Introduction 00000	Preliminaries 0000	Optimized algebraic attacks against AO primitives based on resultant	Conclusions and Discussions

A New Security Evaluation Method Based on Resultant for Arithmetic-Oriented Algorithms

Hong-Sen Yang

Joint with Qun-Xiong Zheng, Jing Yang, Quan-Feng Liu and Deng Tang

December 12, 2024

イロト イポト イヨト イヨト

э

1 Introduction

2 Preliminaries

3 Optimized algebraic attacks against AO primitives based on resultant

4 Conclusions and Discussions

Introduction ●0000	Preliminaries 0000	Optimized algebraic attacks against AO primitives based on resultant	Conclusions and Discussio
-----------------------	-----------------------	--	---------------------------

2 Preliminaries

3 Optimized algebraic attacks against AO primitives based on resultant

4 Conclusions and Discussions

Preliminaries

Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions

Background

High demand for privacy computing friendly symmetric primitives

- Traditional symmetric ciphers often designed and optimized for efficient software or hardware implementations.
- New primitives need consistent with many MPC/FHE/ZK-protocols to improve implementation performance.
- A lot of Arithmetic-Oriented (AO) primitives have been proposed: Rescue, Anemoi, JARVIS, MiMC, Poseidon, Arion, Griffin, GMiMC, ...

Preliminaries

Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions

Background

High demand for privacy computing friendly symmetric primitives

- Traditional symmetric ciphers often designed and optimized for efficient software or hardware implementations.
- New primitives need consistent with many MPC/FHE/ZK-protocols to improve implementation performance.
- A lot of Arithmetic-Oriented (AO) primitives have been proposed: Rescue, Anemoi, JARVIS, MiMC, Poseidon, Arion, Griffin, GMiMC, ...

Characteristics of AO primitives

- Constructed over \mathbb{F}_p (*p* is typically a large prime number).
- Mainly focus on minimizing the number of non-linear arithmetic operations.
- Use large S-boxes instead of small S-boxes.

4 / 33

Introduction
00000

Preliminar 0000 Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions

Motivation

Cryptanalysis of AO algorithms

- Due to their native algebraic properties, algebraic attacks typically outperform other known cryptanalytic techniques against AO primitives.
- Gröbner basis are widely use to evaluate the security of AO primitives.

Introduction
00000

Preliminaries

Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions

Motivation

Cryptanalysis of AO algorithms

- Due to their native algebraic properties, algebraic attacks typically outperform other known cryptanalytic techniques against AO primitives.
- Gröbner basis are widely use to evaluate the security of AO primitives.

Existing Problems

- The algebraic structure of an AO algorithm is not fully utilized.
- The complexity of Gröbner basis attack is not precise enough.
- The security of an AO algorithm is not well understood.

Introduction 000€0	Preliminaries 0000	Optimized algebraic attacks against AO primitives based on resultant	Conclusions and Discussions

Our contributions

- Proposed a novel analysis framework for AO primitives that is much more efficient than existing ones, making the security evaluation more accurate.
- Proposed the substitution theory, effectively controlling the degree of equations when using resultants for algebraic attacks.
- Combined resultants with Lagrange interpolation, which effectively increased the number of rounds in practical attacks.

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

• • = • • = •

Comparison of the algebraic attacks against Rescue-Prime, Anemoi, and JARVIS

Primitives	tives Attacked rounds Running time Theoretical Complexities		References	
	4	258500s	-	FSE2022
	4	885.5s	-	Sect.4
Rescue-Prime	5	-	2 ⁵⁵	FSE2022
	5	≈ one day	-	Sect.4
	6	-	$2^{59.96}$	Sect.4
	7	156348s	-	Crypto2024
	7	2968.55s	-	Sect.5
Anemoi	8	38749.182s	-	Sect.5
Allemot	21	-	2 ¹¹⁸	Crypto2024
	21	-	$2^{110.10}$	Sect.5
	6	99989s	-	Asiacrypt2019
JARVIS	6	368.96s	-	Sect.6
	8	455650.53s	-	Sect.6

2 Preliminaries

3 Optimized algebraic attacks against AO primitives based on resultant

4 Conclusions and Discussions

イロト 人間 トイヨト イヨト

э

The CICO problem

イロト イポト イヨト イヨト

The so-called CICO (constrained-input constrained-output) problem, which is usually used to evaluate the security of AO algorithms, is defined as below.

Definition (CICO problem)

Let s > 1 be an integer and u a positive integer smaller than s. Let $F: \mathbb{F}_q^s \to \mathbb{F}_q^s$ be a permutation. The CICO problem of F is to find a vector $(x_1, \ldots, x_{s-u}, y_1, \ldots, y_{s-u}) \in \mathbb{F}_q^{2(s-u)}$ such that

$$F\left(x_1,\ldots,x_{s-u},\underbrace{0,\ldots,0}_{u}\right) = \left(y_1,\ldots,y_{s-u},\underbrace{0,\ldots,0}_{u}\right).$$

Information Engineering University A New Security Evaluation Method Based on Resultant for Arithmetic-Oriented Algorithms December 12, 2024 9 / 33

Introduction 00000	Preliminaries 00●0	Optimized algebraic attacks against AO primitives based on resultant	Conclusions and Discussions	
Resultant				

Let
$$f(x, y) = \sum_{i=0}^{m} f_i x^i$$
 and $g(x, y) = \sum_{i=0}^{n} g_i x^i$, where $f_i, g_i \in \mathbb{F}_q[y]$. Then

The resultant is a powerful tool for solving systems of polynomial equations.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

æ

10 / 33

Preliminaries

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

人口 医人间下 人名英格兰人

A simple example

• Consider the system of equations over \mathbb{F}_{101} :

$$\begin{cases} 5x^2 - 6xy + 5y^2 - 16 = 0\\ 2x^2 - (1+y)x + y^2 - y - 4 = 0 \end{cases}$$

Information Engineering University A New Security Evaluation Method Based on Resultant for Arithmetic-Oriented Algorithms December 12, 2024 11 / 33

Preliminaries

Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions

A simple example

- Consider the system of equations over \mathbb{F}_{101} : $\begin{cases} 5x^2 6xy + 5y^2 16 = 0\\ 2x^2 (1+y)x + y^2 y 4 = 0 \end{cases}$
- Let $f(x, y) = 5x^2 6xy + 5y^2 16$ and $g(x, y) = 2x^2 (1 + y)x + y^2 y 4$. Then

$$R(f,g,x) = \begin{vmatrix} 5 & -6y & 5y^2 - 16 & 0\\ 0 & 5 & -6y & 5y^2 - 16\\ 2 & -(1+y) & y^2 - y - 4 & 0\\ 0 & 2 & -(1+y) & y^2 - y - 4 \end{vmatrix} = 32(y-2)(y-1)(y+1)^2.$$

Preliminaries

Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions

A simple example

- Consider the system of equations over \mathbb{F}_{101} : $\begin{cases} 5x^2 6xy + 5y^2 16 = 0\\ 2x^2 (1+y)x + y^2 y 4 = 0 \end{cases}$
- Let $f(x, y) = 5x^2 6xy + 5y^2 16$ and $g(x, y) = 2x^2 (1 + y)x + y^2 y 4$. Then

$$R(f,g,x) = \begin{vmatrix} 5 & -6y & 5y^2 - 16 & 0\\ 0 & 5 & -6y & 5y^2 - 16\\ 2 & -(1+y) & y^2 - y - 4 & 0\\ 0 & 2 & -(1+y) & y^2 - y - 4 \end{vmatrix} = 32(y-2)(y-1)(y+1)^2.$$

•
$$\begin{cases} x=2\\ y=2 \end{cases} \text{ or } \begin{cases} x=-1\\ y=1 \end{cases} \text{ or } \begin{cases} x=1\\ y=-1 \end{cases}$$

Conclusions and Discussions

イロト イポト イヨト イヨト

э

1 Introduction

2 Preliminaries

3 Optimized algebraic attacks against AO primitives based on resultant

4 Conclusions and Discussions

Preliminaries

Conclusions and Discussions

Review of Rescue-Prime

Rescue-Prime is a family of AO hash functions and its round function is shown in Fig.1. The Ethereum Foundation Challenge for Rescue-Prime with t = 3 and $S: x \mapsto x^3$ (and so $S^{-1}: x \mapsto x^{1/3}$) is to find two pairs $(X_1, X_2), (Y_1, Y_2) \in \mathbb{F}_q^2$ satisfying $F(X_1, X_2, 0) = (Y_1, Y_2, 0)$.

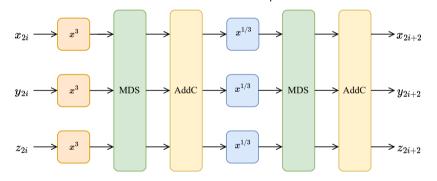


Figure 1: The *i*-th round function of Rescue-Prime when t = 3

Preliminarie 0000

4

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

Algebraic attack with forward modeling

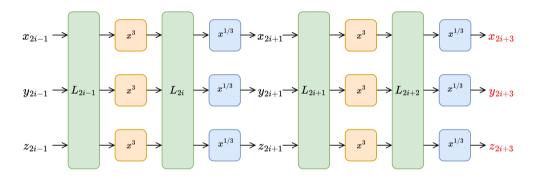


Figure 2: Forward modeling of Rescue-Prime

$$\begin{cases} f_{x_{2i+3}} \coloneqq x_{2i+3}^3 - L_{2i+2,0} \circ SSS \circ L_{2i+1}(x_{2i+1}, y_{2i+1}, z_{2i+1}) = 0 \\ f_{y_{2i+3}} \coloneqq y_{2i+3}^3 - L_{2i+2,1} \circ SSS \circ L_{2i+1}(x_{2i+1}, y_{2i+1}, z_{2i+1}) = 0 \\ f_{z_{2i+3}} \coloneqq z_{2i+3}^3 - L_{2i+2,2} \circ SSS \circ L_{2i+1}(x_{2i+1}, y_{2i+1}, z_{2i+1}) = 0 \end{cases} \text{ for } i \in \{0, 1, \dots, r-2\}.$$

14 / 33

Preliminaries

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

Algebraic attack with forward modeling

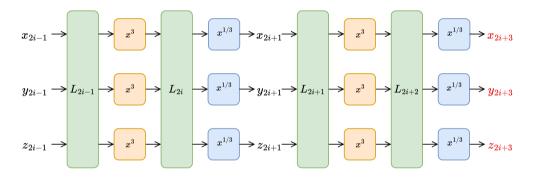


Figure 2: Forward modeling of Rescue-Prime

The output of the *r*-round Rescue-Prime should be of the form (*, *, 0) in the CICO problem, so there is one more equation, which is

$$f_h := L_{2r-1,2} \left(x_{2r-1}, y_{2r-1}, z_{2r-1} \right) = 0.$$

Preliminarie

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

Solving equations of forward modeling

$$y_{1} = \left(-\frac{\alpha_{2,0}}{\alpha_{2,1}}\right)^{1/3} x_{1}, \quad z_{1} = c \quad [FSE \ 2022].$$

$$\begin{cases} f_{x_{3}}(x_{3}, x_{1}) = 0\\ f_{y_{3}}(y_{3}, x_{1}) = 0\\ \vdots\\ f_{z_{3}}(z_{3}, x_{1}) = 0\\ \vdots\\ f_{x_{2r-1}}(x_{2r-1}, x_{2r-3}, y_{2r-3}, z_{2r-3}) = 0\\ f_{y_{2r-1}}(y_{2r-1}, x_{2r-3}, y_{2r-3}, z_{2r-3}) = 0\\ f_{z_{2r-1}}(z_{2r-1}, x_{2r-3}, y_{2r-3}, z_{2r-3}) = 0\\ f_{h}(x_{2r-1}, y_{2r-1}, z_{2r-1}) = 0. \end{cases}$$

- The system has 3r 2 equations in 3r 2 unknowns (here we omit z_1 and y_1).
- 3r 3 resultant operations can obtain a univariate polynomial in x_1

15 / 33

Cubic substitution

医水黄医水黄

Using resultants for elimination will continuously increase the degree of the variables, but the special structure of this system of equations allows us to use substitution to control the degree of variables except x_1 no more than 3.

$$\begin{cases} x_{2i+3}^3 = L_{2i+2,0} \circ SSS \circ L_{2i+1}(x_{2i+1}, y_{2i+1}, z_{2i+1}) \\ y_{2i+3}^3 = L_{2i+2,1} \circ SSS \circ L_{2i+1}(x_{2i+1}, y_{2i+1}, z_{2i+1}) \\ z_{2i+3}^3 = L_{2i+2,2} \circ SSS \circ L_{2i+1}(x_{2i+1}, y_{2i+1}, z_{2i+1}) \end{cases} for \ i \in \{0, 1, \dots, r-2\}$$

Preliminaries

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

< 冊

• • = • • = •

Cubic substitution theory

A example of the cubic substitution

• After the first resultant $f_h = R(f_h, f_{z_{2r-1}}, z_{2r-1})$, by using the following substitutions in order, i.e.,

$$\begin{split} y_{2r-1}^3 &= L_{2r-2,1} \circ SSS \circ L_{2r-3}(x_{2r-3},y_{2r-3},z_{2r-3}), \\ x_{2r-1}^3 &= L_{2r-2,0} \circ SSS \circ L_{2r-3}(x_{2r-3},y_{2r-3},z_{2r-3}), \\ z_{2r-3}^3 &= L_{2r-4,2} \circ SSS \circ L_{2r-5}(x_{2r-5},y_{2r-5},z_{2r-5}), \end{split}$$

$$\begin{split} y_3^3 &= L_{2,1} \circ SSS \circ L_1(x_1, kx_1, c), \\ x_3^3 &= L_{2,0} \circ SSS \circ L_1(x_1, kx_1, c), \end{split}$$

. . .

Then f_h can be transformed into a polynomial with the degree of each variable except x_1 less than 3.

Preliminaries

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions 0000

Solving equations of forward modeling

Algorithm 1: Get the univariate polynomail for *r*-round Rescue-Prime

Input: $f_{x_{2i+3}}, f_{y_{2i+3}}, f_{z_{2i+3}}, f_h$ with $i \in \{0, 1, \dots, r-2\}$. Output: a univariate polynomial in $\mathbb{F}_q[x_1]$.

 $i \leftarrow r-2;$

² while $i \ge 1$ do

 $f_h \leftarrow R(f_h, f_{z_{2i+3}}, z_{2i+3});$

4 apply the cubic substitution to f_h ;

5
$$f_h \leftarrow R(f_h, f_{y_{2i+3}}, y_{2i+3});$$

6 apply the cubic substitution to f_h ;

7 $f_h \leftarrow R(f_h, f_{x_{2i+3}}, x_{2i+3});$

8 apply the cubic substitution to f_h ;

9
$$i \leftarrow i-1;$$

10 end

 $\begin{array}{l} f_h \leftarrow R(f_h, f_{z_{2i+3}}, z_3);\\ \text{apply the cubic substitution to } f_h;\\ f_h \leftarrow R(f_h, f_{y_{2i+3}}, y_3);\\ \text{apply the cubic substitution to } f_h;\\ f_h \leftarrow R(f_h, f_{y_{2i+3}}, x_3);\\ \text{return } f_h. \end{array}$

Preliminari 0000 Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

イロト イボト イヨト イヨト

Complexity analysis (forward modeling)

Table 1: Time complexities of our attack against Rescue-Prime under forward modeling, where f_h is the output of Algorithm 1.

r	Complexity of resultants	Complexity of cubic substitutions	$\deg(f_h)$	Complexity of forward modeling
4	$2^{38.45}$	$2^{40.09}$	3 ⁹	240.49
5	$2^{50.17}$	$2^{52.77}$	3^{12}	$2^{52.99}$
6	$2^{61.90}$	$2^{65.47}$	3^{15}	$2^{65.58}$
7	$2^{73.62}$	$2^{76.51}$	3^{18}	$2^{76.69}$
8	$2^{85.34}$	$2^{88.10}$	3^{21}	$2^{88.30}$

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

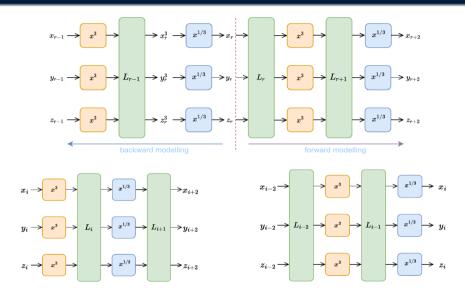


Figure 3: SFTM (start-from-the-middle) of Rescue-Prime < => < =>

A New Security Evaluation Method Based on Resultant for Arithmetic-Oriented Algorithms

ク Q (~ 20 / 33

э

Preliminari

Conclusions and Discussions

イロト イポト イヨト イヨト

э

Eliminations of SFTM

$$\begin{split} r \text{ is odd} \\ f_l &= (C_{-1,2})^3 - L_{0,2}^{-1} \circ SSS \circ L_1^{-1}(x_2, y_2, z_2), \\ \left\{ \begin{array}{l} f_{x_i} &= x_i^3 - L_{i,0}^{-1} \circ SSS \circ L_{i+1}^{-1}(x_{i+2}, y_{i+2}, z_{i+2}) \\ f_{y_i} &= y_i^3 - L_{i,1}^{-1} \circ SSS \circ L_{i+1}^{-1}(x_{i+2}, y_{i+2}, z_{i+2}) \\ f_{z_i} &= z_i^3 - L_{i,2}^{-1} \circ SSS \circ L_{i+1}^{-1}(x_{i+2}, y_{i+2}, z_{i+2}) \\ \end{array} \right. \\ \left\{ \begin{array}{l} f_{x_{r-1}} &= x_{r-1}^3 - L_{r-1,0}^{-1}(x_r^3, y_r^3, z_r^3) \\ f_{y_{r-1}} &= y_{r-1}^3 - L_{r-1,1}^{-1}(x_r^3, y_r^3, z_r^3) \\ f_{y_{r-1}} &= z_{r-1}^3 - L_{r-1,2}^{-1}(x_r^3, y_r^3, z_r^3) \\ \end{array} \right. \\ \left\{ \begin{array}{l} f_{x_i} &= x_i^3 - L_{i-1,0} \circ SSS \circ L_{i-2}(x_{i-2}, y_{i-2}, z_{i-2}) \\ f_{y_i} &= y_i^3 - L_{i-1,1} \circ SSS \circ L_{i-2}(x_{i-2}, y_{i-2}, z_{i-2}) \\ \end{array} \right. \\ \left\{ \begin{array}{l} f_{z_i} &= z_i^3 - L_{i-1,2} \circ SSS \circ L_{i-2}(x_{i-2}, y_{i-2}, z_{i-2}) \\ f_h &= L_{2r-1,2} \left(x_{2r-1}, y_{2r-1}, z_{2r-1} \right). \end{array} \right. \end{split} \right. \\ \end{split}$$

Preliminari

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

Resultants of SFTM

$$\begin{cases} f_l(x_2, y_2, z_2) = 0 \\ f_{x_2}(x_2, x_4, y_4, z_4) = 0 \\ f_{y_2}(y_2, x_4, y_4, z_4) = 0 \\ \vdots \\ f_{z_2}(y_2, x_4, y_4, z_4) = 0 \\ \vdots \\ f_{x_{2r-1}}(y_{2r-1}, x_{2r-3}, y_{2r-3}, z_{2r-3}) = 0 \\ f_{y_{2r-1}}(y_{2r-1}, x_{2r-3}, y_{2r-3}, z_{2r-3}) = 0 \\ f_{z_{2r-1}}(z_{2r-1}, y_{2r-1}, z_{2r-1}) = 0 \end{cases}$$

duction 000	Preliminari 0000	es Optimized algebraic attacks against AO primitives based on resultant	Conclusions and Disc 0000	ussions
	Algo	rithm 2: Get two bivariate polynomials for <i>r</i> -round Rescue-Prime		
	Inp	ut: $f_l, f_h, f_{x_i}, f_{y_i}, f_{z_i}$ as defined in Table 3.		
	Out	put: two bivariate polynomials.		
		2r - 1;		
		$\mathbf{le} \; i > r \; \mathbf{do}$		
		$f_h \leftarrow R(f_h, f_{z_i}, z_i);$		
		apply the cubic substitution to f_h ;		
		$f_h \leftarrow R(f_h, f_{y_i}, y_i);$		
		apply the cubic substitution to f_h ;		
		$f_h \leftarrow R(f_h, f_{x_i}, x_i);$		
		apply the cubic substitution to f_h ;		
	9 i	$i \leftarrow i-2;$		
	10 end			
	11 $i \leftarrow$	/		
		$\mathbf{le} \; i < r \; \mathbf{do}$		
		$f_l \leftarrow R(f_l, f_{z_i}, z_i);$		
		apply the cubic substitution to f_l ;		
		$f_l \leftarrow R(f_l, f_{y_i}, y_i);$		
		apply the cubic substitution to f_l ;		
		$f_l \leftarrow R(f_l, f_{x_i}, x_i);$		
		apply the cubic substitution to f_l ;		
	19 i	$i \leftarrow i+2;$		
	$_{20}$ end			
	21 retu	$\operatorname{rn} f_h, f_l.$	< 글 > < 글 > _ 글	9 q (P
ormation Engineering U	niversity	A New Security Evaluation Method Based on Resultant for Arithmetic-Oriented Algorithms	December 12, 2024	23 / 33

Preliminaries

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

• • = • • = •

Solving equations of SFTM modeling

Final step

From Algorithm 2 we will get two bivariate polynomials $f_l, f_h \in \mathbb{F}_q[y_r, z_r]$ and further use them to compute $R(f_l, f_h, z_r)$ to eliminate z_r .

Preliminaries

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

イロト イボト イヨト イヨト

Solving equations of SFTM modeling

Final step

From Algorithm 2 we will get two bivariate polynomials $f_l, f_h \in \mathbb{F}_q[y_r, z_r]$ and further use them to compute $R(f_l, f_h, z_r)$ to eliminate z_r .

Memory overflow problem

However, when the number of rounds is high, the two polynomials would be quite complicated and directly computing the resultant $R(f_l, f_h, z_r)$ usually suffers from memory overflow.

Preliminaries

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

Using Lagrange interpolation to compute resultant

Lagrange interpolation to compute resultant

• Assign a number of values to the variable y_r and compute $R(f_l, f_h, z_r)$ to get many interpolation pairs. (Can be parallelized)

Preliminaries

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

Using Lagrange interpolation to compute resultant

Lagrange interpolation to compute resultant

- Assign a number of values to the variable y_r and compute $R(f_l, f_h, z_r)$ to get many interpolation pairs. (Can be parallelized)
- Using those pairs and the fast Lagrange interpolation to recover the univariate polynomial.

Preliminaries

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

Using Lagrange interpolation to compute resultant

Lagrange interpolation to compute resultant

- Assign a number of values to the variable y_r and compute $R(f_l, f_h, z_r)$ to get many interpolation pairs. (Can be parallelized)
- Using those pairs and the fast Lagrange interpolation to recover the univariate polynomial.
- Using half-gcd to solve the univariate polynomial.

Preliminari 0000 Conclusions and Discussions

イロト イポト イヨト イヨト

Complexity analysis (SFTM modeling)

Table 2: Time complexities of algebraic attacks under SFTM modeling against Rescue-Prime and the degrees of f_l , f_h , and f.

r	Complexity of resultants	Complexity of cubic substitutions	d_l	d_h	deg(f)	Complexity of SFTM attacks
4	$2^{38.94}$	$2^{35.62}$	3^4	3^{6}	3^{10}	$2^{40.31}$
5	$2^{38.94}$	$2^{35.62}$	3^7	3^{6}	3^{13}	$2^{48.37}$
6	$2^{57.92}$	$2^{47.84}$	3^7	3^{9}	3^{16}	$2^{59.96}$
7	$2^{57.92}$	$2^{47.84}$	3^{10}	3^{9}	3^{19}	$2^{68.95}$
8	$2^{76.94}$	$2^{60.77}$	3^{10}	3^{12}	3^{22}	$2^{80.57}$

	duction
000	00

Preliminario

Optimized algebraic attacks against AO primitives based on resultant

Conclusions and Discussions

Experimental Results

We use the challenge parameters published by the Ethereum foundation with

 $p = 18446744073709551557 = 2^{64} - 59$

and find a 5-round collision of Rescue-Prime under SFTM modeling which was originally thought as "hard" in the Ethereum Foundation challenge.

Table 3: Attack complexities of Rescue-Prime

	Ethereum	Best	Time	Time	Best	Practical	Practical
r	Foundation's	theoretical	complexity	complexity	practical	time	time of
	time	complexity	of	forward	time in	of	forward
	complexity		SFTM	modeling	$[1]^{1}$	SFTM	modeling
4	$2^{37.5}$	2^{43}	$2^{43.02}$	$2^{40.49}$	258500s	2256.7s	885.5s
5	2^{45}	2^{57}	$2^{52.93}$	$2^{52.99}$	-	\approx one day	-

¹Bariant, Augustin, et al. "Algebraic attacks against some arithmetization-oriented primitives." IACR Transactions on Symmetric Cryptology (2022): 73-101.

Information Engineering University A New Security Evaluation Method Based on Resultant for Arithmetic-Oriented Algorithms December 12, 2024

27 / 33

Introduction	Preliminaries	Optimized algebraic attacks against AO primitives based on resultant	Conclusions and Discussions
00000	0000	00000000000000000000000	

Table 4: Comparison with $[2]^2$ in practical attack time of Anemoi

r	The attacks in [2]	Our attacks
3	< 0.04 <i>s</i>	0.423s
4	0.58s	0.973s
5	30.97s	7.113s
6	2421.52s	296.568s
7	167201s	2968.55s
8	_	38749.182s

²Bariant, A., Boeuf, A., Lemoine, A., Ayala, I.M., Øygarden, M., Perrin, L., Raddum, H.: The algebraic freelunch efficient gröbner basis attacks against arithmetization-oriented primitives. Annual International Cryptology Conference, CRYPTO 2024.

Introduction	Preliminaries	Optimized algebraic attacks against AO primitives based on resultant	Conclusions and Discussions
00000	0000	0000000000000000●	

Table 5: Comparison with [3]³ in practical attack time of JARVIS

r	Time for other resultants	Time for the final resultant	Total practical time	Time in [3]
6	11.2s	357.76s	368.96s	99989.0s
8	606.76s	455043.77s	455650.53s	—

³Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.: Algebraic cryptanalysis of stark-friendly designs: application to marvellous and mimc. In: Advances in Cryptology–ASIACRYPT 2019.

2 Preliminaries

3 Optimized algebraic attacks against AO primitives based on resultant

4 Conclusions and Discussions

イロト イポト イヨト イヨト

э

Preliminarie 0000 Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions

▶ ∢ ⊒

< □ > < 同

Summary of the resultant-based method

A novel analysis framework

• Construct a system of equations using forward modeling or SFTM modeling.

Information Engineering University A New Security Evaluation Method Based on Resultant for Arithmetic-Oriented Algorithms December 12, 2024 31 / 3

Preliminaries

Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions $0 \bullet 00$

< □ > < 同

Summary of the resultant-based method

A novel analysis framework

- Construct a system of equations using forward modeling or SFTM modeling.
- Combine the resultant and the cubic substitution theory to eliminate variables in a specific order and finally get two bivariate polynomials.

Preliminaries

Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions $0 \bullet 00$

Summary of the resultant-based method

A novel analysis framework

- Construct a system of equations using forward modeling or SFTM modeling.
- Combine the resultant and the cubic substitution theory to eliminate variables in a specific order and finally get two bivariate polynomials.
- Using fast Lagrange interpolation to recover the univariate polynomial.

Preliminaries

Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions

Summary of the resultant-based method

A novel analysis framework

- Construct a system of equations using forward modeling or SFTM modeling.
- Combine the resultant and the cubic substitution theory to eliminate variables in a specific order and finally get two bivariate polynomials.
- Using fast Lagrange interpolation to recover the univariate polynomial.
- Find all the roots of the derived univariate polynomial.

Optimized algebraic attacks against AO primitives based on resultan

Conclusions and Discussions 0000

• • • • • • •

Conclusions and Discussions

We present some potential weaknesses of AO algorithms that are susceptible to our attacks and give some potential improvements.

1 Using our new attack to decidie the secure number of rounds.

• • = • • = •

Conclusions and Discussions

We present some potential weaknesses of AO algorithms that are susceptible to our attacks and give some potential improvements.

- 1 Using our new attack to decidie the secure number of rounds.
- 2 Preventing variable isolation and substitution: using big S-boxes over extension finite fields.

イロト イポト イヨト イヨト

Conclusions and Discussions

We present some potential weaknesses of AO algorithms that are susceptible to our attacks and give some potential improvements.

- 1 Using our new attack to decidie the secure number of rounds.
- 2 Preventing variable isolation and substitution: using big S-boxes over extension finite fields.
- 3 Change addition of round constants operation $+ \longrightarrow \oplus$.

Introduction	Preliminaries	Optimized algebraic attacks against AO primitives based on resultant	Conclusions
00000	0000		0000

Conclusions and Discussions ○○○●

590

ъ

イロト イポト イヨト イヨト

