Randomness in Private Sequential
Stateless Protocols

Hari Krishnan P A Varun Narayanan
TIFR UCLA
Manoj Prabhakaran Vinod Prabhakaran

IIT Bombay TIFR



Secure multi-party computation

() [

wAr)

/

L2

£L;

No party should learn anything apart from their own input and

output of the function.



Randomness in MPC

Randomness: Central resource in cryptography, especially in
unconditional cryptography

e Randomness efficient computation (and lower bounds).
o Kushilevitz, Mansour (PODC 1996),
o Kushilevitz, Ostrovsky, Rosén (STOC 1996)
o Canetti, Kushilevitz, Ostrovsky, Rosén (PODC 1997)
o Gal, Rosén (STOC 2003)
o Jakoby, Liskiewicz, Reischuk (STACS 2003)
o Blundo, Galdi, Persiano (2007)
o Kushilevitz, Ostrovsky, Prouff, Rosén, Thillard, Vergnaud (TCC - 2019)
o @Goyal, Ishai, Song (CRYPTO 2022)
o Couteau, Rosen (Asiacrypt 2022)



Randomness in MPC

Kushilevitz, Ostrovsky, Rosén. (STOC 1996)

Randomness

: : Circuit
complexity of 1-private M complexity

computation

1-privacy: Semi-honest corruption of any one party



Our Results

Randomness :
: : Branching
complexity of private ﬁ
sequential stateless cgrrr?glreaxrirg
(PSS) computation P y



Our Results

Randomness Branching
complexity of private
. M m
sequential stateless cgrrr?glreaxity

(PSS) computation

f has a speak-once PSS <}:{> f has an read-once

protocol with constant constant-width
randomness branching program

f:{0,1}* — {0,1}
Extends to speak-O(k) PSS and read-O(k) BP

where k is independent of the input size n



Sequential Model

Speak-once

I Lo Ln

I3



Sequential Model

Speak-once

[ Preprocessing (uses O(1) coins) }

- deterministic

f(wl,wz - .,an)

. One semi-honest
corruption



Sequential Model

Speak-k

[ Preprocessing (uses O(1) coins) }

g ! 'E B
. v ' '
9 e e @ @ NP
-’

T1 L2

L3



Sequential Model

Speak-k

[ Preprocessing (uses O(1) coins) }

: : v E E

Ln

L1 L2 T3

f(xl,xz...,xn)

Stateless: Parties do not maintain states between rounds when they speak



Motivation

Other simple models (having star topology)
* Private simultaneous messaging
* Non-interactive secure computation
e Conditional disclosure of secrets



Motivation

Other simple models (having star topology)
* Private simultaneous messaging
* Non-interactive secure computation
e Conditional disclosure of secrets

Why stateless?

allow states across turns
Any protocol | C

J> Stateful sequential
protocols




Motivation

Other simple models (having star topology)
* Private simultaneous messaging

* Non-interactive secure computation

e Conditional disclosure of secrets

Why stateless?

Any protocol

allow states across turns

r

Jl>

Stateful sequential
protocols

Why is restricting randomness interesting

Any 1-private
protocol

A lot of randomness

Jl>

A stateless sequential
protocol




Read-once branching programs

L1 L2 I3
W& O &——@
. ...............
Tr(()l) Tr (()2) Tr(()s)
Tr gl) Tr §2) Tr 53)

Width w = 3 here



Read-once branching programs

Tr(()l)
Tr 51)

Width w = 3 here
Ifx; =0

|f£l?z' =1

Uj+1

=Try ()

wips = Try (us)



Read-once branching programs

e el Tl
Ir 51) Ir 52) Tr 53)

Width w = 3 here
Ifx; =0 Ujr1 = Trgl) (’U,z)

|f L; — 1 Uiyl = Trgz) (’U,z) f(wl, T



Protocol for evaluating a branching program insecurely

uil e U;

Tr (()i)
Tr (f)

P; receives u;_1, which is insecure



Secure evaluation - Attempt 1




Secure evaluation - Attempt 1

Ug

7, p are uniformly chosen permutations



Secure evaluation - Attempt 1

p(ui-1)




Secure evaluation - Attempt 1

p(ui-1)

m(u;)



Secure evaluation - Attempt 1

p(ui-1)

T Trgi) p_l

(4)

mTry p_l

m(u;)



Secure evaluation - Attempt 1

p(ui-1) r gl




Secure evaluation - Attempt 1

p(ui-1) ol
Uo
p(ui-1)
m Trgi) p ! (u;)
1 WTrgi) ,0_1 B

Only works for
permutation branching
programs




Secure evaluation - Attempt 1 fails most of the times

Tr1 T

(9 Trgi) ,0_1




Secure evaluation - Attempt 1 fails most of the times

one can Iearn that
_]_ 2




Secure evaluation - Attempt 2

e Workaround - Use two different sets of masks - g, 71 instead of 7
Po, P1 instead of p



Secure evaluation - Attempt 2

e Workaround - Use two different sets of masks - g, 71 instead of 7
Po, P1 instead of p

P; needs to map pa,i_l(ui_1) to Ty, (u;)




Secure evaluation - Attempt 2
e Workaround - Use two different sets of masks - g, 71 instead of 7
Po, P1 instead of p
P; needs to map pg, ,(u;—1) to 74, (u;)

As part of the preprocessing, P; will be given 4 maps
indexed by (r @ x;_1, ;)

rdxr;_q P Dx;
P; 4 P; >
Pz; (u’i—l) T, (u’&)




Secure evaluation - Attempt 2

e Workaround - Use two different sets of masks - g, 71 instead of 7
Po, P1 instead of p

P; needsto map pg, ,(u;—1) to 7, (u;)

As part of the preprocessing, P; will be given 4 maps
indexed by (r @ x;_1, ;)

rdxr;_q pDx;
P; 4 P; >
oni—l (ui—l) ﬂ-xz(u’&)

Z;

Secure for a class of BP called Strongly Regular Branching Programs!



Strongly regular branching program
e Qur PSS protocol is secure for all SRBPs

e Examples: AND, XOR, Inner product



Strongly regular branching program
e Qur PSS protocol is secure for all SRBPs

e Examples: AND, XOR, Inner product

Strongly reqgular
branching pro%ram of
width w

Any branching >
program of width w




Randomness cost of this protocol
Read-once SRBP

Randomness required: g, Po, 71, P1, 75 P

r,p < {0,1}

0, P0, 71, P1 < Permutation|w]



Randomness cost of this protocol
Read-once SRBP

Randomness required: g, Po, 71, P1, 75 P
r,p < {0,1}
0, P0, 71, P1 < Permutation|w]

O(wlogw)

Constant since w is constant



Randomness cost of this protocol
Read-once SRBP

Randomness required: g, Po, 71, P1, 75 P

r,p < {0,1}

0, £0, 71, P1 < Permutation|w]

O(wlogw)
Constant since w is constant
Read-k SRBP
O(kw log w) for read-k



Randomness cost of this protocol
Read-once SRBP

Randomness required: mq, Pg, T1, P1, T, P

r,p < {0,1}

0, P0, 71, P1 < Permutation|w]

O(wlogw)
Constant since w is constant
Read-k SRBP
O(kw log w) for read-k

Any width-w read-k BP has a speak-O(k) PSS protocol with
O(kw? log w) randomness complexity



PSS protocols to branching programs

V; = NXt(’I:, Vi—1,Tj, xj)



PSS protocols to branching programs

v
Vi_1 @ v
s
Step 1: v; = Nxt(¢, vi—1,7;, ;)
t .
Tr(())(vz-_l) = NXt(Z,’UZ'_l,T';, 0) vi—1 € M;_4 v; € M;

t t
Trgt)(vi_l) := Nxt(4,v;—1,77,1) Tr(()),Trg) : M; 1 — M,



PSS protocols to branching programs

rj
Vi1 @ U
L j
Step 1: v; = Nxt(¢, vi—1,7;, ;)
Tr(()t) (vi_1) := Nxt(4,v;_1,7%,0)  v;—1 € M;_4 v; € M;

(t) m (),
Trgt)(vi_l) := Nxt (¢, v;_1,7%, 1) Try’,Try" : My — M,

Step 2:
Bound |M;| < 282 Following [KOR96]

message space for 1th
message over all inputs \/ \/ constant

and randomness



Ssummary

New simple model for MPC: PSS

SRBP: Interesting subclass of branching programs

Implications to MPC in other models:

e Simpler protocol for computing AND without preprocessing.

e For odd number of parties, randomness cost of AND matches state-of-the-
art [CR22]

[CR22] Geoffroy Couteau and Adi Rosén. Random sources in private
computation, ASIACRYPT 2022,



