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sk ← 𝖲𝖾𝗍𝗎𝗉(1λ)

sksk

Sends cipher-text
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𝖣𝖾𝖼(ct, sk)
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(sk, pk) ← 𝖲𝖾𝗍𝗎𝗉(1λ)

skpk

Sends cipher-text
ct ← 𝖤𝗇𝖼(m, pk) ct

Decodes cipher-text as 
𝖣𝖾𝖼(ct, sk)

Correctness. Receiver correctly decrypts the message


Security. Eavesdropper cannot learn  from cipher-text and public keym
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Case 1 

Cipher-text: fully leaked 
Secret key: partially leaked

Case 2 

Cipher-text: partially leaked 
Secret key: fully leaked
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Challenger Adversary
(pk, sk) ← Setup(1λ)

m0, m1
b ← {0,1}

ct ← Enc(pk, mb)
ct

f

f(sk)

pk

Secure even if whole cipher text and part of secret key

 are leaked

b′ 

cipher-text rate =
message length

cipher-text length

leakage rate =
leakage length

secret key length



Leakage Resilient Encryption

• [Canetti et al. 00] and [Dodis et al. 01] gave construction where a few bits of  are leaked.


• [Dziembowski06], [Di Crescenzo et al.06], [Akavia et al.09], etc. considered arbitrary function .


• Other works include [Dodis et al.09], [Brakerski et al.10], [Dodis et al.10], [Faonio et al.15] and many more

sk

f
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Incompressible Encryption Schemes

Secure even if whole secret key and a compression of 
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Incompressible Encryption Schemes

Secure even if whole secret key and a compression of 
cipher-text are leaked

Challenger Adversary 1
(pk, sk) ← Setup(1λ) m0, m1

b ← {0,1}
ct ← Enc(pk, mb)

ct

pk

stateAdversary 2
sk, state

b′ 

cipher-text rate =
message length

cipher-text length

compression rate =
compression length

cipher-text length length



Incompressible Encryption Schemes
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• [Dzi06] gave the first construction under standard assumptions


• [BDD22] gave a rate-1 public key construction using incompressible encoding


• [GKRV24] showed more extensions

Secure even if whole secret key and a compression of 
cipher-text are leaked



Can we achieve security under more types of joint leakages?



Can we achieve security under more types of joint leakages?

More combinations are possible!



Leakage-Resilient 
Incompressible Encryption

Cipher-text is compressed together with some leakage of 
the secret key. Ensure secure when entire secret key is later 

revealed

Our Model



Leakage Phase

Compression Phase

LR-Incompressible Encryption Security Game
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Leakage Phase

Compression Phase

LR-Incompressible Encryption Security Game

Challenger Adversary 1
(pk, sk) ← Setup(1λ)

m0, m1, aux

b ← {0,1}
c ← Enc(pk, mb) ct

state

Adversary 2

sk, state, aux

b′ 

f

f(sk)

pk leakage rate =
leakage length

secret key length

cipher-text rate =
message length

cipher-text length

compression rate =
compression length
cipher-text length

Objectives 

1. Obtain lower bounds for these rates 
2. Design schemes that match the lower bounds



Goal 1: Study Lower Bounds
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Main Result 

These schemes cannot be proved 
secure by black box reduction from 

secure cryptographic games
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Theorem. Security of an incompressible PKE scheme with optimal rates cannot 
be proved by black-box reduction from a secure cryptographic game when secret 
key is smaller than message length 

Proof. Using Simulatable Attack [GW11, Wichs13]

Simulatable attack for a cryptographic primitive  

• An inefficient attack  that breaks  
• Comes with an efficient  that effectively emulates interaction with  
• Suppose  is a black box reduction from a secure cryptographic game  to  
•  breaks    breaks  
• Contradicts security of  since  is efficient

ℋ

A ℋ
𝖲𝗂𝗆 A

R 𝒢 ℋ
RA 𝒢 ⟹ R𝖲𝗂𝗆 𝒢

𝒢 R𝖲𝗂𝗆



Challenger A1
(pk, sk) ← Setup(1λ)

m0, m1

b ← {0,1}, ct ← Enc(pk, mb) ct

stateA2 pk, sk, state, m0, m1

b′ 

pk

Simulatable attack for LRI PKE

•  choses  as hash of ; computes compression  as hash of 

•  guesses  by brute force search to find a  that hashes to  and decodes to 

•  fails only if there is a  that hashes to  and decodes to ; extremely unlikely

A1 (m0, m1) pk state ct
A2 b ct′ state mb
A2 ct′ ′ state m1−b



Simulatable attack for LRI PKE

•  choses  as hash of ; computes compression  as hash of 

•  guesses  by brute force search to find a  that hashes to  and decodes to 

•  fails only if there is a  that hashes to  and decodes to ; extremely unlikely

A1 (m0, m1) pk state ct
A2 b ct′ state mb
A2 ct′ ′ state m1−b

Simulating the attack

•  Simulate ’s hashes as random outputs to every fresh input, and storing them in a list

• Simulate ’s brute force search by simply looking through list

A1
A2



Attack

1.  emulates  by keeping databases  

2.  responds to requests:


1. : return  associated with  in ; on fail, 
return random  and add  to 


2. : return  associated with  in ; on fail, return 
random  and add  to 


3. :

• check  and  associated with  and 

• Output the unique  such that 

𝖲𝗂𝗆 g, h Qg, Qh
𝖲𝗂𝗆

A1(pk) (m0, m1) pk Qg
(m0, m1) ((m0, m1), pk) Qg

A1(ct) state ct Qh
state (state, ct) Qh

A2(state, sk, pk, m0, m1)
(m′ 0, m′ 1) ct′ pk state

b′ mb′ 
= IncPKE(ct′ , sk)

1. Random functions  are hardcoded in , 

2. 

3. 

4. :


• 

• Output the unique  such that 

g, h A1 A2
(m0, m1) = A1(pk) = g(pk)
state = A1(ct) = h(ct)
A2(state, sk, pk, m0, m1)

M = {m : ∃ct′ , h(ct′ ) = state, IncPKE . Dec(ct′ , sk) = m}
b′ mb′ 

= IncPKE(ct′ , sk)

Simulator

• [Wichs13] and prior works built simulatable attacks for Hashes and Functions

• The correctness constraint makes proving simulatability challenging



Goal 2: Obtain Upper Bounds
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Theorem. There exists a LRI SKE scheme with compression and cipher-text rate 
 and leakage rate  with unconditional security1/2 1 − o(1)

• Transforms Incompressible SKE to LRI SKE 

•Use a leakage resilient secret key in a Incompressible SKE scheme

• Instantiating with Inc SKE from [Dzi06] gives rate 

•We build an Inc SKE with rate  using invertible extractors

1/3
1/2



LRI SKE + PKE -> LRI PKE

Deferred Encryption [GKW16, GKRV23]

LRISKE . Enc(m, ⋅ )
Circuit Garbling

˜LRISKE . Enc(m, ⋅ )

Public Key consists of 2n public keys {pki,b}i∈[n],b∈{0,2}

+ lab1,0, lab2,0, …, labn,0

lab1,1, lab2,1, …, labn,1
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LRI SKE + PKE -> LRI PKE

Deferred Encryption [GKW16, GKRV23]

LRISKE . Enc(m, ⋅ )
Circuit Garbling

˜LRISKE . Enc(m, ⋅ )

Public Key consists of 2n public keys {pki,b}i∈[n],b∈{0,1}

+ {PKE . Enc(labi,b, pki,b}

Cipher-text

Secret Key consists of secret key  for , and n secret keys of PKE: s LRISKE {ski,si
}i∈[n]

Decryption 
• Recover ; use garbled circuit to compute 


• Recover the message as 
{labi,si

}i∈[n] ct = LRISKE . Enc(m, s)
m = LRISKE . Dec(ct, s)



Further Results

• Transformation from Incompressible SKE to LRI PKE using a leakage 
resilient non-committing key encapsulation mechanism.


• We define and construct LRI signatures as a generalization incompressible 
signatures as mentioned in [GWZ22].



Conclusion

Cipher-text Rate Compression Rate Leakage Rate Feasible?

IT.SKE
1/2 1/2 1-o(1) This work

1/3 1/2 0 [Dzi06]

PKE
1/2 1/2 1-o(1) This work 


Assuming DDH,DCR

1-o(1) 1-o(1) 0 [BDD22] 

using large secret key

PKE/SKE
1-o(1) 1-o(1) 1-o(1) Barrier

1-o(1) 1-o(1) 0 Barrier

with message sized secret key
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Thank You!


