Leakage-Resilient Incompressible Cryptography: Constructions and Barriers

Kaartik Bhushan¹ Rishab Goyal² Venkata Koppula³

Varun Narayanan⁴ Manoj Prabhakaran¹ Mahesh Sreekumar Rajasree³

- 1. Indian Institute of Technology, Bombay
- 2. University of Wisconsin-Madison
- 3. Indian Institute of Technology, Delhi
- 4. University of California, Los Angeles

Correctness. Receiver correctly decrypts the message

Security. Eavesdropper cannot learn *m* from cipher-text

Correctness. Receiver correctly decrypts the message

Security. Eavesdropper cannot learn *m* from cipher-text and public key

Secret key Cipher-text

Dec

m

I CVCIVUIIIV R **Can we ensure security when everything is not compromised**

Dec

m

I CVCIVUIIIV R **Can we ensure security when everything is not compromised**

Case 1

Cipher-text: fully leaked Secret key: partially leaked

Dec

m

I CVCIVUIIIV R **Can we ensure security when everything is not compromised**

Case 1

Cipher-text: fully leaked Secret key: partially leaked Case 2

Cipher-text: partially leaked Secret key: fully leaked

Secure even if whole cipher text and part of secret key are leaked

 $(pk, sk) \leftarrow Setup(1^{\lambda})$

 $b \leftarrow \{0,1\}$ $ct \leftarrow Enc(pk, m_b)$ *ct*

Secure even if whole cipher text and part of secret key are leaked

 $(pk, sk) \leftarrow Setup(1^{\lambda})$

 $b \leftarrow \{0,1\}$ $ct \leftarrow Enc(pk, m_b)$ *ct*

Secure even if whole cipher text and part of secret key are leaked

Challenger

 $(pk, sk) \leftarrow Setup(1^{\lambda})$

 $b \leftarrow \{0,1\}$ $ct \leftarrow Enc(pk, m_b)$ *ct*

• Other works include [Dodis et al.09], [Brakerski et al.10], [Dodis et al.10], [Faonio et al.15] and many more

Secure even if whole secret key and a *compression* of cipher-text are leaked

- [Canetti et al. 00] and [Dodis et al. 01] gave construction where a few bits of sk are leaked.
- [Dziembowski06], [Di Crescenzo et al.06], [Akavia et al.09], etc. considered arbitrary function f .
-

Secure even if whole secret key and a *compression* of cipher-text are leaked

 $(pk, sk) \leftarrow Setup(1^{\lambda})$

 $b \leftarrow \{0,1\}$ $ct \leftarrow Enc(pk, m_b)$

b′

Secure even if whole secret key and a *compression* of cipher-text are leaked

 $(pk, sk) \leftarrow Setup(1^{\lambda})$

 $b \leftarrow \{0,1\}$ $ct \leftarrow Enc(pk, m_b)$

b′

Secure even if whole secret key and a *compression* of cipher-text are leaked

Challenger

 $(pk, sk) \leftarrow Setup(1^{\lambda})$

 $b \leftarrow \{0,1\}$ $ct \leftarrow Enc(pk, m_b)$

b′

- [Dzi06] gave the first construction under standard assumptions
- [BDD22] gave a rate-1 public key construction using incompressible encoding
- [GKRV24] showed more extensions

Secure even if whole secret key and a *compression* of cipher-text are leaked

Can we achieve security under more types of joint leakages?

Can we achieve security under more types of joint leakages?

More combinations are possible!

Leakage-Resilient Incompressible Encryption

Cipher-text is compressed together with some leakage of the secret key. Ensure secure when entire secret key is later revealed

Our Model

LR-Incompressible Encryption Security Game

Adversary 2

LR-Incompressible Encryption Security Game

Adversary 2

LR-Incompressible Encryption Security Game

Adversary 2

Objectives

2. Design schemes that match the lower bounds Adversar¹. Obtain lower bounds for these rates

LR-Incompressible Encryption Security Game

Goal 1: Study Lower Bounds

Conjecture [GWZ22]**.** Security of an *incompressible PKE* scheme with optimal

rates cannot be secure when secret key is smaller than message length

Conjecture [GWZ22]**.** Security of an *incompressible PKE* scheme with optimal

rates cannot be secure when secret key is smaller than message length

Conjecture'. Security of an *LRI PKE* scheme with optimal rates cannot be proved by black-box reduction from a secure cryptographic game

Conjecture [GWZ22]**.** Security of an *incompressible PKE* scheme with optimal

rates cannot be secure when secret key is smaller than message length

Main Result

These schemes cannot be proved secure by black box reduction from secure cryptographic games

Conjecture'. Security of an *LRI PKE* scheme with optimal rates cannot be proved by black-box reduction from a secure cryptographic game

Theorem. Security of an *incompressible PKE* scheme with optimal rates cannot be proved by black-box reduction from a secure cryptographic game when secret key is smaller than message length

Proof. Using **Simulatable Attack** [GW11, Wichs13]

Theorem. Security of an *incompressible PKE* scheme with optimal rates cannot be proved by black-box reduction from a secure cryptographic game when secret key is smaller than message length

- **• An inefficient attack that breaks** *A* ℋ
-
-
- R^A breaks $\mathscr{G} \Longrightarrow R^{\text{Sim}}$ breaks
- Contradicts security of \mathscr{G} since R^{Sim} is efficient

• Comes with an efficient that effectively emulates interaction with *A* • Suppose R is a black box reduction from a secure cryptographic game $\mathscr G$ to $\mathscr H$

Proof. Using **Simulatable Attack** [GW11, Wichs13]

Simulatable attack for a cryptographic primitive ℋ

Simulatable attack for LRI PKE

- A_1 choses (m_0, m_1) as hash of pk ; computes compression $state$ as hash of ct • A_2 guesses b by brute force search to find a ct' that hashes to $state$ and decodes to m_b
-
- A_2 fails only if there is a ct'' that hashes to $state$ and decodes to m_{1-b} ; extremely unlikely
- A_1 choses (m_0, m_1) as hash of pk ; computes compression $state$ as hash of ct
-
- A_2 fails only if there is a ct'' that hashes to $state$ and decodes to m_{1-b} ; extremely unlikely

Simulatable attack for LRI PKE

• A_2 guesses b by brute force search to find a ct' that hashes to $state$ and decodes to m_b

• Simulate A_1 's hashes as random outputs to every fresh input, and storing them in a list

Simulating the attack

-
- Simulate A_2 's brute force search by simply looking through list

Attack

- 1. Random functions g,h are hardcoded in $A_1.A_2$
- 2. $(m_0, m_1) = A_1(pk) = g(pk)$
- 3. *state* = $A_1(ct) = h(ct)$
- 4. $A_2(state, sk, pk, m_0, m_1)$:
	- $M = \{m : \exists ct', h(ct') = state, IncPKE \cdot Dec(ct', sk) = m\}$
	- Output the unique b' such that $m_{b'} = IncPKE(ct', sk)$

Simulator

- 1. Sim emulates g,h by keeping databases $\mathcal{Q}_g, \mathcal{Q}_h$
- 2. Sim responds to requests:
	- 1. $A_1(pk)$: return (m_0, m_1) associated with pk in \mathcal{Q}_g ; on fail, return random (m_0, m_1) and add $((m_0, m_1), pk)$ to \mathcal{Q}_g
	- 2. $A_1(ct)$: return *state* associated with ct in \mathcal{Q}_h ; on fail, return random $state$ and add $(state, ct)$ to \mathcal{Q}_h
	- 3. $A_2(state, sk, pk, m_0, m_1)$:
		- check (m'_0, m'_1) and ct' associated with pk and state
		- Output the unique b' such that $m_{b'} = IncPKE(ct', sk)$

• [Wichs13] and prior works built simulatable attacks for Hashes and Functions

-
- The correctness constraint makes proving simulatability challenging

Goal 2: Obtain Upper Bounds

Theorem. There exists a LRI SKE scheme with compression and cipher-text rate 1/2 and leakage rate $1 - o(1)$ with unconditional security

1/2 and leakage rate $1 - o(1)$ with unconditional security

Theorem. There exists a LRI SKE scheme with compression and cipher-text rate

Improves upon previous simple incSKE scheme with compression and cipher-text rate 1/3

Theorem. There exists a LRI SKE scheme with compression and cipher-text rate 1/2 and leakage rate $1 - o(1)$ with unconditional security

1/2 and leakage rate $1 - o(1)$

Improves upon previous simple incSKE scheme with compression and cipher-text rate 1/3

Theorem. There exists a LRI PKE scheme with compression and cipher-text rate

Theorem. There exists a LRI SKE scheme with compression and cipher-text rate 1/2 and leakage rate $1 - o(1)$ with unconditional security

- Transforms Incompressible SKE to LRI SKE
-
- Instantiating with Inc SKE from [Dzi06] gives rate $1/3$
- We build an Inc SKE with rate $1/2$ using invertible extractors

• Use a leakage resilient secret key in a Incompressible SKE scheme

LRI SKE + PKE -> LRI PKE

Deferred Encryption [GKW16, GKRV23]

 $lab_{1,0}$, $lab_{2,0}$, ..., $lab_{n,0}$ $lab_{1,1}$, $lab_{2,1}$, ..., $lab_{n,1}$

Public Key consists of 2n public keys {*pki*,*b*}*i*∈[*n*],*b*∈{0,2}

+

LRI SKE + PKE -> LRI PKE

Deferred Encryption [GKW16, GKRV23]

 ${PKE \cdot Enc(lab_{i,b}, pk_{i,b})}$

Public Key consists of 2n public keys {*pki*,*b*}*i*∈[*n*],*b*∈{0,1}

LRI SKE + PKE -> LRI PKE

Deferred Encryption [GKW16, GKRV23]

Secret Key consists of secret key s for $LRISKE$, and n secret keys of PKE: $\{sk_{i,s_i}\}_{i\in [n]}$

- Recover $\{ \text{lab}_{i,s_i} \}_{i \in [n]}$; use garbled circuit to compute $ct = LRISKE$. $Enc(m, s)$
- Recover the message as $m = LRISKE$. $Dec(ct, s)$

Public Key consists of 2n public keys $\{pk_{i,b}\}_{i\in[n],b\in\{0,1\}}$

Decryption

Further Results

- Transformation from Incompressible SKE to LRI PKE using a leakage resilient non-committing key encapsulation mechanism.
- We define and construct LRI signatures as a generalization incompressible signatures as mentioned in [GWZ22].

Conclusion

Leakage Resilient Incompressible (LRI) Encryption Schemes

Conclusion

Leakage Resilient Incompressible (LRI) Encryption Schemes

Thank You!

