## Leakage-Resilient Incompressible Cryptography: **Constructions and Barriers**

Kaartik Bhushan<sup>1</sup>

Rishab Goyal<sup>2</sup>

Varun Narayanan<sup>4</sup>

Manoj Prabhakaran<sup>1</sup>

Venkata Koppula<sup>3</sup>

Mahesh Sreekumar Rajasree<sup>3</sup>

- 1. Indian Institute of Technology, Bombay
- 2. University of Wisconsin-Madison
- 3. Indian Institute of Technology, Delhi
- 4. University of California, Los Angeles







### **Correctness.** Receiver correctly decrypts the message

### Security. Eavesdropper cannot learn *m* from cipher-text





#### **Correctness.** Receiver correctly decrypts the message

Security. Eavesdropper cannot learn *m* from cipher-text and public key



#### Secret key

#### **Cipher-text**



# Can we ensure security when everything is not compromised

Dec

# Can we ensure security when everything is not compromised

#### <u>Case 1</u>

Cipher-text: fully leaked Secret key: partially leaked Dec

# Can we ensure security when everything is not compromised

Dec

#### <u>Case 1</u>

Cipher-text: fully leaked Secret key: partially leaked <u>Case 2</u>

Cipher-text: partially leaked Secret key: fully leaked

# Secure even if whole cipher text and part of secret key are leaked

### Challenger

 $(pk, sk) \leftarrow Setup(1^{\lambda})$ 

 $b \leftarrow \{0,1\}$  $ct \leftarrow Enc(pk, m_b)$ 



# Secure even if whole cipher text and part of secret key are leaked

### Challenger

 $(pk, sk) \leftarrow Setup(1^{\lambda})$ 

 $b \leftarrow \{0,1\}$  $ct \leftarrow Enc(pk, m_b)$ 



# Secure even if whole cipher text and part of secret key are leaked

### Challenger

 $(pk, sk) \leftarrow Setup(1^{\lambda})$ 

 $b \leftarrow \{0,1\}$  $ct \leftarrow Enc(pk, m_b)$ 



### Secure even if whole secret key and a compression of cipher-text are leaked

- [Canetti et al. 00] and [Dodis et al. 01] gave construction where a few bits of sk are leaked.  $\bullet$
- [Dziembowski06], [Di Crescenzo et al.06], [Akavia et al.09], etc. considered arbitrary function f. ullet
- ullet

Other works include [Dodis et al.09], [Brakerski et al.10], [Dodis et al.10], [Faonio et al.15] and many more

# Secure even if whole secret key and a *compression* of cipher-text are leaked

#### Challenger

 $(pk, sk) \leftarrow Setup(1^{\lambda})$ 

 $b \leftarrow \{0,1\}$  $ct \leftarrow Enc(pk, m_b)$ 

Adversary 2





# Secure even if whole secret key and a *compression* of cipher-text are leaked

#### Challenger

 $(pk, sk) \leftarrow Setup(1^{\lambda})$ 

 $b \leftarrow \{0,1\}$  $ct \leftarrow Enc(pk, m_b)$ 

Adversary 2





# Secure even if whole secret key and a *compression* of cipher-text are leaked

#### Challenger

 $(pk, sk) \leftarrow Setup(1^{\lambda})$ 

 $b \leftarrow \{0,1\}$  $ct \leftarrow Enc(pk, m_b)$ 

Adversary 2





### Secure even if whole secret key and a compression of cipher-text are leaked

- [Dzi06] gave the first construction under standard assumptions
- [BDD22] gave a rate-1 public key construction using incompressible encoding
- [GKRV24] showed more extensions

Can we achieve security under more types of joint leakages?

#### Can we achieve security under more types of joint leakages?

More combinations are possible!

# Leakage-Resilient **Incompressible Encryption**

Cipher-text is compressed together with some leakage of the secret key. Ensure secure when entire secret key is later revealed

# Our Model

Leakage Phase

#### Adversary 2

sk, state, aux b'



Leakage Phase

#### Adversary 2

sk, state, aux b'



Leakage Phase

#### Adversary 2

sk, state, aux b'



Leakage Phase

#### **Objectives**

#### Adversar 1. Obtain lower bounds for these rates 2. Design schemes that match the lower bounds

sk, state, aux



# Goal 1: Study Lower Bounds

## rates cannot be secure when secret key is smaller than message length

**Conjecture** [GWZ22]. Security of an *incompressible PKE* scheme with optimal

## rates cannot be secure when secret key is smaller than message length

**Conjecture'.** Security of an LRI PKE scheme with optimal rates cannot be proved by black-box reduction from a secure cryptographic game

**Conjecture** [GWZ22]. Security of an *incompressible PKE* scheme with optimal

## rates cannot be secure when secret key is smaller than message length

**Conjecture'.** Security of an LRI PKE scheme with optimal rates cannot be proved by black-box reduction from a secure cryptographic game

#### Main Result

These schemes cannot be proved secure by black box reduction from secure cryptographic games

**Conjecture** [GWZ22]. Security of an *incompressible PKE* scheme with optimal

**Theorem.** Security of an *incompressible PKE* scheme with optimal rates cannot be proved by black-box reduction from a secure cryptographic game when secret key is smaller than message length

Proof. Using Simulatable Attack [GW11, Wichs13]

**Theorem.** Security of an *incompressible PKE* scheme with optimal rates cannot be proved by black-box reduction from a secure cryptographic game when secret key is smaller than message length

#### **Proof.** Using **Simulatable Attack** [GW11, Wichs13]

#### Simulatable attack for a cryptographic primitive $\mathcal{H}$

- An inefficient attack A that breaks  $\mathcal{H}$
- Comes with an efficient Sim that effectively emulates interaction with A
- $R^A$  breaks  $\mathscr{G} \Longrightarrow R^{Sim}$  breaks  $\mathscr{G}$
- Contradicts security of  $\mathcal{G}$  since  $R^{Sim}$  is efficient

• Suppose R is a black box reduction from a secure cryptographic game  $\mathcal{G}$  to  $\mathcal{H}$ 



#### Simulatable attack for LRI PKE

- $A_1$  choses  $(m_0, m_1)$  as hash of pk; computes compression state as hash of ct •  $A_2$  guesses b by brute force search to find a ct' that hashes to state and decodes to  $m_b$ •  $A_2$  fails only if there is a ct'' that hashes to state and decodes to  $m_{1-h}$ ; extremely unlikely



- $A_1$  choses  $(m_0, m_1)$  as hash of pk; computes compression state as hash of ct
- $A_2$  guesses b by brute force search to find a ct' that hashes to state and decodes to  $m_b$
- $A_2$  fails only if there is a ct'' that hashes to *state* and decodes to  $m_{1-h}$ ; extremely unlikely

#### Simulating the attack

- Simulate  $A_1$ 's hashes as random outputs to every fresh input, and storing them in a list
- Simulate  $A_2$ 's brute force search by simply looking through list

#### Simulatable attack for LRI PKE

#### Attack

- 1. Random functions g, h are hardcoded in  $A_1, A_2$
- 2.  $(m_0, m_1) = A_1(pk) = g(pk)$
- 3. *state* =  $A_1(ct) = h(ct)$
- 4.  $A_2(state, sk, pk, m_0, m_1)$ :
  - $M = \{m : \exists ct', h(ct') = state, IncPKE . Dec(ct', sk) = m\}$
  - Output the unique b' such that  $m_{b'} = IncPKE(ct', sk)$

- The correctness constraint makes proving simulatability challenging

#### Simulator

- 1. Sim emulates g, h by keeping databases  $Q_g, Q_h$
- 2. Sim responds to requests:
  - 1.  $A_1(pk)$ : return  $(m_0, m_1)$  associated with pk in  $Q_g$ ; on fail, return random  $(m_0, m_1)$  and add  $((m_0, m_1), pk)$  to  $Q_g$
  - 2.  $A_1(ct)$ : return *state* associated with ct in  $Q_h$ ; on fail, return random state and add (state, ct) to  $Q_h$
  - 3.  $A_2(state, sk, pk, m_0, m_1)$ :
    - check  $(m'_0, m'_1)$  and ct' associated with pk and state
    - Output the unique b' such that  $m_{b'} = IncPKE(ct', sk)$

[Wichs13] and prior works built simulatable attacks for Hashes and Functions





Goal 2: Obtain Upper Bounds

**Theorem.** There exists a LRI SKE scheme with compression and cipher-text rate 1/2 and leakage rate 1 - o(1) with unconditional security

1/2 and leakage rate 1 - o(1) with unconditional security

## **Theorem.** There exists a LRI SKE scheme with compression and cipher-text rate

Improves upon previous simple incSKE scheme with compression and cipher-text rate 1/3

## **Theorem.** There exists a LRI SKE scheme with compression and cipher-text rate 1/2 and leakage rate 1 - o(1) with unconditional security

# **Theorem.** There exists a LRI PKE sch 1/2 and leakage rate 1 - o(1)

Improves upon previous simple incSKE scheme with compression and cipher-text rate 1/3

Theorem. There exists a LRI PKE scheme with compression and cipher-text rate

**Theorem.** There exists a LRI SKE scheme with compression and cipher-text rate 1/2 and leakage rate 1 - o(1) with unconditional security

- Transforms Incompressible SKE to LRI SKE
- Instantiating with Inc SKE from [Dzi06] gives rate 1/3
- We build an Inc SKE with rate 1/2 using invertible extractors

• Use a leakage resilient secret key in a Incompressible SKE scheme

# LRI SKE + PKE -> LRI PKE

Public Key consists of 2n public keys  $\{pk_{i,b}\}_{i \in [n], b \in \{0,2\}}$ 



**Deferred Encryption** [GKW16, GKRV23]



 $lab_{1,0}, lab_{2,0}, \dots, lab_{n,0}$  $lab_{1,1}, lab_{2,1}, \dots, lab_{n,1}$ 



# LRI SKE + PKE -> LRI PKE

Public Key consists of 2n public keys  $\{pk_{i,b}\}_{i \in [n], b \in \{0,1\}}$ 



**Deferred Encryption** [GKW16, GKRV23]



 $\{PKE . Enc(lab_{i,b}, pk_{i,b})\}$ 



# LRI SKE + PKE -> LRI PKE



Secret Key consists of secret key *s* for *LRISKE*, and n secret keys of PKE:  $\{sk_{i,s_i}\}_{i \in [n]}$ 

- Recover  $\{lab_{i,s_i}\}_{i \in [n]}$ ; use garbled circuit to compute ct = LRISKE. Enc(m, s)
- Recover the message as m = LRISKE . Dec(ct, s)

**Deferred Encryption** [GKW16, GKRV23]

Public Key consists of 2n public keys  $\{pk_{i,b}\}_{i \in [n], b \in \{0,1\}}$ 



 $\{PKE . Enc(lab_{i,b}, pk_{i,b})\}$ 

**Decryption** 

# Further Results

- Transformation from Incompressible SKE to LRI PKE using a leakage resilient non-committing key encapsulation mechanism.
- We define and construct LRI signatures as a generalization incompressible signatures as mentioned in [GWZ22].

# Conclusion

|         | Cipher-text Rate | <b>Compression Rate</b> | Leakage Rate | Feasible?                              |
|---------|------------------|-------------------------|--------------|----------------------------------------|
| IT.SKE  | 1/2              | 1/2                     | 1-o(1)       | This work                              |
|         | 1/3              | 1/2                     | 0            | [Dzi06]                                |
| PKE     | 1/2              | 1/2                     | 1-o(1)       | This work<br>Assuming DDH,DCR          |
|         | 1-o(1)           | 1-0(1)                  | 0            | [BDD22]<br>using large secret key      |
| PKE/SKE | 1-o(1)           | 1-0(1)                  | 1-0(1)       | Barrier                                |
|         | 1-o(1)           | 1-0(1)                  | 0            | Barrier<br>with message sized secret k |

Leakage Resilient Incompressible (LRI) Encryption Schemes



# Conclusion

|         | Cipher-text Rate | <b>Compression Rate</b> | Leakage Rate | Feasible?                              |
|---------|------------------|-------------------------|--------------|----------------------------------------|
| IT.SKE  | 1/2              | 1/2                     | 1-o(1)       | This work                              |
|         | 1/3              | 1/2                     | 0            | [Dzi06]                                |
| PKE     | 1/2              | 1/2                     | 1-o(1)       | This work<br>Assuming DDH,DCR          |
|         | 1-o(1)           | 1-o(1)                  | 0            | [BDD22]<br>using large secret key      |
| PKE/SKE | 1-o(1)           | 1-0(1)                  | 1-0(1)       | Barrier                                |
|         | 1-o(1)           | 1-0(1)                  | 0            | Barrier<br>with message sized secret k |

Leakage Resilient Incompressible (LRI) Encryption Schemes

## Thank You!

