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Introduction



Classical vs Quantum Search

• Assumption: doubling key length is enough for quantum resistance.

• Not Enough:

• Quantum cryptoanalysis [BNP18, BNPS18, BNPS19, KLLNP16],
• Collision finding [CNPS17, HSX17, KLLÂP16],
• Generalized birthday problem [GNPS18],
• Quantum attacks on symmetric schemes [BSS22, KM10, KM12].

• Classical proofs ⇒ Quantum proofs?

2



Classical vs Quantum Search

• Assumption: doubling key length is enough for quantum resistance.

• Not Enough:

• Quantum cryptoanalysis [BNP18, BNPS18, BNPS19, KLLNP16],
• Collision finding [CNPS17, HSX17, KLLÂP16],
• Generalized birthday problem [GNPS18],
• Quantum attacks on symmetric schemes [BSS22, KM10, KM12].

• Classical proofs ⇒ Quantum proofs?

2



Classical vs Quantum Search

• Assumption: doubling key length is enough for quantum resistance.

• Not Enough:
• Quantum cryptoanalysis [BNP18, BNPS18, BNPS19, KLLNP16],

• Collision finding [CNPS17, HSX17, KLLÂP16],
• Generalized birthday problem [GNPS18],
• Quantum attacks on symmetric schemes [BSS22, KM10, KM12].

• Classical proofs ⇒ Quantum proofs?

2



Classical vs Quantum Search

• Assumption: doubling key length is enough for quantum resistance.

• Not Enough:
• Quantum cryptoanalysis [BNP18, BNPS18, BNPS19, KLLNP16],
• Collision finding [CNPS17, HSX17, KLLÂP16],

• Generalized birthday problem [GNPS18],
• Quantum attacks on symmetric schemes [BSS22, KM10, KM12].

• Classical proofs ⇒ Quantum proofs?

2



Classical vs Quantum Search

• Assumption: doubling key length is enough for quantum resistance.

• Not Enough:
• Quantum cryptoanalysis [BNP18, BNPS18, BNPS19, KLLNP16],
• Collision finding [CNPS17, HSX17, KLLÂP16],
• Generalized birthday problem [GNPS18],

• Quantum attacks on symmetric schemes [BSS22, KM10, KM12].

• Classical proofs ⇒ Quantum proofs?

2



Classical vs Quantum Search

• Assumption: doubling key length is enough for quantum resistance.

• Not Enough:
• Quantum cryptoanalysis [BNP18, BNPS18, BNPS19, KLLNP16],
• Collision finding [CNPS17, HSX17, KLLÂP16],
• Generalized birthday problem [GNPS18],
• Quantum attacks on symmetric schemes [BSS22, KM10, KM12].

• Classical proofs ⇒ Quantum proofs?

2



Classical vs Quantum Search

• Assumption: doubling key length is enough for quantum resistance.

• Not Enough:
• Quantum cryptoanalysis [BNP18, BNPS18, BNPS19, KLLNP16],
• Collision finding [CNPS17, HSX17, KLLÂP16],
• Generalized birthday problem [GNPS18],
• Quantum attacks on symmetric schemes [BSS22, KM10, KM12].

• Classical proofs ⇒ Quantum proofs?

2



The Luby-Rackoff Construction
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Figure 1: 4 Rounds Luby-Rackoff (LR4)

• Introduced by Luby and
Rackoff [LR88] to build a PRP
from PRFs.

• Classical Security: secure from
r ≥ 3

• Quantum Security:

1. qCPA attack for LR3 [KM10] &
qCCA attack for LR4 [IHM+19]

2. qCPA proof for LR4 [HI19] - we
revisit this proof and identify
some challenges.
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Quantum CPA Distinguishing Game

f1 f2 f3 f4

F
Π

x1, . . . , xq

Ideal WorldReal World • F,Π : {0, 1}2n → {0, 1}2n and
f1, f2, f3, f4 : {0, 1}n → {0, 1}n.

• Assumptions:

1. primitives f1, f2, f3, f4 are
random;

2. Q2 Model: allow quantum
(superposition) queries.
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Quantum CPA
Proof of LR4 [HI19]



Quantum Implementation of LR4 [HI19]
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Figure 2: Round i of LR4 - Ofi
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Figure 3: LR4

• Action = a call to the unitary Ofi .

• Each Ofi maintains a state - Database.
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Modified LR4 - LR4’
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Figure 4: Ofi
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Figure 5: OFi where Fi ↞$ RF

• LR4’ = LR4 with OFi instead of Ofi for i = 3,4 ⇒ LR4’ IND from Π

• Hybrid Distance: enough to bound distance from LR4 to LR4’.
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Two-Domain Distance (TDD) Technique [BCEJ23]

• Single Compressed Oracle: Record all intermediate functions with
random Γ : {0, 1}4+2nq → {0, 1}n where for i ≤ 4, j = 3,4

fi(x) = Γ([8 + i]2||x||0 . . .0),

Fj(x1, x2, x3) = Γ([10 + j]2||x1||x2||x3||0 . . .0).

• Bad Databases: defined as dR (resp. dI) with a collision on inputs to
f3 (resp. F3) or f4 (resp. F4).

• 1-to-1 mapping: for any good database dR, dR 7→ [dR]I.

7
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Trivialization of Norm

• Action Analysis: apply Ofi on |ψg⟩ & bound norm of |ψ′⟩ = Ofi |ψg⟩
turning ”bad”.

• Example: bound ”bad” norm of Of1 |
(
ψ
≤(j−1)
g

)
⟩ (ideal world).

• Simplification: let BAD = {β : dI ∪ (x1, β)1 is bad} then

||BN||2 ≤ |BAD|
2n

.
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Trivialization of Norm

• Authors claim:

||BN||2 ≤ |BAD|
2n

≤ O(j/2n) ⇒ |BAD| ≤ O(j).

• Bad equation: u1 ⊕ v2 = u′
1 ⊕ v′2 = u3 → independent of v1 = β

• Correct claim: ||BN||2 = O(1).

9
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Fixing Proof

• Question: Does increasing the number of rounds help?

• Answer: No. For any r ≥ 4, creating a collision on fi ⇒ leads to
trivialization of norm.

• Underlying Issue: lack of oracle’s knowledge of adversarial query
pattern.
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Non-Adaptive qCPA Setting

• Setting: adversary makes a single query xq = (x1, . . . , xq) & oracle
outputs ŷq.

• Dummy Call Idea: sandwich xq = (x1, . . . , xq) between two
compressed oracles (record & erase) ⇒ oracle knows all
query-response pairs for action analysis.

• Non-Adaptive Setting: includes Simon’s non-adaptive
version [BHNP+19].

11



Non-Adaptive qCPA Setting

• Setting: adversary makes a single query xq = (x1, . . . , xq) & oracle
outputs ŷq.
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Non-Adaptive
Proof for LR4



Bad Database Definition

f1
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u′
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• Dummy call: oracle knows
(x1, x2) 7→ (v1, v2, v3) &
(x′1, x

′
2) 7→ (v′1, v

′
2, v

′
3)

• Bad Events: ∃ collision on
input to f3 (u3 = u′

3) or f4
(u4 = u′

4).

• Show a 1-to-1 mapping
between good databases in
both worlds.
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Getting The Bound

• Transition Capacity: A measure of the probability of a database
going bad after a single query.

• Analyze the action of f1, f2, f3, f4 and show an upper bound on

transition capacities ≤ O
(√

q6

2n

)
.

• From the TDD Framework:

AdvqNCPALR4 (A) ≤ O

(√
q6

2n

)
.
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The Problem with the Adaptive Setting

• Characterization of Bad Databases: ∃ "colliding path" to input of f3
or f4 ⇒ later queries (x1, x2) can make database go "bad"
independently from v1, v2 or v3.

• Global Issue: In HI framework - trivialization of norm, TDD
framework - database going "bad" between actions.

• Broken proofs: LRWQ [HI21], a refined proof of TNT [MZH+23] and
LRQ [BCEJ23].

• TNT and LRWQ [BCEJ23] → bounds deteriorate to O(2n/5).
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The Misty
Constructions



Misty-L vs Misty-R

L R

f

u1

v1

S T

L R

f

u1
v1

S T

Figure 6: Misty-L (left) & Misty-R (right)

• Misty-L: v1 ⊕ R = T , Misty-R:
v1 ⊕ R = S

• Efficient quantum attacks
for 3 rounds Misty-R (resp. 4
rounds Misty-L).

• In this work: we show qCPA
(adaptive) proofs in the TDD
framework.
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Bad Events for 4 Rounds Misty-R

x2 x2
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• Bad Events: ∃ collision on
input to f3 or f4.

• Difference from LR4: "bad"
events are dependent on
v1, v2, v3.
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Conclusions



TDD Framework Quantum (N)CPA Proofs

Scheme Calls Model Bound
Luby-Rackoff 4 qNCPA O(2n/6) (Section 5)
Misty-R 4 qCPA O(2n/5)

Misty-L 5 qCPA O(2n/7)

LRWQ [HI21] 3 qCPA O(2n/5) [BCEJ23]
TNT [BGGS] 3 qCPA O(2n/5) [BCEJ23]

Quantum BB - O(2n/3) queries [Zha13].

17



Conclusion

1. We revisit the qCPA security proof of LR4 [HI19]:

• Trivialization of norms - flaw in the proof,
• Non-adaptive qCPA proof for LR4 up to O(2n/6) quantum queries -

dummy call + TDD framework.

2. We provide qCPA proofs for the Misty constructions using TDD
framework:

• 4 rounds Misty-R up to O(2n/5) quantum queries,
• 5 rounds Misty-L up to O(2n/7) quantum queries.
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Future Work

• Permutation Compressed Oracle: permutation = product of
transpositions [MMW24].

• Proofs in TDD framework [BCEJ23]: define a property which makes
schemes provable in the framework?

• Tightening proofs: new proof techniques? better bounds? seems
hard!
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