Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal Their Inability to Resist DFA

Amit Jana¹, Anup Kumar Kundu¹, Goutam Paul¹

¹Indian Statistical Institute, Kolkata

Asiacrypt Kolkata, India December, 2024

- First attempt to design a DFA immune cipher at an algorithmic level.
- Both Default-Layer and Default-Core follow the SPN structure.
- Default-Layer uses Linear Structured (LS) SBox.
- Default-Core uses non-linear SBox.
- Designers initiate the cipher as GIFT [BPP+17] like Structure.

▶ ∢ ⊒ ▶

- First attempt to design a DFA immune cipher at an algorithmic level.
- Both Default-Layer and Default-Core follow the SPN structure.
- Default-Layer uses Linear Structured (LS) SBox.
- Default-Core uses non-linear SBox.
- Designers initiate the cipher as GIFT [BPP+17] like Structure.
- Initial Version (Simple Key Schedule) [BBB+21]: Same key (128-bit) is used in each round of Default-Layer.
- Modified Version (Rotating Key Schedule) [BBB+21]: 4 independent keys are used in the Default-Layer.

Jana, A., Kundu, AK., Paul, G.

< 回 > < 回 > < 回 >

Background ○○●○○○○	Finding Trail	Attack Procedure	SDFA O	Baksheesh 0000
Ciphers				

Default

- Both state and key size are of 128 bits.
- Cipher has total of 80 rounds, 28 DEFAULT-LAYER and 24 DEFAULT-CORE.
- Each round has SBox (4-bit), permutation (bit), add round constant, and add round key layer.

Background OO●OOO○	Finding Trail	Attack Procedure	SDFA O	Baksheesh 0000
Ciphers				

Default

- Both state and key size are of 128 bits.
- Cipher has total of 80 rounds, 28 DEFAULT-LAYER and 24 DEFAULT-CORE.
- Each round has SBox (4-bit), permutation (bit), add round constant, and add round key layer.

Baksheesh [BBC+ 23]

- Baksheesh also follows GIFT-like structure.
- Both state and key size are of 128 bits.
- It has 35 rounds.
- Each round has SBox (4-bit), permutation layer (bit), add round constant layer, and add round key layer.
- For each round key k_i , next round key, $k_{j+1} \leftarrow k_j \gg 1$.

Background 000●000	Finding Trail	Attack Procedure	SDFA O	Baksheesh 0000
Sbox Property				

Linear Structure (LS)

For $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$, an element $a \in \mathbb{F}_2^n$ is called a linear structure of F, if for some constant $c \in \mathbb{F}_2^n$ and $\forall x \in \mathbb{F}_2^n$,

 $F(x) \oplus F(x \oplus a) = c.$

▶ ∢ ⊒ ▶

Background 000●000	Finding Trail	Attack Procedure	SDFA O	Baksheesh
Sbox Property				

Linear Structure (LS)

For $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$, an element $a \in \mathbb{F}_2^n$ is called a linear structure of F, if for some constant $c \in \mathbb{F}_2^n$ and $\forall x \in \mathbb{F}_2^n$,

 $F(x) \oplus F(x \oplus a) = c.$

- Default has 3-LS and Baksheesh has 1-LS SBox.
- For Default, DFA reduces each nibble keyspace from 2^4 to 2^2 at most, i.e. a total search complexity of $4^{32} = 2^{64}$.
- For Baksheesh, DFA reduces each keybits of SBox nibble can reduce from 2^4 to 2^1 at most, i.e. a total search complexity of 2^{32} for each round.

Background 0000●00	Finding Trail	Attack Procedure	SDFA O	Baksheesh 0000
DDT				

• Default-Layer:

x:		0	1	2	3	4	5	6	7	8	9	а	b	с	d	е	f
S(x)	:	0	3	7	е	d	4	a	9	с	f	1	8	b	2	6	5

• Baksheesh:

x:	0	1	2	3	4	5	6	7	8	9	а	b	с	d	е	f
$\overline{S(x)}$:	3	0	6	d	b	5	8	е	с	f	9	2	4	a	7	1

	0	1	2	3	4	5	6	7	8	9	a	b	с	d	е	f
0	16															
0	10															
1				4			4					4			4	
2				4		4						4		4		
3						4	4							4	4	
4				4		4			4						4	
5						4	4		4			4				
6									4			4		4	4	
$\overline{7}$				4			4		4					4		
8																16
9		4			4					4			4			
$^{\mathrm{a}}$			4		4						4		4			
\mathbf{b}		4	4							4	4					
с		4						4			4		4			
\mathbf{d}					4			4		4	4					
е		4	4		4			4								
f			4					4		4			4			

э

E ► < E ►</p>

★ ∃ ► < ∃ ►</p>

Advantages

- Keyspace of two consequitive rounds can be splitted according to keyspace of the QR groups.
- Do not need to guess the whole round key at once for key recovery.

< ロ > < 同 > < 回 > < 回 >

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh

Jana, A., Kundu, AK., Paul, G.

More Vulnerabilities of LS Sbox-Based Ciphers

ヘロン 人間 とくほど 人間と

æ

Background	Finding Trail ●0000	Attack Procedure	SDFA O	Baksheesh 0000
Attack History				

Nageler et al. [NDE22]

- They first showed a DFA for all key schedules by combining information through rounds.
- They expanded their DFA by inducing bit-flip faults across multiple rounds to further reduce the keyspace.
- Their strategy involved injecting differences at certain rounds and exploring all possible differential paths through subsequent rounds based on the DDT.
- For the simple key schedule, the key space reduced to around 2^{20} using 16 faults.
- We verified that, the key space can not be reduced to 1 by injecting more than 16 faults.

Dey et al. [DPR+21]

- Apply DFA on simple key schedule to reduce the key space to 2^{16} using 112 faults.
- Their attack can not be applied on the rotating key schedule.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background	Finding Trail ○●○○○	Attack Procedure	SDFA O	Baksheesh 0000
Our Contribu	tions			

- Novel technique to compute intermediate differential trails uniquely (due to fault).
- Leads to reduce the key space faster.
- Significantly reduce the number of faults when faults are injected at 5th last round.
- For GIFT-like permutation, we devise an algorithm to compute unique trail upto 5 rounds using GIFT QR structure.

・ 同 ト ・ ヨ ト ・ ヨ ト

・ 同 ト ・ ヨ ト ・ ヨ ト

▲ 伊 ▶ ▲ ヨ ▶ ▲ ヨ ▶

・ 同 ト ・ ヨ ト ・ ヨ ト

- 4 同 1 4 三 1 4 三 1

• • = • • = •

• • = • • = •

A B M A B M

• • = • • = •

- A IB M A IB M

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh
Key Recovery A	ttack			

• Reduce key space of each nibble in ${\cal R}^{i+4}$ for each input-output difference from ciphertext.

イロト イボト イヨト イヨト

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh 0000
Key Recovery	Attack			

- Reduce key space of each nibble in ${\cal R}^{i+4}$ for each input-output difference from ciphertext.
- Combine keyspace of R^{i+4} for each quotient group of R^{i+3} .

3 🖌 🖌 3 🕨

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh
Kev Recover	rv Attack			

- Reduce key space of each nibble in ${\cal R}^{i+4}$ for each input-output difference from ciphertext.
- Combine keyspace of R^{i+4} for each quotient group of R^{i+3} .
- Combine keyspace of all even (odd) nibbles of R^{i+4} to filter all least (most) significant 16 nibbles.

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh
Kev Recover	rv Attack			

- Reduce key space of each nibble in R^{i+4} for each input-output difference from ciphertext.
- Combine keyspace of R^{i+4} for each quotient group of R^{i+3} .
- Combine keyspace of all even (odd) nibbles of R^{i+4} to filter all least (most) significant 16 nibbles.
- Combine the whole reduced key space in \mathbb{R}^{i+4} , we filter 4th and 5th last round.

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh
Kev Recover	rv Attack			

- Reduce key space of each nibble in ${\cal R}^{i+4}$ for each input-output difference from ciphertext.
- Combine keyspace of R^{i+4} for each quotient group of R^{i+3} .
- Combine keyspace of all even (odd) nibbles of R^{i+4} to filter all least (most) significant 16 nibbles.
- Combine the whole reduced key space in \mathbb{R}^{i+4} , we filter 4th and 5th last round.

Ciphor	Attack Stratomy	Res	sults
Cipitei	Attack Strategy	Number of Faults	Reduced Keyspace
		64	2 ³²
	Faults at the Second-to-Last Round	48	2 ³⁹
		32	2^{46}
		32	20.2
Defeult	Faults at the Third-to-Last Round	28	27
		24	2 ¹⁴
Delault		16	1
	Faults at the Fourth-to-Last Round	12	1
		8	27
		8	1
	Faults at the Fifth-to-Last Round	6	1
		5	1

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh 0000

▶ < ≣ ▶

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh 0000
Attack on Rota	ating Key Schedule			
Equivalent Key So	chedule			
 Four indepen Default-Layer 	ident round keys k_0 , k_2 r.	$_1,\ k_2,\ k_3$ are used in four	consequitive roun	nds of

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Background 0000000	Finding Trail	Attack Procedure ○○●○○	SDFA O	Baksheesh 0000
Attack on R	otating Key Schee	dule		

Equivalent Key Schedule

- Four independent round keys k_0 , k_1 , k_2 , k_3 are used in four consequitive rounds of Default-Layer.
- Default has 3 LS, $L(S) = \{0, 6, 9, f\}$. So, \exists input-output difference (α, β) s.t. $Pr[\alpha \rightarrow \beta] = 1$.
- For any $\alpha \in L(S)$, $\exists \beta \in L(S^{-1}) = \{0, 5, a, f\}$ s.t. $S(x \oplus \alpha) = S(x) \oplus S(\alpha) = S(x) \oplus \beta$, $\forall x \in \mathcal{F}_2^4$.
- Define $L(S, S^{-1}) = \{(\alpha, \beta) : S(x \oplus \alpha) = S(x) \oplus \beta\} = \{(0, 0), (6, a), (9, f), (f, 5)\}.$

0000

Equivalent Key Schedule

- Four independent round keys k_0 , k_1 , k_2 , k_3 are used in four consequitive rounds of Default-Layer.
- Default has 3 LS, $L(S) = \{0, 6, 9, f\}$. So, \exists input-output difference (α, β) s.t. $Pr[\alpha \rightarrow \beta] = 1$.
- For any $\alpha \in L(S)$, $\exists \beta \in L(S^{-1}) = \{0, 5, a, f\}$ s.t. $S(x \oplus \alpha) = S(x) \oplus S(\alpha) = S(x) \oplus \beta$, $\forall x \in \mathcal{F}_2^4$.
- Define $L(S, S^{-1}) = \{(\alpha, \beta) : S(x \oplus \alpha) = S(x) \oplus \beta\} = \{(0, 0), (6, a), (9, f), (f, 5)\}.$
- Take the toy cipher, $y = S(x \oplus k_0) \oplus k_1$.
- If (k_0, k_1) be the actual key, then for any $(\alpha, \beta) \in L(S, S^{-1})$, $(\hat{k_0}, \hat{k_1}) = (k_0 \oplus \alpha, k_1 \oplus \beta)$ will also be an *equivalent key*.
- For a round key pair (k_0, k_1) , $\exists 2^{64}$ (for 32 SBoxes in a round) such equivalent keys, which satisfies the same input-output difference.

 $\begin{array}{l} \hline k_0: 1a5f01b35ef5deea60361f4df591c654\\ \hline k_1: 5a66c55f3847aed3025023785542a124\\ \hline k_2: 85cb6b4f87f44ed160d20d713c86144f\\ \hline k_3: 84c302e5cb1539af59d623e9acdae09d \end{array}$

(a) Original Keys

- \hat{k}_0 : 7c3967d53893b88c0650792b93f7a032
- \hat{k}_1 : 96aa0993f48b621fce9cefb4998e6de8
- \hat{k}_2 : 4907a7834b38821dac1ec1bdf04ad883
- $\hat{k}_3: 2e69a84f61bf9305f37c894306704a37$

(b) Equivalent Keys

Jana, A., Kundu, AK., Paul, G.

More Vulnerabilities of LS Sbox-Based Ciphers

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh
A I				

Attack Strategy

• Keyspace \rightarrow Equivalent Keyspace

- Give 32 faults in the 5th last round to generate at least 2 distinct input-output differences at last, 2nd, 3rd and 4th last round.
- Compute $\hat{k_3}$, $\hat{k_2}$, $\hat{k_1}$, $\hat{k_0}$ using 5 round trail for the last 4 rounds.
- This reduces each $\hat{k_i}$ keyspace to 2^{64} , for $i \in \{0, 1, 2, 3\}$.

Background		Finding Tra		Attack Procedure	SDFA O	Baksheesh
	_		~ .			

Attack Strategy

$\bullet \ \ \text{Keyspace} \rightarrow \text{Equivalent Keyspace}$

- Give 32 faults in the 5th last round to generate at least 2 distinct input-output differences at last, 2nd, 3rd and 4th last round.
- Compute $\hat{k_3}$, $\hat{k_2}$, $\hat{k_1}$, $\hat{k_0}$ using 5 round trail for the last 4 rounds.
- This reduces each $\hat{k_i}$ keyspace to 2^{64} , for $i \in \{0, 1, 2, 3\}$.

• Equivalent Keyspace \rightarrow An Equivalent Key

- Give 4 faults at 10th last round.
- Use k_i for $i \in \{0, 1, 2, 3\}$, to recover the unique trail for 10 rounds.
- Use key recovery procedure for the simple key schedule and $\hat{k_i}$, for $i\in\{1,2,3\}$ to reduce k_0 to unique one.

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh 0000

Attack Strategy

$\bullet \ \ \text{Keyspace} \rightarrow \text{Equivalent Keyspace}$

- Give 32 faults in the 5th last round to generate at least 2 distinct input-output differences at last, 2nd, 3rd and 4th last round.
- Compute $\hat{k_3}$, $\hat{k_2}$, $\hat{k_1}$, $\hat{k_0}$ using 5 round trail for the last 4 rounds.
- This reduces each $\hat{k_i}$ keyspace to 2^{64} , for $i \in \{0, 1, 2, 3\}$.

• Equivalent Keyspace \rightarrow An Equivalent Key

- Give 4 faults at 10th last round.
- Use k_i for $i \in \{0, 1, 2, 3\}$, to recover the unique trail for 10 rounds.
- Use key recovery procedure for the simple key schedule and $\hat{k_i}$, for $i \in \{1, 2, 3\}$ to reduce k_0 to unique one.

• An Equivalent Key \rightarrow Original Key

• Inject faults at Default-Core and recover its original key with less number of faults.

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh 0000

Attack Strategy

$\bullet \ \ \text{Keyspace} \rightarrow \text{Equivalent Keyspace}$

- Give 32 faults in the 5th last round to generate at least 2 distinct input-output differences at last, 2nd, 3rd and 4th last round.
- Compute $\hat{k_3}$, $\hat{k_2}$, $\hat{k_1}$, $\hat{k_0}$ using 5 round trail for the last 4 rounds.
- This reduces each $\hat{k_i}$ keyspace to 2^{64} , for $i \in \{0, 1, 2, 3\}$.

\bullet Equivalent Keyspace \rightarrow An Equivalent Key

- Give 4 faults at 10th last round.
- Use k_i for $i \in \{0, 1, 2, 3\}$, to recover the unique trail for 10 rounds.
- Use key recovery procedure for the simple key schedule and $\hat{k_i}$, for $i\in\{1,2,3\}$ to reduce k_0 to unique one.

• An Equivalent Key \rightarrow Original Key

• Inject faults at Default-Core and recover its original key with less number of faults.

Results

- 36 faults are needed to reduce the keyspace of Default-Layer.
- For Default-Core, 32 faults are required to recover the key uniquely after giving faults at 2nd last round.

< ロ > < 同 > < 回 > < 回 >

Background	Finding Trail	Attack Procedure	SDFA	Baksheesh
		00000		

æ

Background	Finding Trail	Attack Procedure	SDFA ●	Baksheesh
SDFA				

- Combines DFA and SFA using bit-set faults.
- Objective is to identify the common nibble values that passes through both DFA and SFA.

▶ ∢ ⊒ ▶

Background	Finding Trail	Attack Procedure	SDFA ●	Baksheesh 0000
SDFA				

- Combines DFA and SFA using bit-set faults.
- Objective is to identify the common nibble values that passes through both DFA and SFA.

Example

- Consider the input-output difference $2 \rightarrow 7$ for the bit-set $u_1 = 1$ in an Sbox.
- Using DFA, $\mathcal{D} = \{0, 5, a, f, 2, 7, 8, d\}.$

3 🕨 🖌 3 🕨

Background	Finding Trail	Attack Procedure	SDFA ●	Baksheesh 0000
SDFA				

- Combines DFA and SFA using bit-set faults.
- Objective is to identify the common nibble values that passes through both DFA and SFA.

Example

- Consider the input-output difference $2 \rightarrow 7$ for the bit-set $u_1 = 1$ in an Sbox.
- Using DFA, $\mathcal{D} = \{0, 5, a, f, 2, 7, 8, d\}.$
- Using SFA, $\mathcal{I} = \{1, 5, 6, 7, 8, 9, a, e\}.$
- Hence, using SDFA, $\mathcal{Z} = \mathcal{D} \cap \mathcal{I} = \{5, a, 7, 8\}.$

3 🕨 🖌 3 🕨

Background	Finding Trail	Attack Procedure	SDFA ●	Baksheesh 0000
SDFA				

- Combines DFA and SFA using bit-set faults.
- Objective is to identify the common nibble values that passes through both DFA and SFA.

Example

- Consider the input-output difference $2 \rightarrow 7$ for the bit-set $u_1 = 1$ in an Sbox.
- Using DFA, $\mathcal{D} = \{0, 5, a, f, 2, 7, 8, d\}.$
- Using SFA, $\mathcal{I} = \{1, 5, 6, 7, 8, 9, a, e\}.$
- Hence, using SDFA, $\mathcal{Z} = \mathcal{D} \cap \mathcal{I} = \{5, a, 7, 8\}.$

Results

• For Default, [64, 128] bit set faults are required to reduce the keyspace to unique one.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh ●○○○
Results on Baksl	neesh			

- Similar attack can be adapted to Baksheesh.
- For Baksheesh, minimum of two faults in each nibble are needed to reduce the key nibble to one.
- In the worst case, for baksheesh, 128 bit-set faults are needed for unique key recovery.

▶ ∢ ⊒ ▶

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh ●OOO
Results on I	Baksheesh			

- Similar attack can be adapted to Baksheesh.
- For Baksheesh, minimum of two faults in each nibble are needed to reduce the key nibble to one.
- In the worst case, for baksheesh, 128 bit-set faults are needed for unique key recovery.
- Results:

Cipher	Attack Strategy	Results		
Cipilei	Attack Strategy	Number of Faults	Reduced Keyspace	
		48	1	
Baksheesh -	Faults at the Second-to-Last Round	Its at the Second-to-Last Round 40	1	
		32 2 ³²		
		16	1	
	Faults at the Third-to-Last Round	12	1	
		10	2	

▶ ∢ ⊒ ▶

Background	Finding Trail	Attack Procedure	SDFA	Baksheesh
000000	00000	00000		0000

Summary of Our Results

Cinher	Cipher Key Schedule		Attack Strategy	Results		References	
Cipiter Rey Schedule		Relevant works	Attack Strategy	# of Faults	Keyspace	References	
		Nagalar at a/	Enc-Dec IC-DFA	16	2 ³⁹	[NDE22, Section 6.1]	
		Nagelet et al.	Multi-round IC-DFA	16	2^{20}	[NDE22, Section 6.2]	
	Simple		Second-to-Last Round Attack	64	2^{32}	Section 3.1.2	
	Simple	This Work	Third-to-Last Round Attack	34	1	Section 3.1.3	
		THIS WORK	Fourth-to-Last Round Attack	16	1	Section 3.1.4	
			Fifth-to-Last Round Attack	5	1	Section 3.1.5	
			SDFA	[64, 128]	1	Section 4.2	
DELAGET	Rotating	Nageler <i>et al.</i>	Generic NK-DFA	1728 + x	1	[NDE22, Section 4.3]	
			Enc-Dec IC-NK-DFA	288 + x	2^{32}	[NDE22, Section 5.1]	
			Multi-round IC-NK-DFA	$(84 \pm 15) + x$	1	[NDE22, Section 5.2, 6.3]	
			Third-to-Last Round Attack	96 + x	1	Section 3.2.2.1	
		This Work	Fourth-to-Last Round Attack	48 + x	1	Section 3.2.2.2	
		THIS WORK	Fifth-to-Last Round Attack	36 + x	1	Section 3.2.2.3	
			SDFA	[64, 128]	1	Section 4.3	
			Second-to-Last Round Attack	40	1	Section 5.1.2	
BAKSHEESH	Rotating	This Work	Third-to-Last Round Attack	12	1	Section 5.1.3	
		SDFA	SDFA	128	1	Section 5.2	

*x represents the number of faults to retrieve the key at the Default-Core. We verified that 32 bit-faults at the second-to-last

round in Default-Core achieve unique key recovery.

・ロト ・聞 ト ・ ヨト ・ ヨト

Background	Finding Trail	Attack Procedure	SDFA O	Baksheesh ○○●○
Conclusion				

- Our approach involves constructing deterministic differential trails spanning up to 5 rounds for Default-Layer and 3 rounds for Baksheesh.
- For the simple key schedule, we demonstrate that approximately 5 bit-flip faults are sufficient to uniquely recover the key of DEFAULT.
- For rotating key schedule, we show that approximately 36 bit-flip faults are required to recover the equivalent key of DEFAULT-LAYER.
- We introduce a novel fault attack technique called SDFA, which combines both SFA and DFA.
- We apply our proposed DFA attack on BAKSHEESH, and efficiently recovered its master key uniquely.
- This computes unique 3 rounds trail for the cipher by using 12 faults only.
- Finally, Our findings underscore the difficulty in achieving DFA protection for linear-structured SBox-based ciphers.

- 4 同 6 4 回 6 4 回 6

▶ < Ē