Strongly Secure Universal Thresholdizer

Ehsan Ebrahimi University of Luxembourg Anshu Yadav IST Austria

Threshold Cryptography - Motivation

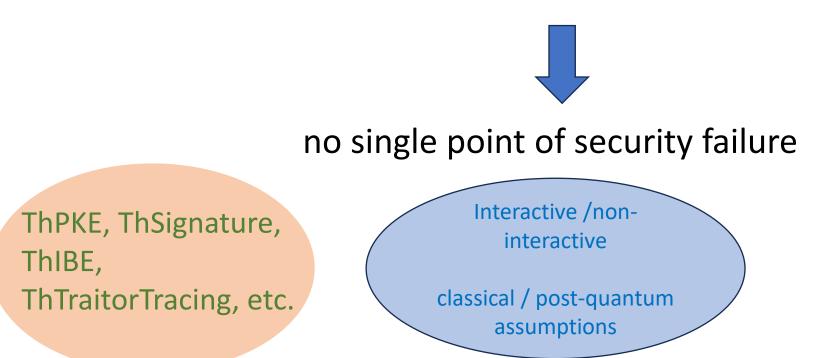
Distributes privileged operation amongst multiple parties

no single point of security failure

ThPKE, ThSignature, ThIBE, ThTraitorTracing, etc.

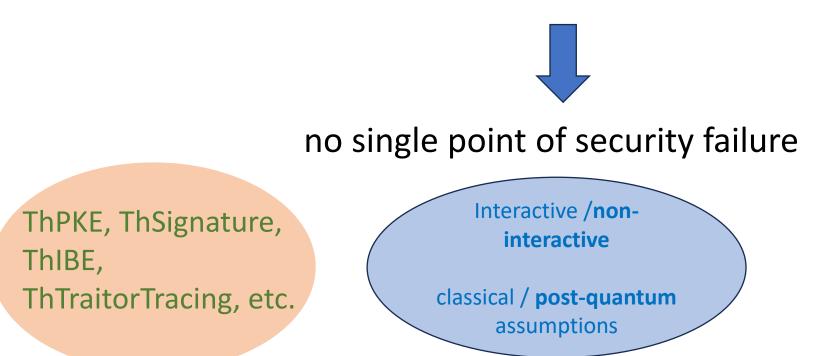
Threshold Cryptography - Motivation

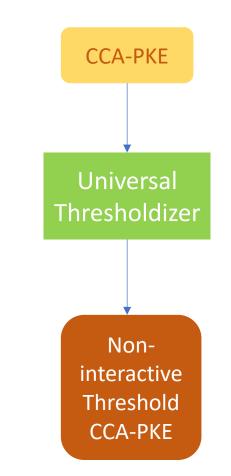
Distributes privileged operation amongst multiple parties

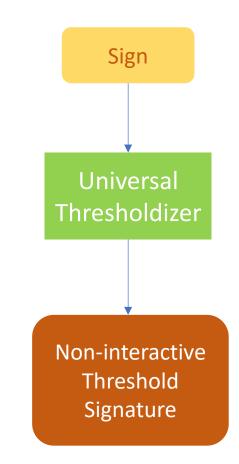


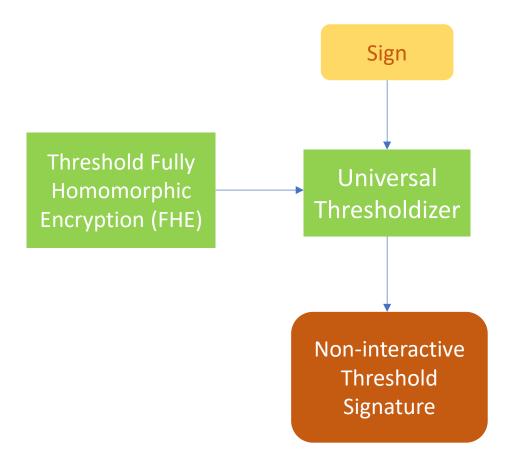
Threshold Cryptography - Motivation

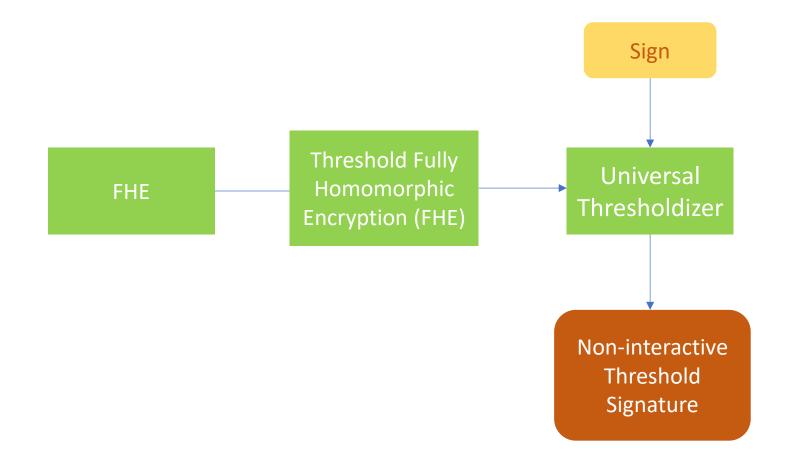
Distributes privileged operation amongst multiple parties

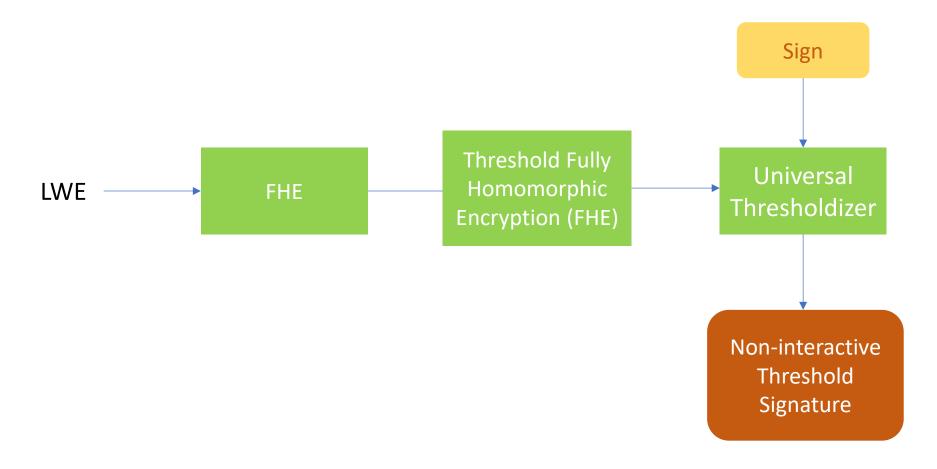


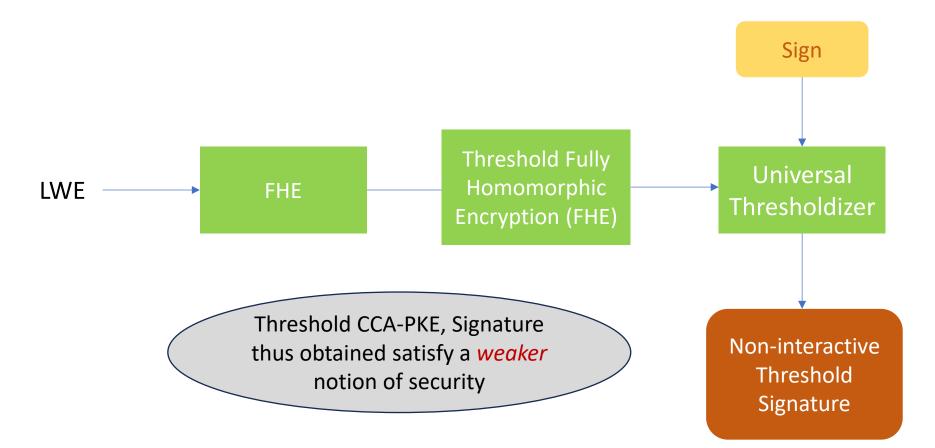












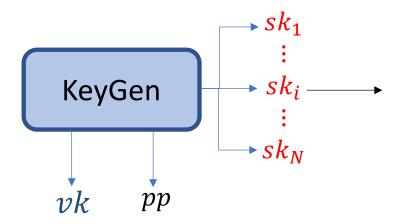
Our Contributions

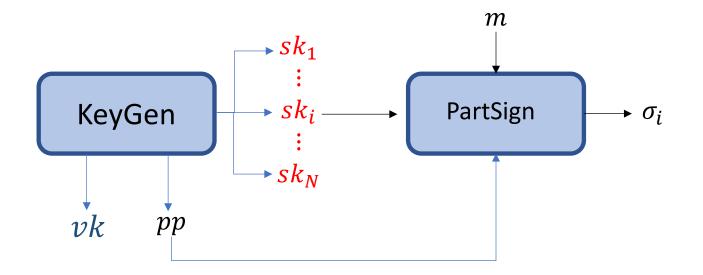
- Define and build universal thresholdizer (UT) and threshold FHE (TFHE) with stronger security notions
 - Needed to achieve *stronger* security for primitives thresholdized using UT
- Using our universal thresholdizer we get the first non-interactive lattice based threshold signature scheme with the stronger security
- Also define various security notions for Threshold Signature and relations between them

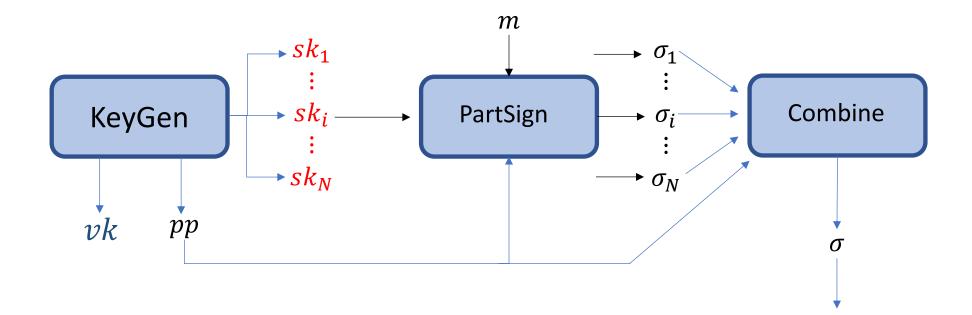
Our Contributions

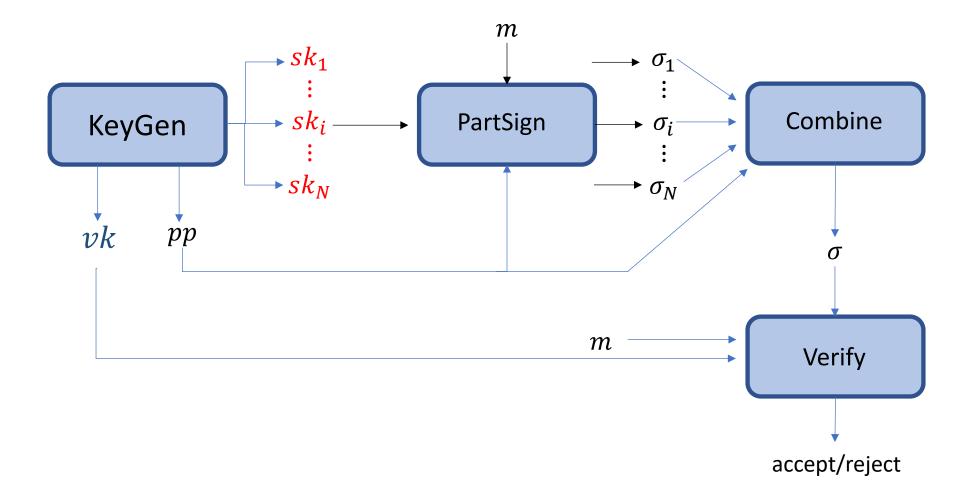
Related to (partial) adaptivity

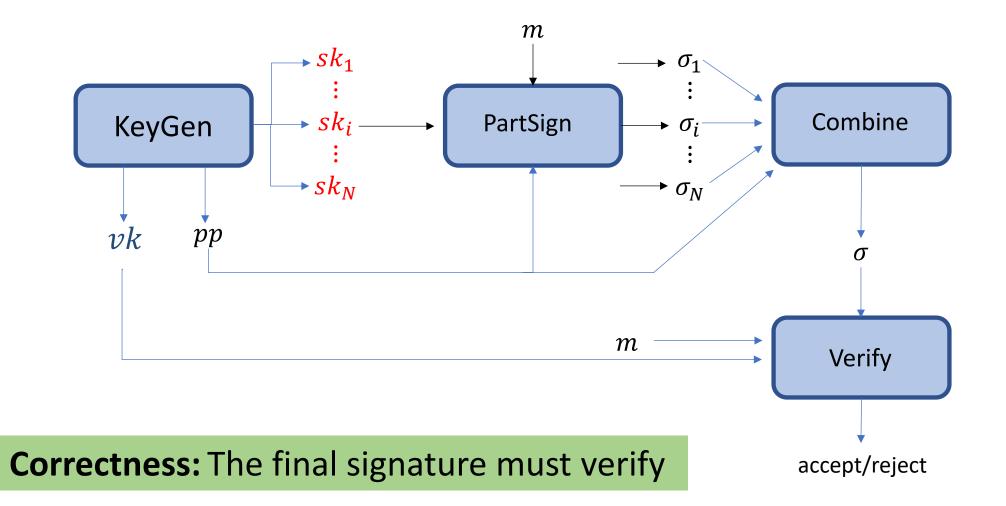
- Define d build universal thresholdizer (UT) and threshold FHE (TFHE) with *stronger* security notions
 - Needed to achieve *stronger* security for primitives thresholdized using UT
- Using our universal thresholdizer we get the first non-interactive lattice based threshold signature scheme with the stronger security
- Also define various security notions for Threshold Signature and relations between them











No polynomial time adversary must be able to generate a signature on any message m^* even given

No polynomial time adversary must be able to generate a signature on any message m^* even given

✓ Partial signing keys from upto t - 1 parties of adversary's choice

No polynomial time adversary must be able to generate a signature on any message m^* even given

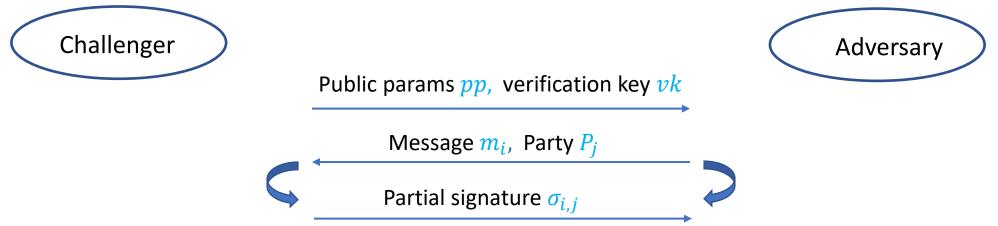
- ✓ Partial signing keys from upto t 1 parties of adversary's choice
- Partial/complete signatures on any number of other messages of adversary's choice

t-out-of-N access structure

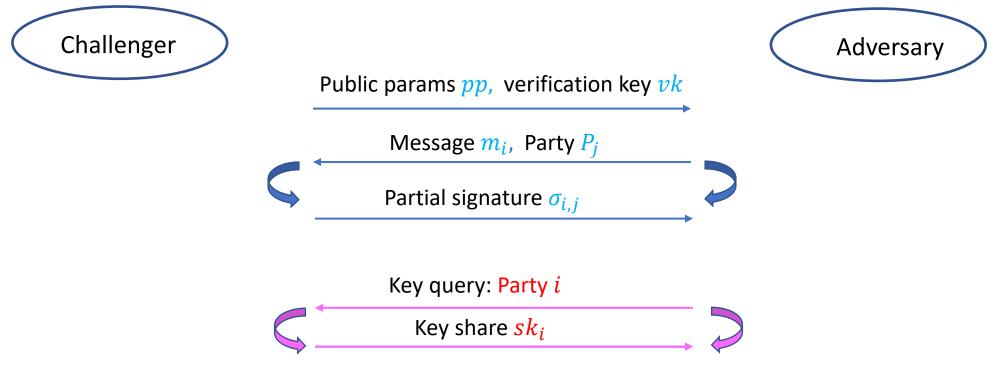
t-out-of-N access structure

Public params pp, verification key vk

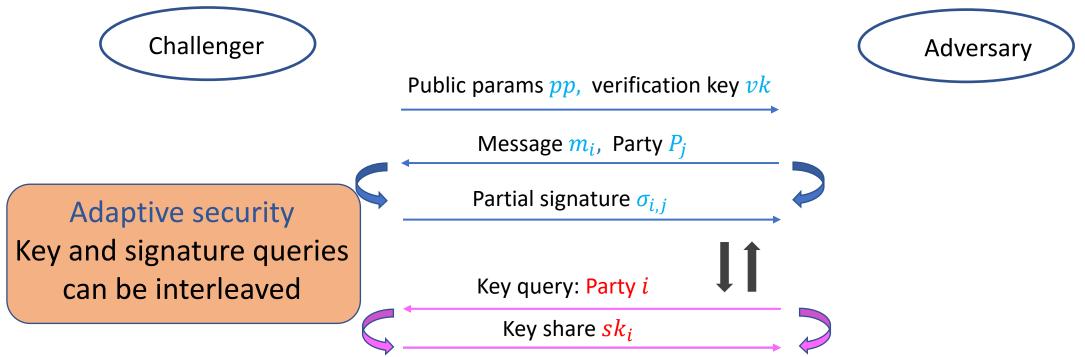
t-out-of-N access structure



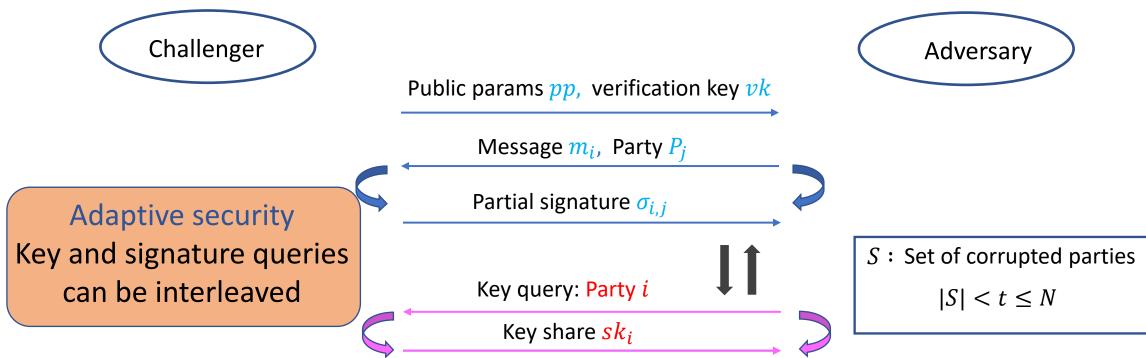
t-out-of-N access structure



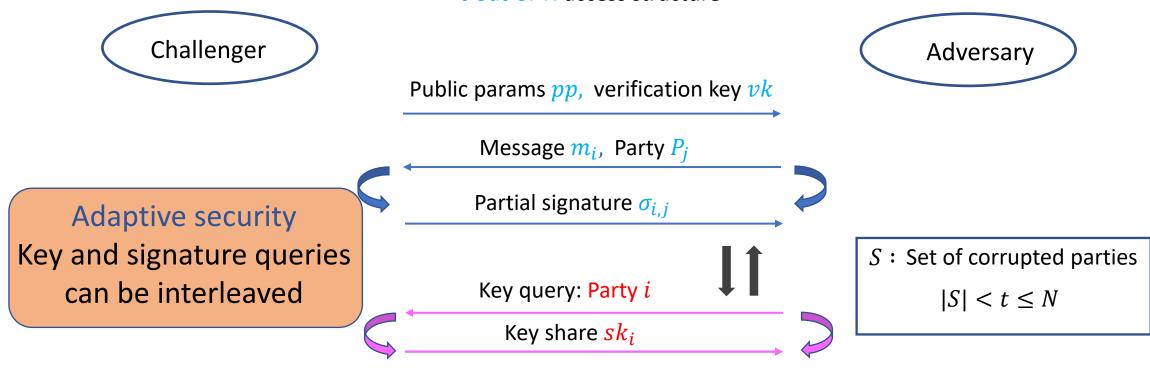
t-out-of-N access structure



t-out-of-N access structure

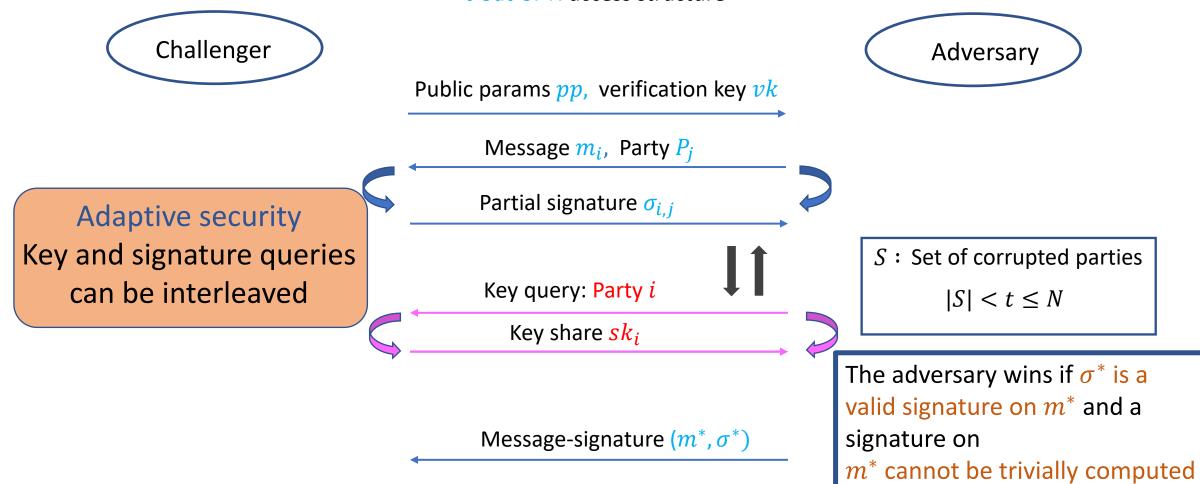


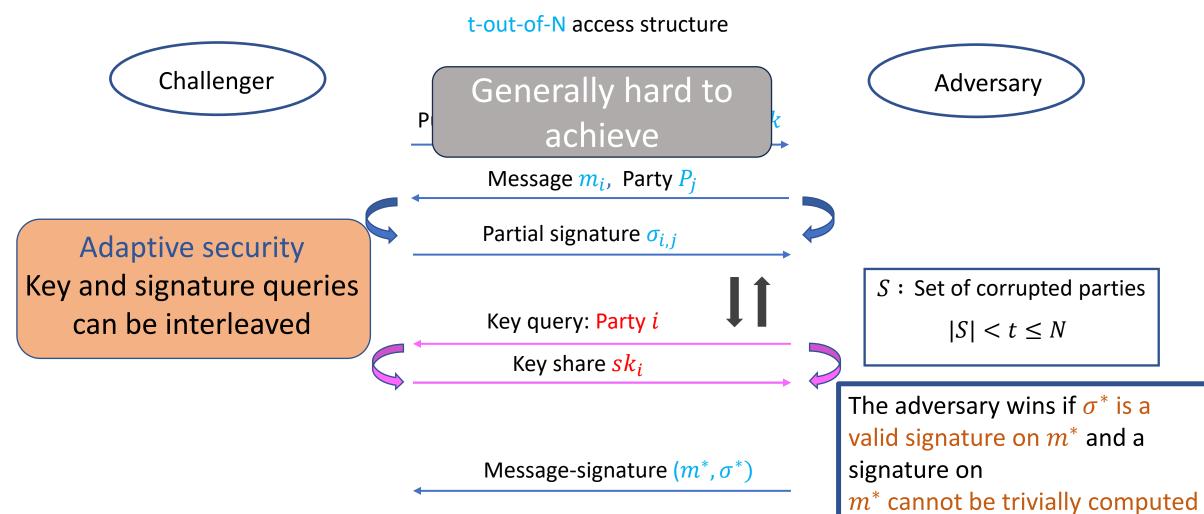
t-out-of-N access structure

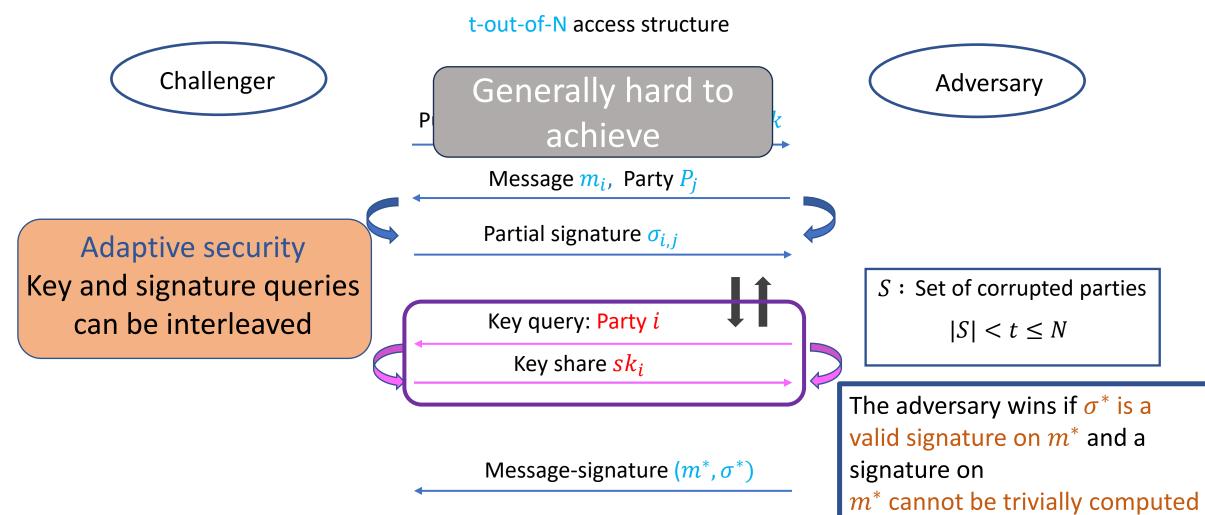


Message-signature (m^*, σ^*)

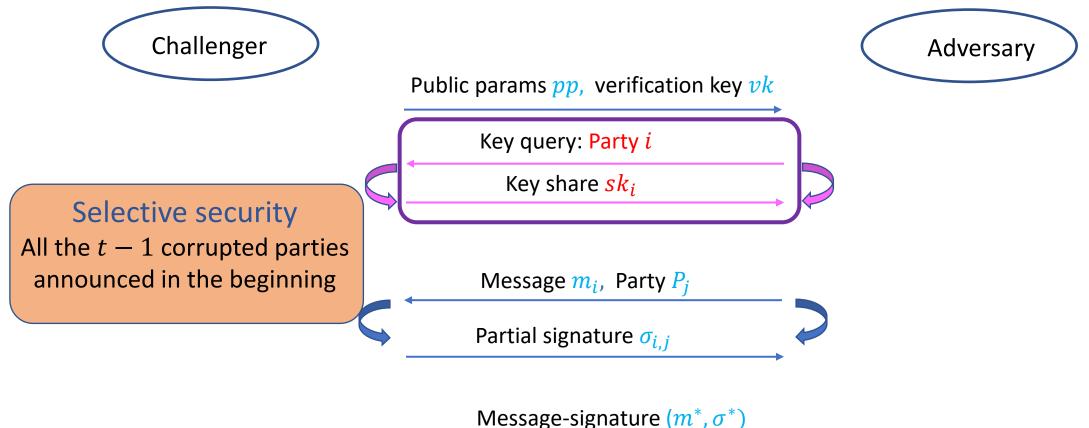
t-out-of-N access structure



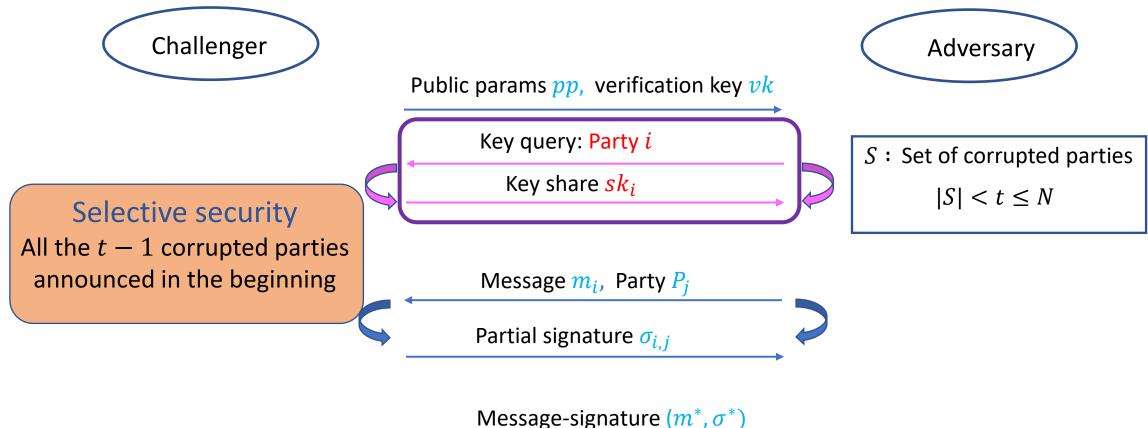




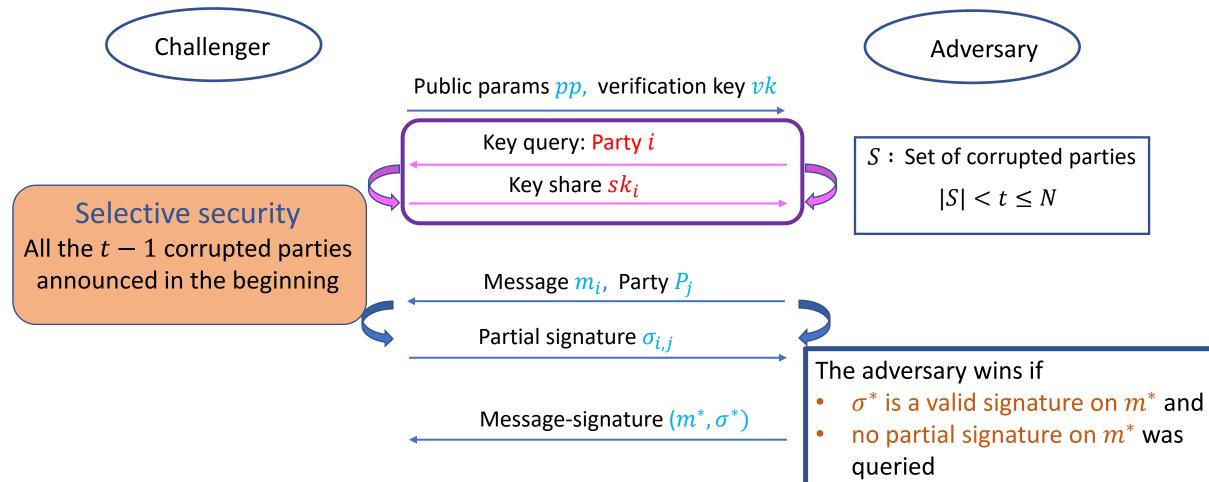
t-out-of-N access structure



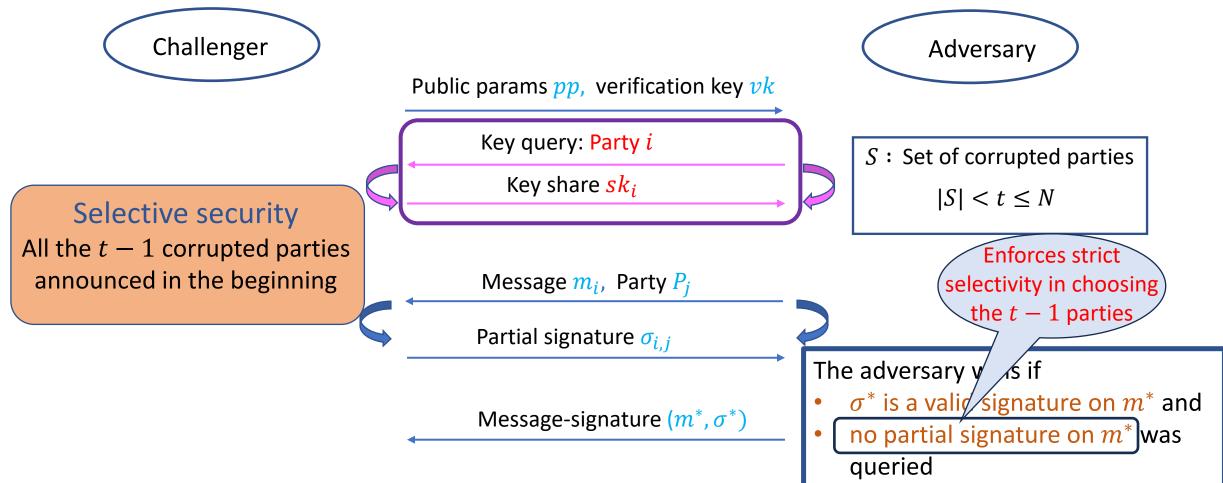
t-out-of-N access structure



t-out-of-N access structure



t-out-of-N access structure



Threshold Signature Security Definitions

Adaptive key queries

Part Sign on m^* 🗸

Selective key queries [BGG+18] – all t - 1 key queries in the beginning of the game

Part Sign on m^*

At least as strong (adaptive) as

Adaptive key queries

Part Sign on m^* 🗸

Partially adaptive key queries [ASY22] – all t - 1 key queries in the middle of the game (but all at once)

Part Sign on m^* 🗙

Selective key queries [BGG+18] – all t - 1 key queries in the beginning of the game

Part Sign on m^*

Adaptive key queries

Part Sign on m^* 🗸

Partially adaptive key queries [ASY22] – all t - 1 key queries in the middle of the game (but all at once)

Part Sign on m^* 🗙

Selective key queries [BGG+18] – all t - 1 key queries in the beginning of the game

Part Sign on m^*

Selective key queries – any key query(ies) in the beginning (defined in [BCK+22])

Part Sign on m^* 🗸

Partially adaptive key queries [ASY22] – all t - 1 key queries in the middle of the game (but all at once)

Part Sign on m^* 🗙

Selective key queries [BGG+18] – all t - 1 key queries in the beginning of the game

Part Sign on m^*

Adaptive key queries

Part Sign on m^* 🗸

Partially adaptive key queries – any key query(ies) in the middle of the game (but all at once)

Part Sign on m^* 🗸

Selective key queries – any key query(ies) in the beginning (defined in [BCK+22])

Part Sign on m^* 🗸

Adaptive key queries

Part Sign on m^* X

Partially adaptive key queries [ASY22] – all t - 1 key queries in the middle of the game (but all at once)

Part Sign on m^* X

Selective key queries [BGG+18] – all t - 1 key queries in the beginning of the game

Part Sign on m^*

Adaptive key queries Part Sign on m^*

Partially adaptive key queries – any key query(ies) in the middle of the game (but all at once)

Part Sign on m^* 🗸

Selective key queries – any key query(ies) in the beginning (defined in [BCK+22])

Part Sign on m^* 🗸

At least as strong (adaptive) as

Adaptive key queries

Part Sign on m^* X

Loss of factor Q (# of signing queries)

Partially adaptive key queries [ASY22] – all t - 1 key queries in the middle of the game (but all at once)

Part Sign on m^* X

Selective key queries [BGG+18] – all t - 1 key queries in the beginning of the game

Part Sign on m^*

Adaptive key queries Part Sign on m^*

Partially adaptive key queries – any key query(ies) in the middle of the game (but all at once)

Part Sign on m^* 🗸

Selective key queries – any key query(ies) in the beginning (defined in [BCK+22])

Part Sign on m^* 🗸

At least as strong (adaptive) as

Adaptive key queries

Part Sign on m^* X

Loss of factor Q (# of signing queries)

Partially adaptive key queries [ASY22] – all t - 1 key queries in the middle of the game (but all at once)

Part Sign on m^* X

Selective key queries [BGG+18] – all t - 1 key queries in the beginning of the game

Part Sign on m^*

Adaptive key queries Part Sign on m^*

Partially adaptive key queries – any key query(ies) in the middle of the game (but all at once)

Part Sign on m^* 🗸

Selective key queries – any key query(ies) in the beginning (defined in [BCK+22])

Part Sign on m^* 🗸

Adaptive key queries

Part Sign on m^* X

Loss of factor Q (# of signing queries)

Partially adaptive key queries [ASY22] – all t - 1 key queries in the middle of the game (but all at once)

Part Sign on m^* X

Selective key queries [BGG+18] – all t - 1 key queries in the beginning of the game

Part Sign on m^*

Partially adaptive key queries – any key query(ies) in the middle of the game (but all at once)

Part Sign on m^* 🗸

Selective key queries – any key query(ies) in the beginning (defined in [BCK+22])

Part Sign on m^* 🔪

At least as strong (adaptive) as

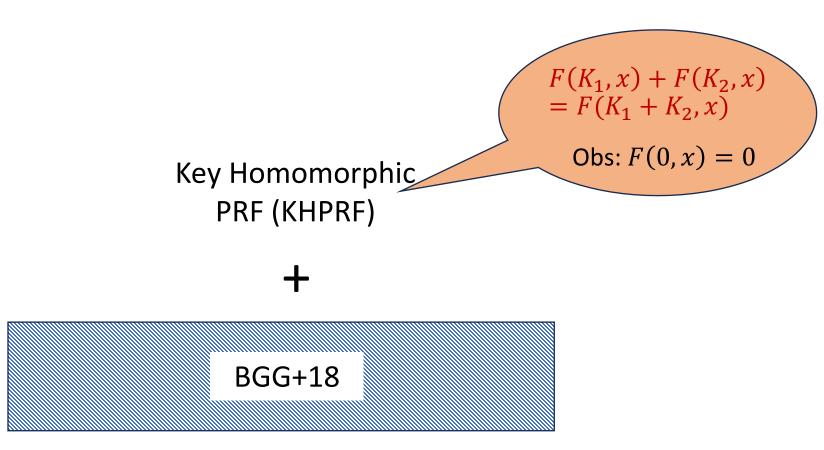
Our Construction

Our Construction

Key Homomorphic PRF (KHPRF)

+

Our Construction



[BGG+18] Construction of Threshold Signatures

Building Blocks

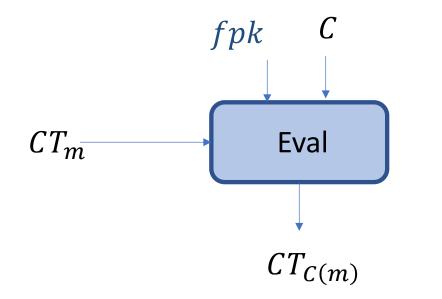
Standard signature scheme (*keys*: *sigvk*, *sigsk*)

FHE scheme (*keys*: *fpk*, *fsk*)

A Linear secret sharing scheme

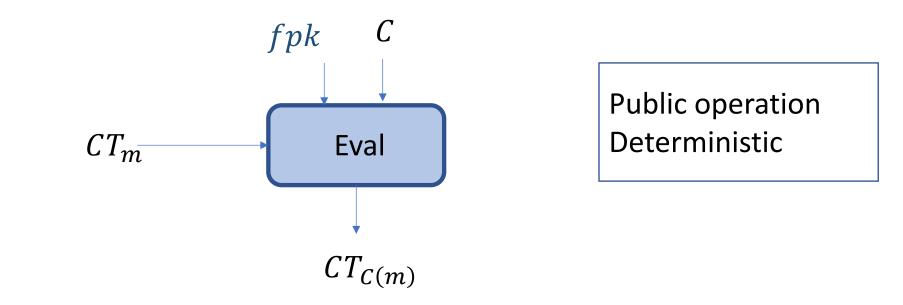
Fully Homomorphic Encryption

Same as public key encryption scheme with added functionality



Fully Homomorphic Encryption

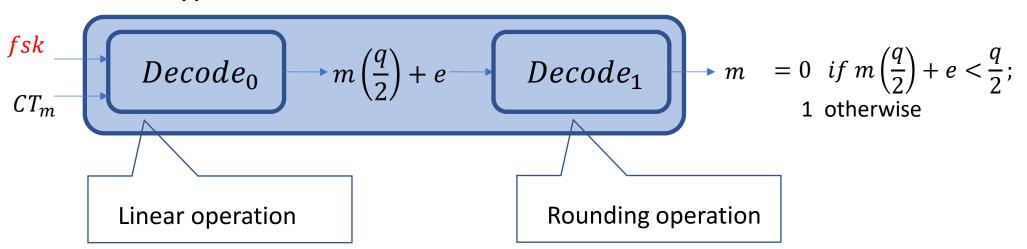
Same as public key encryption scheme with added functionality



Special Fully Homomorphic Encryption

Secret key *fsk* is a vector

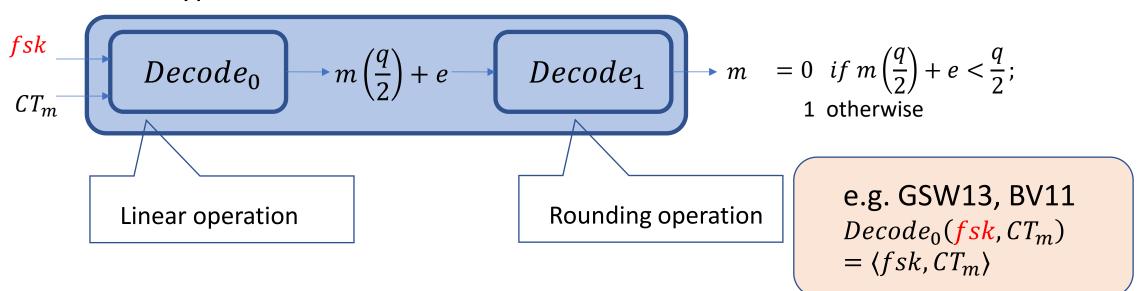
Decrypt



Special Fully Homomorphic Encryption

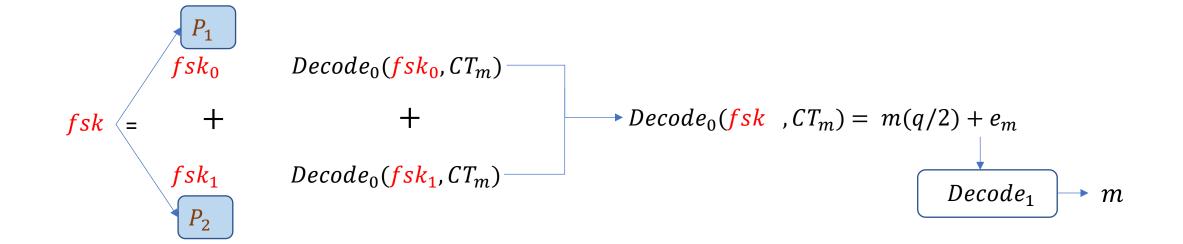
Secret key *fsk* is a vector

Decrypt



Usefulness of Linearity of *Decode*₀

Usefulness of Linearity of *Decode*₀

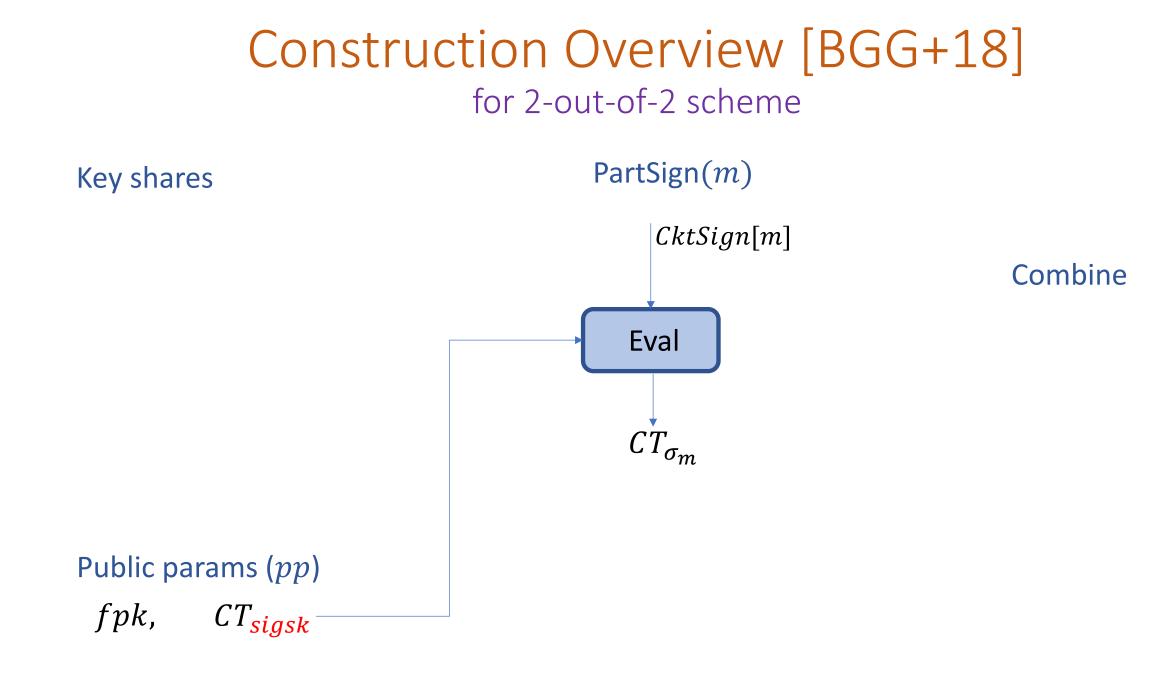


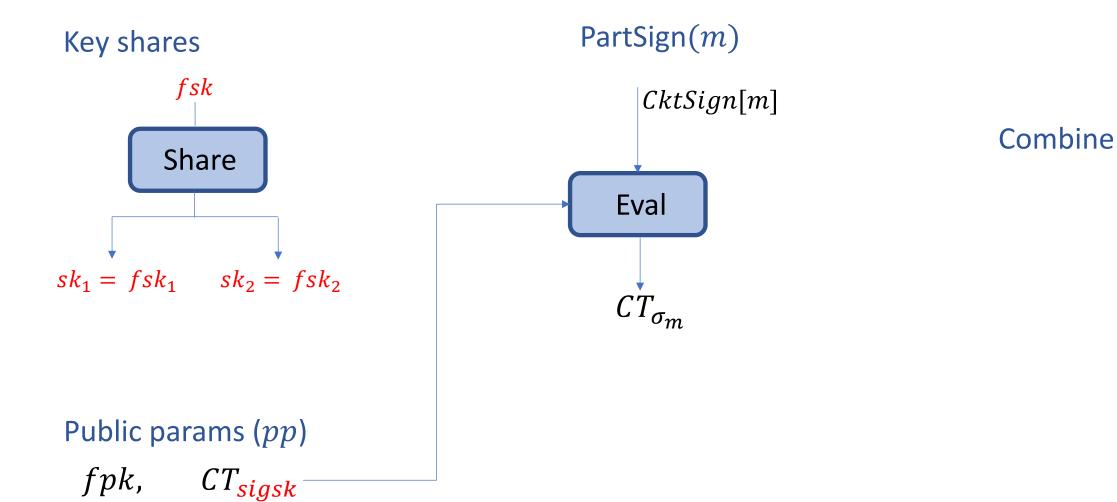
Key shares

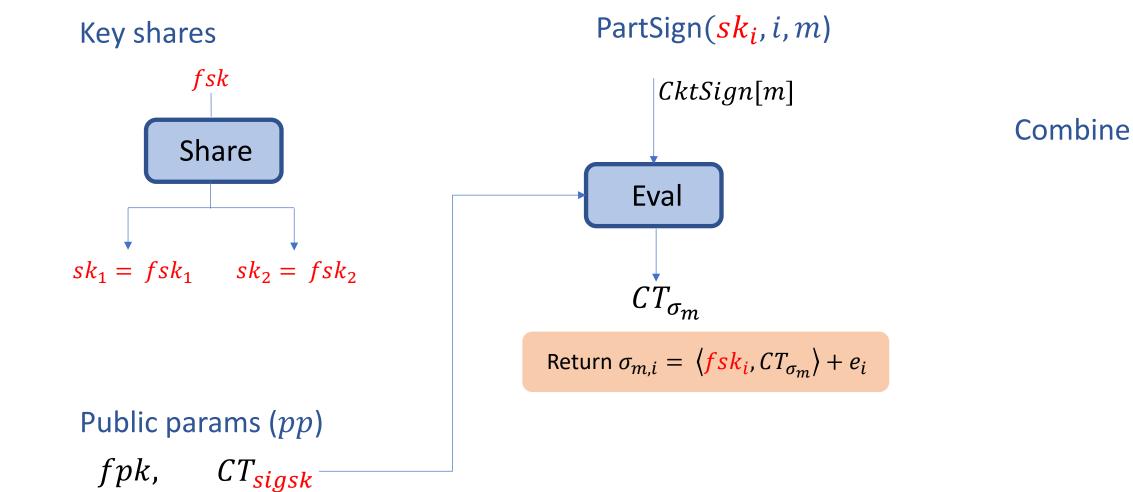
PartSign(m)

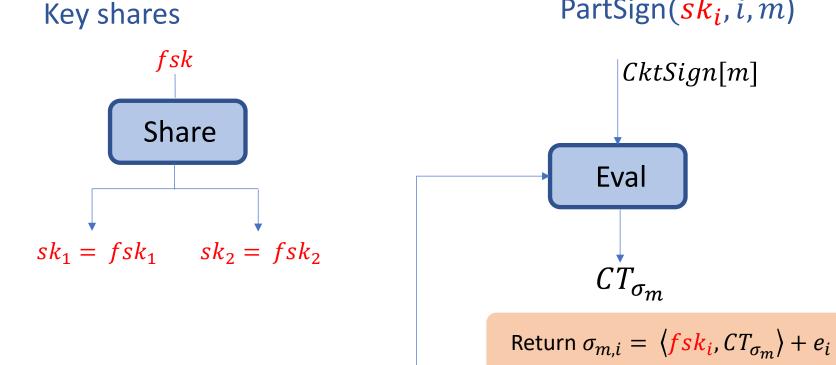
Combine

Public params (*pp*)









PartSign(*sk_i*, *i*, *m*)

CktSign[m]

Combine $\sigma_m = \operatorname{round}(\sigma_{m,1} + \sigma_{m,2})$

Public params (*pp*)

Tsigsk

Security Sketch (Selective Security, No PartSign on *m*^{*})

Let the adversary gets partial signing key from P1

(Selective Security, No PartSign on m^*)

Let the adversary gets partial signing key from P1

H0:
$$mpk = CT_{sigsk}; \quad \sigma_{m,2} = \langle fsk_2, CT_{\sigma_m} \rangle$$

The honest game

(Selective Security, No PartSign on m^*)

Let the adversary gets partial signing key from P1

H0:
$$mpk = CT_{sigsk}; \quad \sigma_{m,2} = \langle fsk_2, CT_{\sigma_m} \rangle$$

The honest game

H1:
$$mpk = CT_{sigsk}; \quad \sigma_{m,2} = \lfloor q/2 \rfloor \sigma_m - \langle fsk_1, CT_{\sigma_m} \rangle$$

(Selective Security, No PartSign on m^*)

Let the adversary gets partial signing key from P1

H0:
$$mpk = CT_{sigsk}; \quad \sigma_{m,2} = \langle fsk_2, CT_{\sigma_m} \rangle$$

The honest game

H1:
$$mpk = CT_{sigsk}; \quad \sigma_{m,2} = \lfloor q/2 \rfloor \sigma_m - \langle fsk_1, CT_{\sigma_m} \rangle$$

H2:
$$mpk = CT_0;$$
 $\sigma_{m,2} = \lfloor q/2 \rfloor \sigma_m - \langle fsk_1, CT_{\sigma_m} \rangle$

(Selective Security, No PartSign on m^*)

Let the adversary gets partial signing key from P1

H0:
$$mpk = CT_{sigsk}; \quad \sigma_{m,2} = \langle fsk_2, CT_{\sigma_m} \rangle$$

The honest game

H1: $mpk = CT_{sigsk}; \quad \sigma_{m,2} = \lfloor q/2 \rfloor \sigma_m - \langle fsk_1, CT_{\sigma_m} \rangle$

H2:
$$mpk = CT_0;$$
 $\sigma_{m,2} = \lfloor q/2 \rfloor \sigma_m - \langle fsk_1, CT_{\sigma_m} \rangle$

Reduction to Sign Security in H2

Security Sketch – Reduction to Sign Security in H2

(Selective Security, No PartSign on m^*)

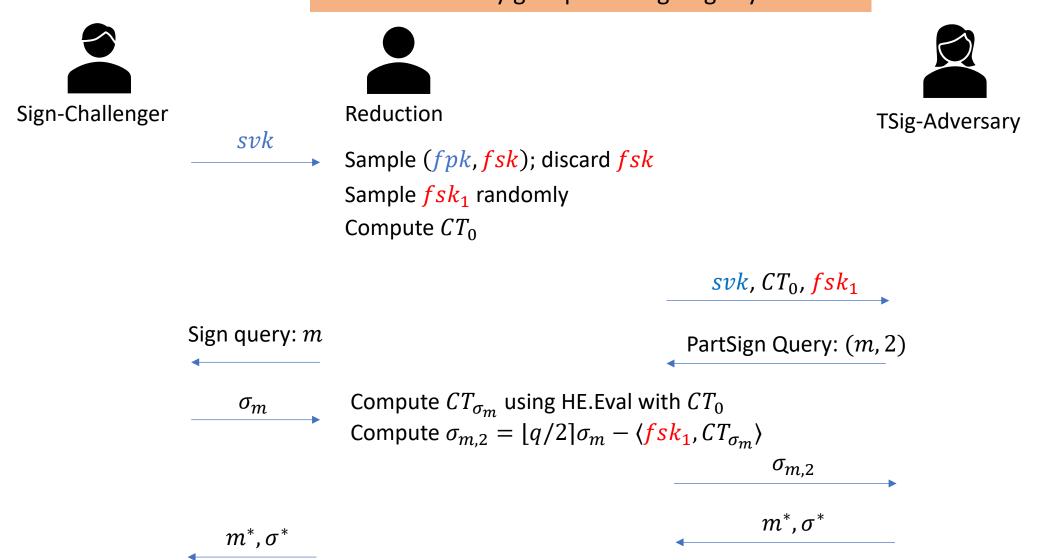
Let the adversary gets partial signing key from P1

TSig-Adversary

Security Sketch – Reduction to Sign Security in H2

(Selective Security, No PartSign on m^*)

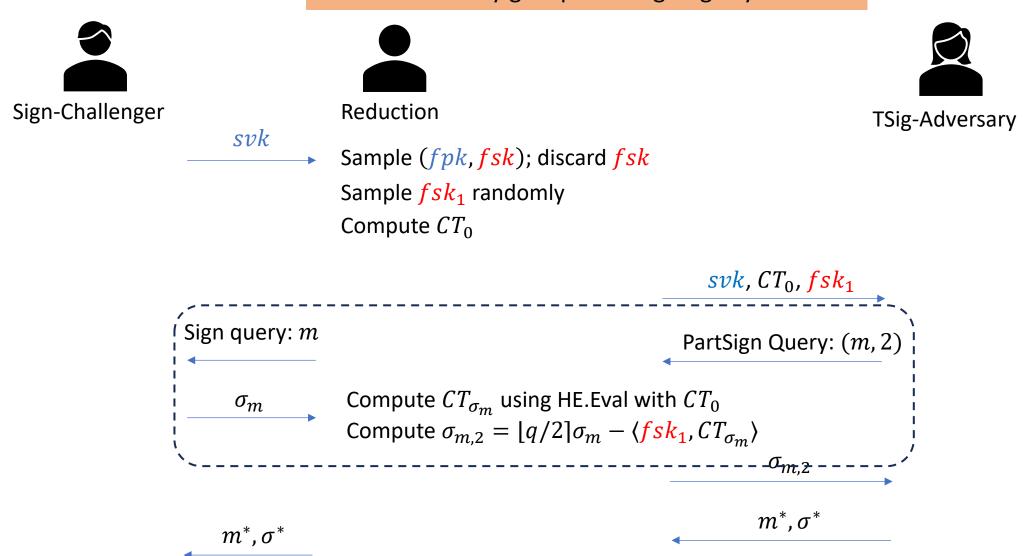
Let the adversary gets partial signing key from P1



Security Sketch – Reduction to Sign Security in H2

(Selective Security, No PartSign on m^*)

Let the adversary gets partial signing key from P1



Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

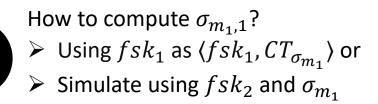
18

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

*m*₁, 1

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

 $m_1, 1$



Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

 $m_1, 1$

How to compute $\sigma_{m_1,1}$? \succ Using fsk_1 as $\langle fsk_1, CT_{\sigma_{m_1}} \rangle$ or \succ Simulate using fsk_2 and σ_{m_1}

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

*m*₁, 1

 $\langle fsk_1, CT_{\sigma_{m_1}} \rangle$

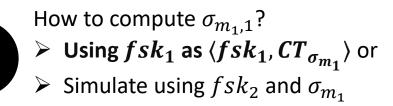
How to compute $\sigma_{m_1,1}$? \succ Using fsk_1 as $\langle fsk_1, CT_{\sigma_{m_1}} \rangle$ or \succ Simulate using fsk_2 and σ_{m_1}

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

*m*₁, 1

 $\langle fsk_1, CT_{\sigma_{m_1}} \rangle$

*m*₂, 2

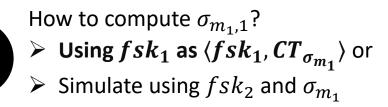


18

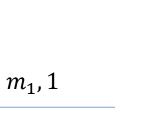
Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

*m*₁, 1

$$\lfloor q/2 \rceil \sigma_{m_2} - \langle fsk_1, CT_{\sigma_{m_2}} \rangle$$



Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

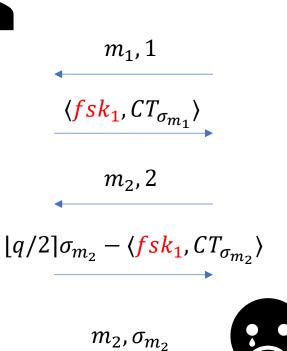


$$\lfloor q/2 \rceil \sigma_{m_2} - \langle fsk_1, CT_{\sigma_{m_2}} \rangle$$

$$m_2, \sigma_{m_2}$$

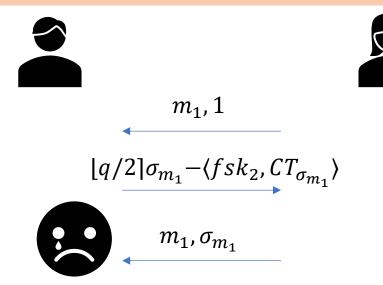
How to compute
$$\sigma_{m_1,1}$$
?
 \succ Using fsk_1 as $\langle fsk_1, CT_{\sigma_{m_1}} \rangle$ or
 \succ Simulate using fsk_2 and σ_{m_1}

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query



How to compute $\sigma_{m_1,1}$? \succ Using fsk_1 as $\langle fsk_1, CT_{\sigma_{m_1}} \rangle$ or \succ Simulate using fsk_2 and σ_{m_1}

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query



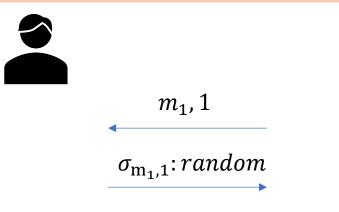
How to compute $\sigma_{m_1,1}$? \succ Using fsk_1 as $\langle fsk_1, CT_{\sigma_{m_1}} \rangle$ or \succ Simulate using fsk_2 and σ_{m_1}

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

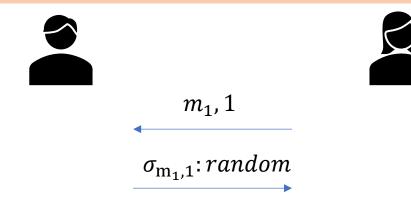
Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

*m*₁, 1

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

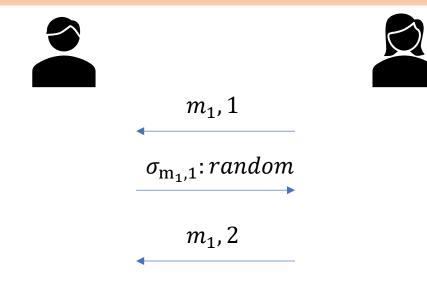


Let us consider 2-out-of-2 scheme. The adversary does not issue any key query



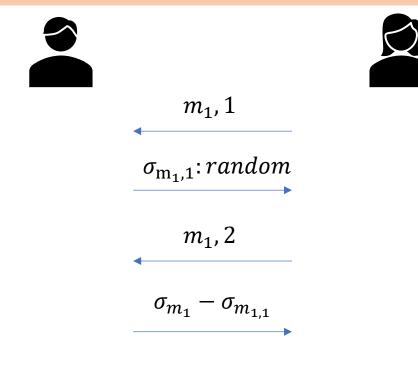
If PartSign
$$(m, 3 - i)$$
: compute $\sigma_{m,3-i} = \left\lfloor \frac{q}{2} \right\rfloor \sigma_m - \sigma_{m,i}$

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query



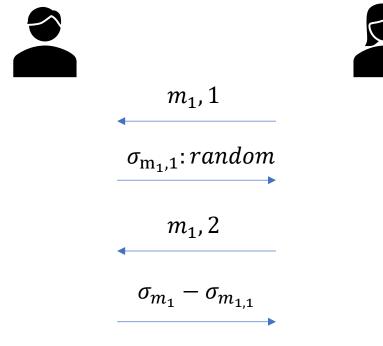
If PartSign
$$(m, 3 - i)$$
: compute $\sigma_{m,3-i} = \left\lfloor \frac{q}{2} \right\rfloor \sigma_m - \sigma_{m,i}$

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query



If PartSign
$$(m, 3 - i)$$
: compute $\sigma_{m,3-i} = \left\lfloor \frac{q}{2} \right\rfloor \sigma_m - \sigma_{m,i}$

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query

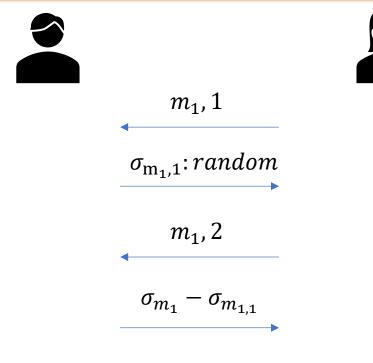


For each message, answer the first PartSign(m, i) query with a randomly sampled $\sigma_{m,i}$

f PartSign
$$(m, 3 - i)$$
: compute $\sigma_{m,3-i} = \left\lfloor \frac{q}{2} \right\rfloor \sigma_m - \sigma_{m,i}$

It is safe to use σ_m now, because the second query on m ensures that m can not be m^*

Let us consider 2-out-of-2 scheme. The adversary does not issue any key query



For each message, answer the first PartSign(m, i) query with a randomly sampled $\sigma_{m,i}$

f PartSign
$$(m, 3 - i)$$
: compute $\sigma_{m,3-i} = \left\lfloor \frac{q}{2} \right\rfloor \sigma_m - \sigma_{m,i}$

It is safe to use σ_m now, because the second query on m ensures that m can not be m^*

Problem: Cannot argue the following indistinguishability

 $\langle fsk_i, CT_{\sigma_m} \rangle \approx random$

PartSign(
$$pp, fsk_1, m$$
)
 $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$

PartSign(*pp*, *fsk*₁, *m*) $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ PartSign(pp, fsk_2, m) $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + r_{m,2}$

PartSign(pp, fsk_1, m) $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ PartSign(pp, fsk_2 , m) $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + r_{m,2}$

 $r_{m,1}, r_{m,2}$ are random under the constaint that $r_{m,1} + r_{m,2} = 0$

PartSign(pp, fsk_1, m) $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ PartSign(pp, fsk_2, m) $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + r_{m,2}$

 $r_{m,1}, r_{m,2}$ are random under the constaint that $r_{m,1} + r_{m,2} = 0$

Does not affect Correctness since the added randomness add to zero

PartSign(pp, fsk_1, m) $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ PartSign(pp, fsk_2, m) $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + r_{m,2}$

 $r_{m,1}, r_{m,2}$ are random under the constaint that $r_{m,1} + r_{m,2} = 0$

- Does not affect Correctness since the added randomness add to zero
- > Can now argue

$$(\langle fsk_1, CT_{\sigma_m} \rangle + r_{m,1}, \langle fsk_2, CT_{\sigma_m} \rangle + r_{m,2}) \approx (r'_{m,1}, r'_{m,2}) : r'_{m,1} \text{ and } r'_{m,2} \text{ are random shares of } \left[\frac{q}{2}\right] \sigma_m$$

PartSign(pp, fsk_1, m) $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ PartSign(pp, fsk_2, m) $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + r_{m,2}$

 $r_{m,1}, r_{m,2}$ are random under the constaint that $r_{m,1} + r_{m,2} = 0$

- Does not affect Correctness since the added randomness add to zero
- Can now argue

 $(\langle fsk_1, CT_{\sigma_m} \rangle + r_{m,1}, \langle fsk_2, CT_{\sigma_m} \rangle + r_{m,2}) \approx (r'_{m,1}, r'_{m,2}) : r'_{m,1} \text{ and } r'_{m,2} \text{ are random shares of } \left[\frac{q}{2}\right] \sigma_m$ This releases both fsk_1 and fsk_2 as desired

PartSign(pp, fsk_1, m) $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ PartSign(pp, fsk_2, m) $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + r_{m,2}$

 $r_{m,1}, r_{m,2}$ are random under the constaint that $r_{m,1} + r_{m,2} = 0$

- Does not affect Correctness since the added randomness add to zero
- Can now argue

 $(\langle fsk_1, CT_{\sigma_m} \rangle + r_{m,1}, \langle fsk_2, CT_{\sigma_m} \rangle + r_{m,2}) \approx (r'_{m,1}, r'_{m,2}) : r'_{m,1} \text{ and } r'_{m,2} \text{ are random shares of } \left[\frac{q}{2}\right] \sigma_m$ This releases both fsk_1 and fsk_2 as desired

Problem: How to ensure that $r_{m,1}$ and $r_{m,2}$ which are chosen independently by P1 and P2 add to zero

PartSign(pp, fsk_1, m) $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ PartSign(pp, fsk_2 , m) $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + r_{m,2}$

 $r_{m,1}, r_{m,2}$ are random under the constaint that $r_{m,1} + r_{m,2} = 0$

- Does not affect Correctness since the added randomness add to zero
- Can now argue

 $(\langle fsk_1, CT_{\sigma_m} \rangle + r_{m,1}, \langle fsk_2, CT_{\sigma_m} \rangle + r_{m,2}) \approx (r'_{m,1}, r'_{m,2}) : r'_{m,1} \text{ and } r'_{m,2} \text{ are random shares of } \left\lfloor \frac{q}{2} \right\rfloor \sigma_m$

This releases both fsk_1 and fsk_2 as desired

Problem: How to ensure that $r_{m,1}$ and $r_{m,2}$ which are chosen independently by P1 and P2 add to zero

We use Key Homomorphic PRF to generate $r_{m,1}$ and $r_{m,2}$

PartSign(pp, fsk_1 , m) $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$

 $r_{m,1}, r_{m,2}$ are random under the constaint that $r_{m,1} + r_{m,2} = 0$

- Does not affect Correctness since the added randomness add to zero
- Can now argue

 $(\langle fsk_1, CT_{\sigma_m} \rangle + r_{m,1}, \langle fsk_2, CT_{\sigma_m} \rangle + r_{m,2}) \approx (r'_{m,1}, r'_{m,2}) : r'_{m,1} \text{ and } r'_{m,2} \text{ are random shares of } \left\lfloor \frac{q}{2} \right\rfloor \sigma_m$

This releases both fsk_1 and fsk_2 as desired

Problem: How to ensure that $r_{m,1}$ and $r_{m,2}$ which are chosen independently by P1 and P2 add to zero

We use Key Homomorphic PRF to generate $r_{m,1}$ and $r_{m,2}$

PartSign(pp, fsk_2 , η Key Homomorphic PRF: $\sigma_{m,2} = Decode_0(fsk_1, x) + F(K_2, x) = F(K_1 + K_2, x)$ Obs: F(0, x) = 0

Final Working Solution

PartSign(pp, fsk_1 , m)

 $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + F(K_1, m)$

PartSign(pp, fsk_2, m) $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + F(K_2, m)$

Final Working Solution

 $K_1 + K_2 = 0$ K_i is include in the partial signing key of P_i

PartSign(pp, fsk_1 , m)

 $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + F(K_1, m)$

PartSign (pp, fsk_2, m)

 $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + F(K_2, m)$

Final Working Solution (Security)

PartSign (pp, fsk_1, m)

PartSign (pp, fsk_2, m)

 $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + F(K_1, m)$ $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + F(K_2, m)$ H0:

 $K_1 + K_2 = 0$

K_i is include in the

partial signing key of P_i /

Final Working Solution (Security)

PartSign (pp, fsk_1, m)

 $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + F(K_1, m)$ $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + F(K_2, m)$ H0:

 $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ H1:

PartSign (pp, fsk_2, m)

$$\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + r_{m,2}$$

 $K_1 + K_2 = 0$

partial signing key of P_i /

K_i is include in the

Final Working Solution (Security)

PartSign (pp, fsk_1, m)

 $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + F(K_1, m)$ $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + F(K_2, m)$ H0:

PartSign(pp, fsk_2 , m)

 $\sigma_{m,2} = Decode_0(fsk_2, CT_{\sigma_m}) + e'_2 + r_{m,2}$ $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ H1: $(x, F(K_1, x), F(K_2, x)) \approx (x, r_1, r_2)$, where both K_1 and K_2 as well as r_1 and r_2 are secret shares of 0

 $K_1 + K_2 = 0$

partial signing key of P_i /

 K_i is include in the

Final Working Solution (Security) PartSign(pp, fsk_1, m) H0: $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + F(K_1, m)$ H1: $\sigma_{m,1} = Decode_0(fsk_1, CT_{\sigma_m}) + e'_1 + r_{m,1}$ $(x, F(K_1, x), F(K_2, x)) \approx (x, r_1, r_2)$, where both K_1 and K_2 as well as r_1 and r_2 are secret shares of 0

H2:
$$\sigma_{m,1} = r'_{m,1} (random) + e'_1$$
 $\sigma_{m,2} = r'_{m,2} = \left\lfloor \frac{q}{2} \right\rfloor \sigma_m - r'_{m,1} + e'_2$

H3: $mpk = CT_0$ instead of CT_{sigsk}

Reduction to Sign security in H3

Lattice based KHPRF do not satisfy exact homomorphism

 $F(K_1, x) + F(K_2, x) = F(K_1 + K_2, x) + \delta$

We use flooding to hide δ

Lattice based KHPRF do not satisfy exact homomorphism

 $F(K_1, x) + F(K_2, x) = F(K_1 + K_2, x) + \delta$

We use flooding to hide δ

> We implement these ideas at the level of threshold FHE

Lattice based KHPRF do not satisfy exact homomorphism

 $F(K_1, x) + F(K_2, x) = F(K_1 + K_2, x) + \delta$

We use flooding to hide δ

> We implement these ideas at the level of threshold FHE ==> stronger threshold FHE

Lattice based KHPRF do not satisfy exact homomorphism

 $F(K_1, x) + F(K_2, x) = F(K_1 + K_2, x) + \delta$

We use flooding to hide δ

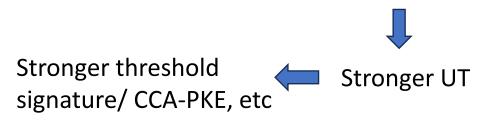
> We implement these ideas at the level of threshold FHE ==> stronger threshold FHE

Lattice based KHPRF do not satisfy exact homomorphism

 $F(K_1, x) + F(K_2, x) = F(K_1 + K_2, x) + \delta$

We use flooding to hide δ

> We implement these ideas at the level of threshold FHE ==> stronger threshold FHE



Thank You