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%,

- Assumption: doubling key length is enough for quantum resistance.
- Not Enough:

- Quantum cryptoanalysis [BNP18, BNPS18, BNPS19, KLLNP16],

- Collision finding [CNPS17, HSX17, KLLAP16],

- Generalized birthday problem [GNPSI18],

- Quantum attacks on symmetric schemes [BSS22, KM10, KM12].

- Classical proofs = Quantum proofs?
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. _ The Luby-Rackoff Construction

*Figure 1: 4 Rounds Luby-Rackoff (LR4)

- Introduced by Luby and

Rackoff [LR88] to build a PRP
fromm PRFs.

- Classical Security: secure from

r>3

- Quantum Security:

1. qCPA attack for LR3 [KM10] &
qCCA attack for LR4 [IHMT19]

2. qCPA proof for LR4 [HI19] - we
revisit this proof and identify
some challenges.
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Real World Ideal World

fi f f3 fa

. F,N:{0,1}?" = {0,1}?" and

f,f2, 15,14 - {0, 1} — {0, 1}".

- Assumptions:

1. primitives fi, >, f3, f4 are
random;



Quantum CPA Distinguishing Game

Real World

Ideal World

fa

- F,N:{0,1}2" - {0,1}2 and

ﬁlaf27f37f4 : {O"l}ﬂ — {O"]}I’)

- Assumptions:

1. primitives fi, >, f3, f4 are
random;

2. Q2 Model: allow quantum
(superposition) queries.



Quantum CPA
Proof of LR4 [HI19]



. Quantum Implementation of LR4 [HI19]

Yr YrOXL

yi YL@ f(x) e X
fi

XL XL

XR XR

Figure 2: Round / of LR4 - Of

Figure 3: LR4

- Action = a call to the unitary Os.

- Each Or maintains a state - Database.
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. Modified LR4 - LR4’

Yr YrR® XL YR

Y YL@ f(x) ®Xe Y

fi
Xp X Xr Fi
XL

Xp XL

D—— YR & X

Y ® Fi(xe, Xr)

X,

Xr

Figure 4: O, Figure 5: Or where F; « RF

- LR4' = LR4 with Of, instead of Oy, for i = 3,4 = LR4' IND from I
- Hybrid Distance: enough to bound distance from LR4 to LR4'.
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Two-Domain Distance (TDD) Technique [BCEJ23]

- Single Compressed Oracle: Record all intermediate functions with
random I : {0,1}%+279 — {0,1}" wherefori < 4,j =3, 4

fi(x) = T([8 + /]2]|x||O...0),
Fi(x1,x2,x3) = [([10 +j]2|[x1]|x2[|x3]|O ... O).

. Bad Databases: defined as dR (resp. d') with a collision on inputs to
fz (resp. F3) or f4 (resp. F4).

- 1-to-1 mapping: for any good database dR, dR — [dR];.
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... Trivialization of Norm

- Action Analysis: apply Oy, on [1)g) & bound norm of |¢') = O, |g)
turning "bad”.

- Example: bound "bad” norm of Oy, ](¢30_1)>> (ideal world).
- Simplification: let BAD = {3 : d' U (x3, 8); is bad} then

IBAD|

IBNIP < =
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... Trivialization of Norm

%,

. Authors claim:

BADL _ 5(j/27) = |BAD| < O()).

2n =

[IBNJ[? <

- Bad equation: u; & v, = U] &V, = Uz — independent of vj = 3
- Correct claim: ||BN|[]? = O(1).
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.. Fixing Proof

%,

- Question: Does increasing the number of rounds help?

- Answer: No. For any r > 4, creating a collision on f; = leads to
trivialization of norm.

- Underlying Issue: lack of oracle’'s knowledge of adversarial query
pattern.

10
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Non-Adaptive qCPA Setting

- Setting: adversary makes a single query x9 = (x,...,xq) & oracle
outputs y9.
- Dummy Call Idea: sandwich x9 = (x3,...,Xq) between two

compressed oracles (record & erase) = oracle knows all
query-response pairs for action analysis.

- Non-Adaptive Setting: includes Simon’s non-adaptive

version [BHNPT19].



Non-Adaptive
Proof for LR4
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%

x oS X X - Dummy call: oracle knows

(X] X2) — (V] %) V3) &
T 2 D 79 /7 / /7 /, /
[ 1 (X7, X5) = (vq, V5, V)
- Bad Events: 3 collision on
input to f3 (uz = uk) or f4

(Ug = UL).
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. _ Bad Database Definition

x oS X X - Dummy call: oracle knows
X1,X2) = (V1, V2, v3) &
T w® T. v ® (/ /) (/ / /)
* i (X7, X5) = (vq, V5, V)
——— — .
- Bad Events: J collision on
ol ® u—z. o9 input to fz (uz = uy) or fy
e e (Uy = U/4)
i e® T;I @ - Show a 1-to-1 mapping
%<j 1><j between good databases in
- - v v both worlds.
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. _ Getting The Bound

%,

- Transition Capacity: A measure of the probability of a database
going bad after a single query.

- Analyze the action of fi, f5, f3, f4 and show an upper bound on

transition capacities < O ( g—f .

- From the TDD Framework:

13
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The Problem with the Adaptive Setting

- Characterization of Bad Databases: J "colliding path" to input of f3

or f4 = later queries (xy, X2) can make database go "bad"
independently from vy, v, or vs.

- Global Issue: In HI framework - trivialization of norm, TDD

framework - database going "bad" between actions.

- Broken proofs: LRWQ [HI21], a refined proof of TNT [MZH*23] and

LRQ [BCEJ23].

- TNT and LRWQ [BCEJ23] — bounds deteriorate to O(2"/%).
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Constructions
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L R L R _ )
- Misty-L: vy & R =T, Misty-R:
Un U
V‘| V‘| b R = S

.
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@

S T S T

Figure 6: Misty-L (left) & Misty-R (right)
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. Misty-L vs Misty-R

%,

L R L R _ )
- Misty-L: vy & R =T, Misty-R:
Un U
V‘| V‘| b R = S
@ -
y - Efficient quantum attacks
1
& for 3 rounds Misty-R (resp. 4
rounds Misty-L).
- In this work: we show qCPA
S T S T

(adaptive) proofs in the TDD

Figure 6: Misty-L (left) & Misty-R (right) framework.
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Bad Events for 4 Rounds Misty-R
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- Bad Events: 3 collision on
input to f3 or f4.
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£ Bad Events for 4 Rounds Misty-R

- Bad Events: 3 collision on

input to f3 or f4.

. Difference from LR4: "bad"

events are dependent on

Vi, V2, V3.
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%10

: TDD Framework Quantum (N)CPA Proofs

Scheme Calls | Model | Bound
Luby-Rackoff | 4 gNCPA | O(2"/8) (Section 5)
Misty-R 4 qCPA | O(2"/3)
Misty-L 5 qCPA | O(2"/7)
LRWQ [HI21] | 3 gCPA | O(2"/%) [BCEJ23]
TNT [BGGS] | 3 gCPA | O(2"/%) [BCEJ23]

Quantum BB - O(2"/%) queries [Zha13].

17
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5. conclusion

1. We revisit the qCPA security proof of LR4 [HI19]:
- Trivialization of norms - flaw in the proof,
- Non-adaptive qCPA proof for LR4 up to O(2"/¢) quantum queries -
dummy call + TDD framework.
2. We provide qCPA proofs for the Misty constructions using TDD
framework:
- 4 rounds Misty-R up to O(2"/°) quantum queries,
- 5 rounds Misty-L up to O(2"/7) quantum queries.

18
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-, . Future Work

%

- Permutation Compressed Oracle: permutation = product of
transpositions [MMW24].

- Proofs in TDD framework [BCEJ23]: define a property which makes
schemes provable in the framework?

- Tightening proofs: new proof techniques? better bounds? seems
hard!

19
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