ell \cdot 2^{\ell}$
- 4. Output x with the largest $|(WHT(\Psi))(x)| (\rightarrow we get s^{(0)}!)$ small

Complexity: $O(N + \ell 2^{\ell})$

Decoding procedure:

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})^N$
- 2. Compute and store the value $\Psi(w)$ for all $w = 2^{\ell}$
- 3. Apply FWHT to Ψ , obtaining $(WHT(\Psi))(x)$ for all $x \ell \cdot 2^{\ell}$
- 4. Output x with the largest $|(WHT(\Psi))(x)| (\rightarrow we get s^{(0)}!)$ small

Complexity: $O(N + \ell 2^{\ell})$

Succeeds with high probability if $N > \ell \cdot \operatorname{Cor}(s^{(0)}G, z)^{-2}$

Once the initial state of the LFSR $s^{(0)}$ is recovered, the entire initial state is often easy to determine

Advanced Attack with Linear Approximation

- The attack works in the same way if there is a linear approximation between the LFSR output sequence and the keystream *z*
- After a linear transform, z is again regarded as the encoding of $s^{(0)}$ with some noise added
- The encoding matrix $G = (g_1 g_2 \cdots g_N)$ is given by

$$\boldsymbol{g}_{i} = \boldsymbol{\Gamma} \cdot (\boldsymbol{M}^{\mathsf{T}})^{i-1} \quad (\in \mathbb{F}_{2}^{L})$$

Г : derived from linear mask M :state update matrix of LFSR

Attempt of Quantum Speed-up in Q1

Classical Decoding to Recover $s^{(0)}$

Decoding procedure:

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})^N$
- 2. Compute and store the value $\Psi(w)$ for all $w 2^{\ell}$
- 3. Apply FWHT to Ψ , obtaining $(WHT(\Psi))(x)$ for all $x \ell \cdot 2^{\ell}$
- 4. Output x with the largest $|(WHT(\Psi))(x)| (\rightarrow we get s^{(0)}!)$ small

Complexity: $O(N + \ell 2^{\ell})$

Succeeds with high probability if $N > \ell \cdot \operatorname{Cor}(s^{(0)}G, z)^{-2}$

Classical Decoding to Recover $s^{(0)}$

Decoding procedure:

- 1. Collect the key stream $\mathbf{z} = (z_0, \dots, z_{N-1})^N$
- 2. Compute and store the value $\Psi(w)$ for all $w = 2^{\ell}$
- 3. Apply FWHT to Ψ , obtaining $(WHT(\Psi))(x)$ for all $x \ell \cdot 2^{\ell}$
- 4. Output x with the largest $|(WHT(\Psi))(x)| (\rightarrow we get s^{(0)}!)$ small

Complexity: $O(N + \ell 2^{\ell})$

Succeeds with high probability if $N > \ell \cdot \operatorname{Cor}(s^{(0)}G, z)^{-2}$

We want a quantum speed-up by replacing FWHT with Hadamard operator…

Attack Idea in Q1

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform)
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle$$

3. Apply the Hadamard operator to obtain

$$H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{\boldsymbol{x}} \operatorname{Cor}(\boldsymbol{x} G, \boldsymbol{z}) |\boldsymbol{x}\rangle$$

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform)
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle$$

3. Apply the Hadamard operator to obtain

$$H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{\boldsymbol{x}} \operatorname{Cor}(\boldsymbol{x} G, \boldsymbol{z}) |\boldsymbol{x}\rangle$$

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform) $N(>c^{-2})$
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma |\Psi(w)|^2}} \sum_{w} \Psi(w) |w\rangle$$

3. Apply the Hadamard operator to obtain

$$H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{\boldsymbol{x}} \operatorname{Cor}(\boldsymbol{x} G, \boldsymbol{z}) |\boldsymbol{x}\rangle$$

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform) $N(>c^{-2})$
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma |\Psi(w)|^2}} \sum_{w} \Psi(w) |w\rangle \qquad N$$

3. Apply the Hadamard operator to obtain

$$H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$$

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform) $N(>c^{-2})$
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle \qquad N$$

- 3. Apply the Hadamard operator to obtain O(1) $H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$
- 4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA)

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform) $N(>c^{-2})$
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle \qquad N$$

- 3. Apply the Hadamard operator to obtain O(1) $H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma |\Psi(w)|^2}} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$
- 4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA) $\gg 2^{\ell/2}/(N^{1/2}c)$

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform) $N(>c^{-2})$
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle \qquad N$$

- 3. Apply the Hadamard operator to obtain O(1) $H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$
- 4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA)

Overall complexity
$$\gg c^{-2} + (2^{\ell} \cdot c^{-2})^{1/3}$$

$$\gg 2^{\ell/2}/(N^{1/2}c)$$

 $c^{-2} + (2^{\ell} \cdot c^{-2})^{1/3}$ is Too Large...

- For some ciphers, c is so small that c^{-2} is larger than the complexity of the exhaustive key search with Grover's algorithm
- For others, ℓ is large (e.g., 512), so the term $(2^{\ell} \cdot c^{-2})^{1/3}$ becomes too large
- It seems hard to obtain meaningful speed-up in Q1 (or, a completely different technique will be required)

 \rightarrow Let's move to Q2

New Attack Model in Q2

Search for Suitable Attack Model in Q2 ONTT

- **[Classical]** The appropriate security notion for (IVbased) stream ciphers is the PRF security, regarding IVs as inputs and keystreams as outputs. [BG07]

$$IV \mapsto \mathbf{z}^{IV} = z_0^{IV} z_1^{IV} \cdots z_N^{IV}$$

Search for Suitable Attack Model in Q2 ONTT

- **[Classical]** The appropriate security notion for (IVbased) stream ciphers is the PRF security, regarding IVs as inputs and keystreams as outputs. [BG07]

$$IV \mapsto \mathbf{z}^{IV} = z_0^{IV} z_1^{IV} \cdots z_N^{IV}$$

 【Quantum/Q2】 Then, the corresponding attack model in Q2 would assume an oracle that receives quantum superposition of IVs and returns quantum superposition of keystreams…??

$$\sum_{IV} c_{IV} |IV\rangle \quad \mapsto \quad \sum_{IV} c_{IV} |IV\rangle \left| z_0^{IV} z_1^{IV} \cdots z_N^{IV} \right\rangle$$

Search for Suitable Attack Model in Q2 ONT

 【Quantum/Q2】 Then, the corresponding attack model in Q2 would assume an oracle that receives quantum superposition of IVs and returns quantum superposition of keystreams…??

$$\sum_{IV} c_{IV} |IV\rangle \quad \mapsto \quad \sum_{IV} c_{IV} |IV\rangle \left| z_0^{IV} z_1^{IV} \cdots z_N^{IV} \right\rangle$$

<u>Issues</u>: N operations needed solely for reading outputs, making the model essentially the same as Q1…
Moreover, the quantum computer is small while the register to receive z is very large, which is not reasonable

Search for Suitable Attack Model in Q2 ONTT

Search for Suitable Attack Model in Q2 ONT

- **(Alternative model)** Allow adversaries to query the index of the key stream

$$\sum_{\substack{IV\\0\leq i<2^{\ell}}} c_{IV,i} | IV, \mathbf{i} \rangle \mapsto \sum_{\substack{IV\\0\leq i<2^{\ell}}} c_{IV,i} | IV, i \rangle | z_i^{IV} \rangle$$

(remark: the parameter N now becomes 2^{ℓ})

- Feasibility: Some stream ciphers seem secure even in this model

Remark

- The purpose of studying attacks in this model is mainly to understand the power of Q2 attacks better, and make a basis of other attacks in future works
- We do not claim that the practical security of a cipher is affected even if it is broken in this model

Fast Correlation Attacks in Q2

© NTT CORPORATION 2024

70

Attack Idea in Q1 $c \coloneqq \operatorname{Cor}(s^{(0)}G, z)$ ONT

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform) $N(>c^{-2})$
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle \qquad N$$

3. Apply the Hadamard operator to obtain O(1)

$$H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\sum |\Psi(w)|^2}} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$$

4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA) $\gg 2^{\ell/2}/(N^{1/2}c)$
Attack Idea in Q2 $c \coloneqq \operatorname{Cor}(s^{(0)}G, z)$ Ont

- 1. Collect the key stream $\mathbf{z} = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform) $N(>c^{-2})$
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle \qquad N$$

3. Apply the Hadamard operator to obtain O(1)

$$H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$$

4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA) $\gg 2^{\ell/2}/(N^{1/2}c)$

- 1. Collect the key stream z = (qRAM (after applying some We can access all z_i simultaneously in quantum superposition
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle$$

3. Apply the Hadamard operator to obtain

$$H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{\boldsymbol{x}} \operatorname{Cor}(\boldsymbol{x} G, \boldsymbol{z}) |\boldsymbol{x}\rangle$$

4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA)

- 1. Collect the key stream z = (qRAM (after applying some We can access all z_i simultaneously in quantum superposition
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle$$

- 3. Apply the Hadamard operator to obtain $H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$
- 4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA)

- 1. Collect the key stream z = (qRAM (after applying some We can access all z_i simultaneously in quantum superposition
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle$$

- 3. Apply the Hadamard operator to obtain $H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma} |\Psi(w)|^2} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$
- 4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA)

poly(ℓ) · $c^{-1}(c^{-1} + (\text{Step 2} + \text{Step 3}))$ by applying quantum counting

- 1. Collect the key stream z = (qRAM (after applying some We can access all z_i simultaneously in quantum superposition
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle \quad \text{poly}(\ell)$$

- 3. Apply the Hadamard operator to obtain $H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \sqrt{\sum |\Psi(w)|^2}} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$
- 4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA)

poly(ℓ) · $c^{-1}(c^{-1} + (\text{Step 2} + \text{Step 3}))$ by applying quantum counting

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i < 2^{\ell} \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^{z_i}$$

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le 2^{\ell} \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^{z_i}$$

For each w, we have to determine the index i s.t. w equals g_i , the *i*-th column of the encoding matrix G

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le 2^{\ell} \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^z$$

For each w, we have to determine the index i s.t. w equals g_i , the *i*-th column of the encoding matrix G

$$\boldsymbol{g}_{\boldsymbol{i}} = \boldsymbol{\Gamma} \cdot (\boldsymbol{M}^{\mathsf{T}})^{i-1} \ \left(\in \mathbb{F}_{2}^{\ell} \right)$$

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le 2^{\ell} \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^z$$

For each w, we have to determine the index i s.t. w equals g_i , the *i*-th column of the encoding matrix G

Γ : derived from linear mask

$$\boldsymbol{g_i} = \boldsymbol{\Gamma} \cdot (\boldsymbol{M}^{\mathsf{T}})^{i-1} \ \left(\in \mathbb{F}_2^\ell \right)$$

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le 2^{\ell} \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^z$$

For each w, we have to determine the index i s.t. w equals g_i , the *i*-th column of the encoding matrix G

Г : derived from linear mask

M :state update matrix of LFSR

$$\boldsymbol{g_i} = \boldsymbol{\Gamma} \cdot (\boldsymbol{M}^{\mathsf{T}})^{i-1} \ \left(\in \mathbb{F}_2^{\ell} \right)$$

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le 2^{\ell} \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^{\boldsymbol{z}_i}$$

For each w, we have to determine the index i s.t. w equals g_i , the *i*-th column of the encoding matrix G

Г: derived from linear mask

$$\boldsymbol{g_i} = \boldsymbol{\Gamma} \cdot (\boldsymbol{M}^{\top})^{i-1} \ \left(\in \mathbb{F}_2^{\ell} \right)$$

M :state update matrix of LFSR

Multiplying M^{T} corresponds to multiplying the generator α of $(\mathbb{F}_{2^{\ell}})^{\times}$

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le 2^{\ell} \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^{\boldsymbol{z}_i}$$

For each w, we have to determine the index i s.t. w equals g_i , the *i*-th column of the encoding matrix G

Г : derived from linear mask

M :state update matrix of LFSR

$$\begin{split} \boldsymbol{g}_{\boldsymbol{i}} &= \boldsymbol{\Gamma} \cdot (\boldsymbol{M}^{\top})^{i-1} \quad \left(\in \mathbb{F}_{2}^{\ell} \right) \\ &= \boldsymbol{\Gamma} \cdot \boldsymbol{\alpha}^{i-1} \qquad \left(\in \mathbb{F}_{2^{\ell}} \right) \end{split}$$

Multiplying M^{T} corresponds to multiplying the generator α of $(\mathbb{F}_{2^{\ell}})^{\times}$

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le 2^{\ell} \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^{\boldsymbol{z}_i}$$

For each w, we have to determine the index i s.t. w equals g_i , the *i*-th column of the encoding matrix G

Г : derived from linear mask

M :state update matrix of LFSR

$$g_{i} = \Gamma \cdot (M^{\top})^{i-1} \quad (\in \mathbb{F}_{2}^{\ell})$$
$$= \Gamma \cdot \alpha^{i-1} \qquad (\in \mathbb{F}_{2^{\ell}})$$
$$i = \log_{\alpha}(g_{i}) - \log_{\alpha}(\Gamma) + 2$$

Multiplying M^{T} corresponds to multiplying the generator α of $(\mathbb{F}_{2^{\ell}})^{\times}$

$$\Psi(\boldsymbol{w}) = \sum_{\substack{0 \le i \le 2^{\ell} \\ \boldsymbol{g}_i = \boldsymbol{w}}} (-1)^{\boldsymbol{z}_i}$$

For each w, we have to determine the index i s.t. w equals g_i , the *i*-th column of the encoding matrix G

Γ : derived from linear mask

M :state update matrix of LFSR

$$\begin{split} \boldsymbol{g}_{\boldsymbol{i}} &= \boldsymbol{\Gamma} \cdot (\boldsymbol{M}^{\top})^{i-1} \quad \left(\in \mathbb{F}_{2}^{\ell} \right) \\ &= \boldsymbol{\Gamma} \cdot \boldsymbol{\alpha}^{i-1} \qquad \left(\in \mathbb{F}_{2^{\ell}} \right) \end{split}$$

Multiplying M^{T} corresponds to multiplying the generator α of $(\mathbb{F}_{2^{\ell}})^{\times}$

 $i = \log_{\alpha}(g_i) - \log_{\alpha}(\Gamma) + 1$ can be efficiently computed by Shor's algorithm for discrete log

- 1. Collect the key stream $z = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform)
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle \quad \text{poly}(\ell)$$

- 3. Apply the Hadamard operator to obtain $H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\Sigma |\Psi(w)|^2}} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$
- 4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA)

poly(ℓ) · $c^{-1}(c^{-1} + (\text{Step 2} + \text{Step 3}))$ by applying quantum counting

- 1. Collect the key stream $z = (z_0, ..., z_{N-1})$ and store it into qRAM (after applying some linear transform)
- 2. Prepare the state corresponding to the function Ψ , i.e.,

$$|\psi\rangle \coloneqq \frac{1}{\sqrt{\Sigma}|\Psi(w)|^2} \sum_{w} \Psi(w) |w\rangle \quad \text{poly}(\ell)$$

- 3. Apply the Hadamard operator to obtain $H^{\otimes \ell} |\psi\rangle = \frac{N}{2^{\ell} \cdot \sqrt{\sum |\Psi(w)|^2}} \sum_{x} \operatorname{Cor}(xG, z) |x\rangle$
- 4. Amplify the amplitude of x with a large Cor(xG, z) (with QAA)

Overall:
$$0(\ell^4 \cdot c^{-2})$$

Applications

Target	Key Length	Attack Model	Time	Data/Query	Ref./Note
SNOW 2.0	128 or 256	Classical	2 ^{162.86}	2 ^{159.62}	[GZ21]
		Q2	2 ^{89.3}	2 ^{59.3}	This paper
SNOW 3G	128	Classical	2 ^{174.95}	2 ^{170.81}	[GHW24]
		Q2	2 ^{102.9}	2 ^{72.9}	This paper
Sosemanuk	128 - 256	Classical	2 ^{134.8}	2 ¹³⁵	[ZLGJ23]
		Q1	2 ⁸⁸	2 ^{7.46}	[DWZS24]
		Q2	2 ^{101.11}	2 ^{73.15}	This paper
Any	k		ok	7	
		Classical	2 ^κ	ĸ	Brute force
		Q1 or Q2	$2^{k/2}$	k	Grover search

Concurrent and Independent Work

A recent workshop abstract by Einsele and Wunder also mentions quantum speed-up of fast correlation attacks, but attack models and attack algorithms are not explained.

Summary

- Quantum algorithms on fast correlation attacks by relating classical FFT (FWHT) with QFT (Hadamard operator)
- In Q1, it seems hard to achieve meaningful speed-up
- In Q2, introducing a special attack model, an interesting speed-up is obtained by using Shor's alg. for discrete log
- Complexity in Q2 is $O(\ell^4/c^2)$ for ℓ -bit LFSR, if a linear approximation of correlation c is available
- First quantum attack on SNOW 2.0 faster than Grover and current best (quantum) fast correlation attack on SNOW 3G Thank you!