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@ Background & Motivation



Background: Balance between user privacy and moderation
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Background: Message franking (MF) [Facl6, GLR17, TGL*19]
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If the moderator is different to the platform, it is called asymmetric
message franking (AMF) [TGL"19].



Background: Deniability in AMF
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A message can be forged by the Bob, the moderator, or even the
public, in the name of Alice. Usually, the public cannot distinguish
between the forged messages and the normally generated messages.



Motivation: Problem | — Deniability and unframeability
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As mentioned in [BGJP23], deniability in [TGLT19] is conflict with

unframeability.



Motivation: Goal | — Support deniability and unframeability

simultaneously
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No forged message can be accepted by the Bob and the moderator
simultaneously, therefore supporting unframeability.



Motivation: Problem Il — A powerful moderator
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Motivation: Goal Il — illegal messages only and retrospective content

moderation
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Contributions

Our main contributions can be summarized as follows:
® A new primitive, mild asymmetric message franking (MAMF).

® Two new building blocks, universal set pre-constrained
encryption (USPCE) and dual hash proof system-based key
encapsulation mechanism supporting Sigma protocols (dual
HPS-KEM®).

® A framework of constructing MAMF from USPCE and dual
HPS-KEM*>.



© MAMF primitive



Roles

MAMF = (
Setup, KGag, KGy, KGy, /setup and key generation
Frank, Verify, TKGen, Judge, /main body
Forge, RForge, JForge // for deniability
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Algorithms |
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Initialize a set of illegal messages S
@

legislative agency

apAg\
[ ¢} (pks, sk3) < KGy(pp, pkag, aPag)
~ o®
Sender Tudge
(pks, sks) — KGy(pp) Platform
Recer (Pkr, skr) + KGu(pp)




Algorithms I

Initialize a set of illegal messages S
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Algorithms Il
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Security properties

Table 1: Security properties in AMF [TGL"19] and MAMF

Security properties AMF[TGL*19] Our MAMF
Unforgeability implied by s-bind and r-bind v
Accountability  s-bind v v

r-bind v v
Deniability v v
Unframeability — v
Untraceability - v
Confidentiality of sets — v

Note that unforgeability in MAMF cannot be implied by sender
binding (s-bind) and receiver binding (r-bind).



Security properties: unforgeability

Unforgeability in MAMF ensures prevention of successful
impersonation, i.e., the receiver cannot be deceived into accepting
a message not genuinely sent by the sender.
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Security properties: accountability |

Accountability ensures that the functionality of reporting illegal
messages. In line with the definition in [TGLT19, LZH 23],
accountability is formalized with two special properties: sender
binding and receiver binding.
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Security properties: accountability I

Sender binding (s-bind) ensures that the sender cannot trick the
receiver into accepting unreportable messages.

Receiver binding (r-bind) ensures that the receiver cannot
deceive the judge to frame an innocent sender.
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Security properties: deniability

Deniability
® universal deniability;
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Security properties: unframeability

Unframeability of MAMF requires that no party, even given a
receiver's secret key and the judge's secret key, is able to produce a
signature acceptable to both the receiver and the judge.
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Security properties: untraceability |

Untraceability restricts the capabilities of both the legislative
agency and the judge, thereby enhancing sender privacy. This
concept formalizes into two distinct notions:

@ untraceability against legislative agency;

® untraceability against judge.



Security properties: untraceability 1

Untraceability against legislative agency guarantees that the agency
cannot determine if someone has actually sent a message, no
matter whether it is in the set of illegal message or not.
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Security properties: untraceability 111

Untraceability against judge ensures that, without the assistance of
the legislative agency, the moderator cannot ascertain the sender's
identity when the message is not in the set of illegal messages.
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Security properties: confidentiality of sets

Confidentiality of sets requires that the legislative agency's public
key and the judge's public key will not disclose any information
about the set of illegal messages.
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O MAMF construction



Two building blocks:
@ universal set pre-constrained encryption (USPCE);

® dual hash proof system based key encapsulation mechanism
supporting Sigma protocols (dual HPS-KEME).



O MAMF construction
USPCE



Building block: USPCE

® Set pre-constrained encryption (SPCE) in [BGJP23]:
* (pk,sk) < KG(1*,S), S C U;
® ct «+ Enc(pk,xz,m), x € U is an item;
® m = Dec(sk,ct) iff z € S.
® Insufficiency of SPCE to construct MAMF: decryption is
infeasible when = ¢ S, so retrospective content moderation
cannot be carried in MAMF, if adopting SPCE.

To address this challenge, we propose a new primitive, universal set
pre-constrained encryption (USPCE)



Definition of USPCE |

USPCE = (Setup, KG, Enc, TKGen, Dec)

e (pp,ap,msk) < Setup(A,S): Inputting (A,S), the setup
algorithm outputs a public parameter pp, a auxiliary parameter
ap and a master secret key msk.

o (pk,sk) < KG(pp,ap): Inputting (pp, ap), the key generation
algorithm run by the users, outputs (pk, sk).

e ct < Enc(pp, pk,z,m): Inputting (pp, pk, x,m), it outputs a
ciphertext ct.

o tk « TKGen(pp, msk,x): Inputting (pp, msk, ), it outputs a
token tk for x.

e m/Sm < Dec(pp, sk, ct,tk): Inputting (pp, sk, ct, tk), it
outputs either a message m or a polynomial-size set .S, C M.

Note that tk could be L in Dec.



Definition of USPCE Il

An USPCE scheme USPCE is correct, if for any A € N, any set
S C U, and any m € M, it holds that

® when z € S:

[ (pp,ap, msk) < Setup(),S)
Pr | (pk,sk) < KG(pp, ap) © m € Sy = Dec(pp, sk,ct, L) | = 1—negl(\);
| ct < Enc(pp, pk,z,m)

® when 2 ¢ S:

I (pp7 ap, mSk) < SEtUp(A, S)

(pk, sk) < KG(pp, ap) . L

ct « Enc(pp, pk, z, m) : m = Dec(pp, sk, ct, tk) | = 1—negl()).
|tk + TKGen(pp, msk, x)

Given a set S C U, for any pp and msk generated by Setup(},S),

we define a relation as follows:
Re = {((pk, x,ct), (m,r)) : ct = Enc(pp, pk, x,m;r)}.



Security properties of USPCE |

USPCE should satisfies:
e Confidentiality against authority,
e Confidentiality against users,
e Confidentiality of sets.



Security properties of USPCE Il

Definition 1 (Confidentiality against authority)

An USPCE scheme USPCE has confidentiality against authority, if
for any set S C U and any PPT adversary A = (A1, A9),

1
f-au nf-au
AdviEEE 4 s(N) = | Pr[GRITEE 4s(A) = 1] — §|

is negligible, where GEEEE 4 5()) is shown in Fig. 3.

GoReE as(V):

b+ {0,1}, (pp,ap,msk) < Setup(),S), (pk, sk) + KG(pp, ap)
(mo,m1,x*,sta) < Ai(pp,msk,pk), ct <« Enc(pp,pk,z*,mp), b <+
A (ct, st 4)

Return (V' =b)

Figure 3: Games G%°§';'€E7A’S(/\) for USPCE



Security properties of USPCE Il

Definition 2 (Confidentiality against users)

An USPCE scheme USPCE has confidentiality against users, if for
any set S C U and any PPT adversary A = (A;, A2),

1
f-u nf-u
AdviE e 4s(N) = | Pr[GRE e 4s(N) = 1] — §|

is negligible, where GfJ°S",§'C"E7A7S(/\) is shown in Fig. 4.

GiRpee, 4,5 (V) OTHGen (a):

b« {0,1}, (pp,ap, msk) < Setup(A,S), Qx :=0, Uy :=0 If 2’ € Ux: Return L
(pk, sk) < KG(pp,ap), (mo,m1,z*, st 4) < AP (pp, pk, sk) @x < @x U {='}

If (z* ¢U)V (z* €S)V (z* € Qx): Return L Return

Ux  UxU{z*}, ct + Enc(pp, pk, z*, mp), b’ < A (ct, st4) TKGen(pp, msk, z)
Return (V' =b)

Figure 4: Games fJ°S"|§'(‘:JE7A7S(/\) for USPCE



Security properties of USPCE IV

Definition 3 (Confidentiality of sets)

A USPCE scheme USPCE supports confidentiality of sets, if for any
PPT adversary A = (A1, A2),

1
AAVEEE A() = [PrGREE AN = 1] — 5

is negligible, where GEJOSng_é%t,A()‘) is shown in Fig. 5.
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(pp, ap, msk) < Setup(X, Sp), (pk, sk) <= KG(pp, ap), b’ < Aa(pp, pk, st 4)
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Figure 5: Games G{Eieg 4()) for USPCE



O MAMF construction

Dual HPS-KEM*



Building block: Dual HPS-KEM*

HPS-KEM* was proposed in [LZH*23] to construct asymmetric
group message franking (AGMF), which is a variant of key
encapsulation mechanism (KEM) satisfying that

(i) it can be interpreted from the perspective of hash proof system
(HPS) [CS02],

(i) for some special relations (about the public/secret keys, the
encapsulated keys and ciphertexts), there exist corresponding
Sigma protocols.

In this work, we consider its dual version. Thus, we firstly recall
HPS-KEM?Z, then show the dual version.



Definition of HPS-KEM*™ |

HPS-KEM* = (KEMSetup, KG, Encap,, Encap}, Encap,,
Decap, CheckKey, CheckCwel)

e pp < KEMSetup(1*): it outputs a public parameter pp.
o (pk,sk) «+ KG(pp): it outputs a key pairs (pk, sk).

e ¢ < Encap.(pp;r): it outputs a well-formed ciphertext c.
e ¢ < Encap?(pp;r*): it outputs a ciphertext c.

e k< Encapy(pp, pk;r): it outputs an encapsulated key k € K.
it outputs a ciphertext c.

k' < Decap(pp, sk, c): it outputs an encapsulated key k' € K.

b « CheckKey(pp, sk, pk): it checks whether the keys are
well-formed.

b <— CheckCwel(pp, c¢,r*): it checks whether the ciphertext is
well-formed.



Definition of HPS-KEM? ||

Correctness:

(1) For any pp generated by KEMSetup(1*), and any (pk, sk)
output by KG(pp), CheckKey(pp, sk, pk) = 1.

(2) For any pp generated by KEMSetup(1?), any (pk, sk)
satisfying CheckKey(pp, sk, pk) =1, and any
¢ < Encap.(pp;r), k < Encapy(pp, pk;r), it holds that
Decap(pp, sk,c) = k.

(3) For any pp generated by KEMSetup(1*), and any c generated
with Encap?(pp; *), CheckCwel(pp, c,7*) = 1 if and only if ¢
is well-formed.



Definition of HPS-KEM* I

For any pp generated by KEMSetup(1*), we define some relations
as follows and we require there exists a Sigma protocol for each
relation:
Rs = {(sk, pk) : CheckKey(pp, sk, pk) = 1}
Rex = {(r, (¢, k,pk)) : ¢ = Encap (pp; 1) A k = Encapy (pp, pk; )}
Re ={(r",¢) : ¢ = Encapc(pp; ™)}
where
® R is a relation proving that the keys are valid,

® R is a relation proving that (c, k) are generated via Encap,
and Encapy,

® R} is a relation proving that c is a ciphertext output by
Encap;.



Dual version |

Compared with HPS-KEM*, dHPS-KEM™ has extra four
algorithms:

e kg < dEncap,(pp, pk,t;r): On input the public parameter pp,
a public key pk, and a tag t € T with inner randomness
r € RS, it outputs an encapsulated key k € K.

e k) < dDecap(pp, sk,t,c): On input the public parameter pp,
a secret key sk, a tag t € T and a ciphertext ¢, it outputs an
encapsulated key k) € K.

o k<= SamEncK(pp;rf): On input the public parameter pp with
inner randomness 7 € RS™, it outputs an encapsulated key
kek.

o kq < dSamEncK(pp, t;ry): On input the public parameter pp
and a tag ¢t € 7 with inner randomness 7} € RS™, it outputs
an encapsulated key kq € K.



Dual version Il

Correctness:

(1) For any pp generated by KEMSetup(1?), any (pk, sk)
satisfying CheckKey(pp, sk, pk) =1, and any
¢ < Encap.(pp; 1), kq < dEncap, (pp, pk,t;r), it holds that
dDecap(pp, sk, t,c) = kq.



Dual version |1l

For any pp generated by KEMSetup(1*), we define some relations
as follows and we require there exists a Sigma protocol for each
relation:

Rey = {((c, ka, pk), (1,7)) : (¢ = Encap,(pp; 7))
A (kg = dEncapy (pp, pk, t;7))}
Ry = {(k,ry) : k = SamEncK(pp; i) },
Rﬂ* = {(kq, (t,73)) : kg = dSamEncK(pp, t; )}
where

e RY, is a relation proving that (c, k) are generated via Encap,
and dEncap,,

® R; is a relation proving that k is sampled from
dHPS-KEM® K (using the randomness ),

° Rﬂ* is a relation proving that kq is sampled from
dHPS-KEM* .IC with a tag t € 7 (using the randomness 7).



Security properties of dual HPS-KEM* |

The security properties of dual HPS-KEM* includes:
* the properties in HPS-KEM®:

universality,

ciphertext unexplainability,

indistinguishability,

SK-second-preimage resistance(SK-2PR),

smoothness.

° and some new properties:
extended universality,

key unexplainability,
extended key unexplainability,
extended smoothness,

special extended smoothness,
Uniformity of sampled keys.



Security properties of dual HPS-KEM* ||

Definition 4 (Universality)

dHPS-KEM® is universal, if for any computationally unbounded
adversary A,

AdV;ﬂ;s-KEME,A()‘) = Pr srlili\léS-KEMZ,_A()‘) = 1] < negl(N),
where G;:ES-KEMZ,A(A) is defined in Fig. 6.

GEH\F/’S-KEME,A(A):

pp < KEMSetup(A), (pk, sk) < KG(pp)

(¢, k,re) < Alpp, pk)

s.it. ((e,78) € RE) A (CheckCwel(pp, ¢, %) = 0)
If kK = Decap(pp, sk,c): Return 1

Else Return 0

Figure 6: Game for defining universality of dHPS-KEM™




Security properties of dual HPS-KEM*> [l

Definition 5 (Extended universality)

dHPS-KEM® is extended universal, if for any computationally
unbounded adversary A,

Advgiipskem= 4 (M) = PriGEEs ey 4 (V) = 1] < negl(V),
where GHut™ L\ 1s () is defined in Fig. 7.

Z)I:EEYKEME,A(A):
pp < KEMSetup(A), (pk, sk) < KG(pp)
(¢, k, e t) < Alpp, pk)
s.it. ((e,18) € RE) A (CheckCwel(pp, ¢, %) = 0)
If kK = dDecap(pp, sk,t,c): Return 1
Else Return 0

Figure 7: Game for defining extended universality of dHPS-KEM>




Security properties of dual HPS-KEM* |V

Definition 6 (Ciphertext unexplainability)

dHPS-KEM® is ciphertext-unexplainable, if for any PPT adversary
A, AdvEeP () == Pr[GEUeP (A) = 1] < negl(A),

dHPS-KEM> A dHPS-KEM> A
C-unexpl . - . .
where GdHPS_KEszA()\) is defined in Fig. 8.

C-unexpl .
GdHPS—KEME,A(A)'

pp + KEMSetup()),

(c,r2)  Alpp) st (¢,7) € R

If CheckCwel(pp,c,r%) =1: Return 1
Else Return 0

Figure 8: Game for defining ciphertext unexplainability of dHPS-KEM*




Security properties of dual HPS-KEM> V

Definition 7 (Key unexplainability)

dHPS-KEM® is key-unexplainable, if for any PPT adversary A,
AdyKuneel L) = Pr[GXune! (A) = 1] < negl(N),

dHPS-KEM™ | dHPS-KEM>, A
K-unexpl . - . .
where GdHPS_KEszA()\) is defined in Fig. 9.

K-unexpl .
GdHPS—KEME,A(A)'

pp < KEMSetup()), (pk, sk) <+ KG(pp)
(c,rg, k, T‘E) < A(pp, pk, sk)

st. ((¢,72) € RE) A ((k,1y) € RY)

If Decap(pp, sk,c) = k: Return 1

Else Return 0

Figure 9: Game for defining key unexplainability of dHPS-KEM™




Security properties of dual HPS-KEM*> VI

Definition 8 (Extended key unexplainability)

dHPS-KEM® is extended key-unexplainable, if for any PPT
adversary A,
Advex—K—unexpl A(/\) — Pr[Gex—K—unexpl A()\) _ 1] < negl()\),

dHPS-KEM?, dHPS-KEM*,
ex-K-unexpl . . . .
where GdHPS-KEMZ,A(A) is defined in Fig. 10.

.

ex-K-unexpl .
c.;dHPS-KEME,A()\)'

pp < KEMSetup(A), (pk, sk) < KG(pp)
(e,7%, ka, t, 1) < A(pp, pk, sk)
st. ((e,r8) € R A ((kq, (£, 75)) € RYY)
If dDecap(pp, sk,t,c) = kq: Return 1
Else Return 0
Figure 10: Game for defining extended key unexplainability of
dHPS-KEM™




Security properties of dual HPS-KEM*> V|

Definition 9 (Indistinguishability)

dHPS-KEM® s indistinguishable, if for any PPT adversary A,

AQViSog ey AN = PG oy 4 (V) = 1] ] < negl(),
where Gind (\) is defined in Fig. 11.

dHPS-KEM>, 4

GldnlfiIPS-KEME,A(/\):
b« {0,1}, pp + KEMSetup(1*)
¢ < encap.(pp), c1 < encap’(pp)
b+ Alpp, )
Return (V' < b)

Figure 11: Games for defining indistinguishability of dHPS-KEM™




Security properties of dual HPS-KEM* VIII

Definition 10 (SK-2PR)

dHPS-KEM® is SK-second-preimage resistant, if for any PPT
adversary A,
AdvEr L = PriGE L) =1] < negl()),

dHPS-KEMZ, dHPS-KEM*,
sk-2pr . . . .
where GdHPS-KEME,A()‘) is defined in Fig. 11. )
sk-2pr .
GdHPS-KEME,A()\)'

pp < KEMSetup(1?), (pk, sk) < KG(pp)

sk’ «+ A(pp, pk, sk)

If (sk’ # sk) A (CheckKey(pp, sk’, pk) = 1): Return 1
Return 0

Figure 12: Games for defining SK-second-preimage resistance of
dHPS-KEM>




Security properties of dual HPS-KEM* IX

Definition 11 (Smoothness)

dHPS-KEM? is smooth, if for any fixed pp generated by
KEMSetup and any fixed pk generated by KG,

A((e,k), (e, K')) < negl(}),
where ¢ <— Encapl(pp), k < K, sk < SKpp pi and
k' = Decap(pp, sk, c).

Definition 12 (Extended smoothness)

dHPS-KEM?® is extended smooth, if for any fixed pp generated by
KEMSetup and any fixed pk generated by KG,

A((c, k,t), (c, k', 1)) < negl()),

where ¢ < Encap?(pp), k <+ K, t < T, sk < SK,p pi and
k' = dDecap(pp, sk, t,c).




Security properties of dual HPS-KEM> X

Definition 13 (Special extended smoothness)

dHPS-KEM® is special extended smooth, if for any fixed pp

generated by KEMSetup and any fixed (pk, sk) generated by KG,
A((c, k), (¢, k")) < negl(N),

where ¢ < Encap;(pp), k < K, t < T and

k" = dDecap(pp, sk, t,c).

Definition 14 (Uniformity of sampled keys)

dHPS-KEM?® has uniformity of sampled keys, if for any pp
generated by KEMSetup and any ¢ € T, it holds that

A(k, k') =0 and A(k,k")=0
where k < K, k' + SamEncK(pp) and k" < dSamEncK(pp, t).




O MAMF construction

MAMF framework



Construction of MAMF |

Setup(A):
Return pp := ppkem dHPS-KEME.KEMSetup()\)

KGag(pp, S):
Return (pkag, skag) := (ppuspce, mskuspce) < USPCE.Setup(A, S)

KGy(pp, pkag):

(pk'), sk')) « dHPS-KEM® KG(ppkem)

(pkuspck, skuspce) + USPCE.KG(ppuspce)

Return (pkj = (pkuspce, pk)), sky = (skuspce, sk)))

KGu(pp):
Return (pk, sk) + dHPS-KEM® .KG(ppkem)

Figure 13: Algorithm descriptions of Setup, KGag, KG; and KG,



Construction of MAMF I

Frank(pp, sks, pkr, pkag, Dk, m):

(pkuspce, pk}) < pky, r + dHPS-KEM*. RS

¢ + dHPS-KEM?> .Encap,(ppkem; ), kr < dHPS-KEM* Encap, (ppkem, pkr; 7)
t < dHPS-KEM®.T, k; < dHPS-KEM® .dEncap, (ppkem, pk), t; )

ruspce < USPCE.RS, ¢ <+ USPCE.EnC(pkUSPCE, m,t; ""USPCE)

x + (sks,t,r, L, L, ruspce), y < (pp, pks, Dkag, Pky, ¢, kr, ky, ce, m)

7 < NIZK™ .Prove(pk:, y, =) // NIZK™ will be explained later
Return o « (m, ¢, ki, ky, ct)

Verify(pp, pks, skr, pkag, pks, m, o):

(ﬂ-a (& kh kJ7 Ct) S~ 0, Y < (ppa pks,pkAg,pkh c, kr, kJ, Ct, m)
If NIZK™ Verify(pk,, 7,3) = 0: Return 0

If dHPS-KEM®.Decap(ppkem, sk, ¢) = kr: Return 1
Return 0

Figure 14: Algorithms Frank and Verify of MAMF
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TKGen(pp, skag, pks, m):
tk < USPCE.TKGen(ppUSPCE, mskusp(:E, m)
Return tk

Judge(pp, pks, pkr, Pkag, sk, m, o, tk):
(skuspce, sk))) < sky, (m, ¢, ke, ky, ct) < o, y < (pp, Pks, Dkag, PkJ, ¢, kv, ky, ct,m)
If NIZK™ Verify(pk,,7,y) = 0: Return 0
If tk #£ L:
t USPCE.DeC(ppUSPCE, skuspce, Ct, tk)
If dHPS-KEM®.dDecap(ppkem, skj, ', c) = kj: Return 1
Return 0
If tk = L:
St < USPCE.DeC(ppUSPCE, SkUSPCE, Ct, J_)
For t' € S;:
If dHPS-KEM* .dDecap(ppkewm, sk}, t',c) = kj: Return 1
Return 0

Figure 15: Algorithms Judge and TKGen of MAMF
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Forge(pp, pks, pkr, pkag, pky, m):

(pkuspce, pk)) < pky, r¥ + dHPS-KEM* RS*

¢ + dHPS-KEM® .Encap} (ppkem; 7)

rf < dHPS-KEM*® RS*, ky + dHPS-KEM® .SamEncK (ppkem; 7}’

t + dHPS-KEM®.T, k; + dHPS-KEM® K

changes in RForge(pp, pks, skr, pkag, pky, m):

kr + dHPS-KEM® .Decap(ppkem, skr, ¢), t < dHPS-KEM®.T

i < dHPS-KEM* RS*, kj < dHPS-KEM®.dSamEncK (ppkem; t; 7}

changes in JForge(pp, pks, pke, pkag, sky, m):

(SkUSPCEv Sk_/j) < Sk’J
i + dHPS-KEM* . RS*, kr + dHPS-KEM> .SamEncK (ppkem; ;)
t + dHPS-KEM>.T,, kj + dHPS-KEM>.dDecap(ppkem, sk, t, c)

ruspce < USPCE.RS, ¢t + USPCE.Enc(pkyspce, M, t; TuspcE)
x4+ (L t, L, &, 75, ruspce), Y < (PP, Pks, pkag, PkJ, ¢, ke, ky, cx,m)
7 < NIZK™ .Prove(pkr, y, z), Return o « (m, ¢, kr, ky, ct)

Figure 16: Algorithm: Forge, RForge and JForge
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Applying Fait-Shamir transform to the Sigma protocols for the
following relation, we can get an efficient NIZK scheme NIZK™.

R = {((ppypksapkAgakaa C, kh kJa Ct, m)a (Sksa t7 T, ’I":, 7’;:, TUSPCE)) :
(A1 NA)V (A3 A Ag) V (As A Ap)}
Aq : (pks, sks) € Rs, Az :(c,1l) € RE
Ay = ((c, ky,pky), (£,7)) € RE Aeq ((Phuspce,m,cx), (£, ruspce)) € R
Ay : (ko) € R A ((phuspce, m, ct), (t,ruspce)) € Ret
As : (ky, (£,75)) € RY Neq ((Pkuspce,m, ct), (£, Tuspce)) € Ret
® A; A Ay: the sender’s secret key is known, and (c, kj, ct) are
generated by Frank. (= accountability)

e A3 A Ay cis ill-formed, and k, is obtained by
SamEncK(ppkem; ). (= universal and judge compromise
deniability)
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e A3 A As: cis ill-formed, and k; is obtained by
dSamEncK(ppkem, t; ). (= receiver compromise deniability)

® (A3 N Ay) V (As A As): In fact, when Aj is true, only Ay or
As can be true. (= unframeability)

® (A1 NA2)V (A3 AN Ag) V (As A As): It guarantees that the
signature would be accepted by receiver and the judge, only
when it is generated by Frank. (= unforgeability)

Untraceability and confidentiality of sets are guaranteed by the
underlying USPCE.



MAMF concrete construction

In our paper [HLZW?24], We present the concrete constructions of
USPCE and dual HPS-KEM, thus implying a concrete construction
of MAMF.

For more details, please refer to our paper [HLZ\W24].
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