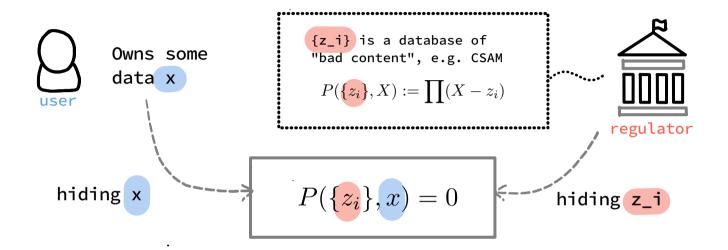
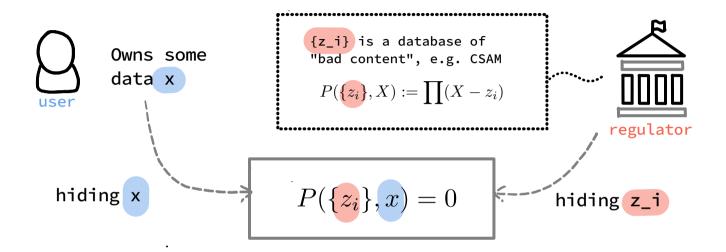
Updatable Privacy-Preserving Blueprints

Bernardo David, Felix Engelmann, Tore Frederiksen, Markulf Kohlweiss, Elena Pagnin, and Mikhail Volkhov

01Labs

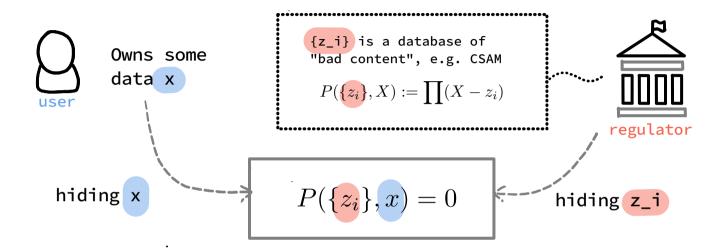
misha@ollabs.org





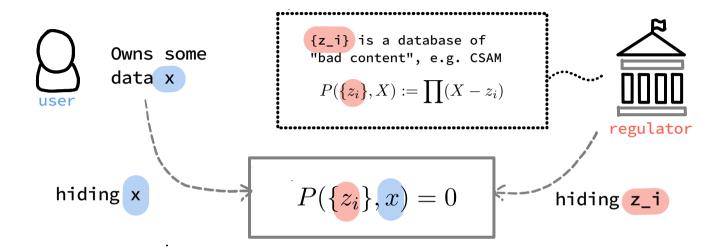
Solutions:

1. U sends the data to X, or the provider must store it ^{FATF} approved but not private



Solutions:

- 1. U sends the data to X, or the provider must store it not private
- 2. General interaction-heavy MPC e.g. SPDZ [DPSZ12] "from somewhat homomorphic enc"



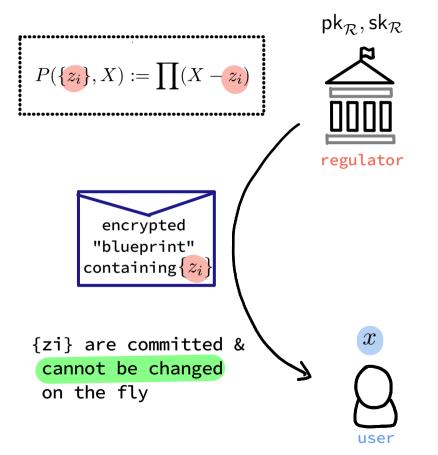
Solutions:

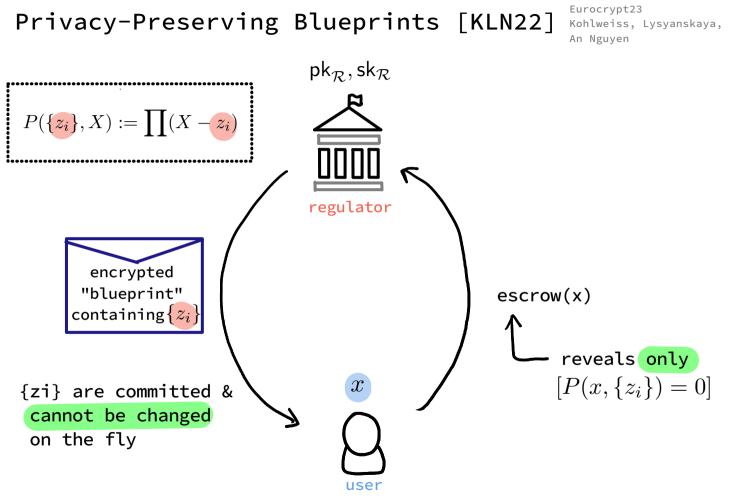
- 1. U sends the data to X, or the provider must store it not private
- 2. General interaction-heavy MPC e.g. SPDZ [DPSZ12] "from somewhat homomorphic enc"
- 3. Client-side scanning: requires "authority code" running on the client, native or in SGX. Prone to leaking z.

"Bugs in our Pockets" by Abelson et al.

Privacy-Preserving Blueprints [KLN22]

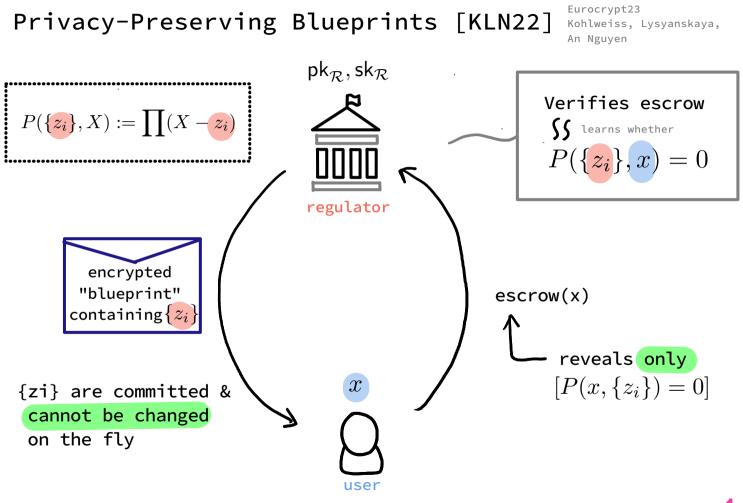
Eurocrypt23 Kohlweiss, Lysyanskaya, An Nguyen

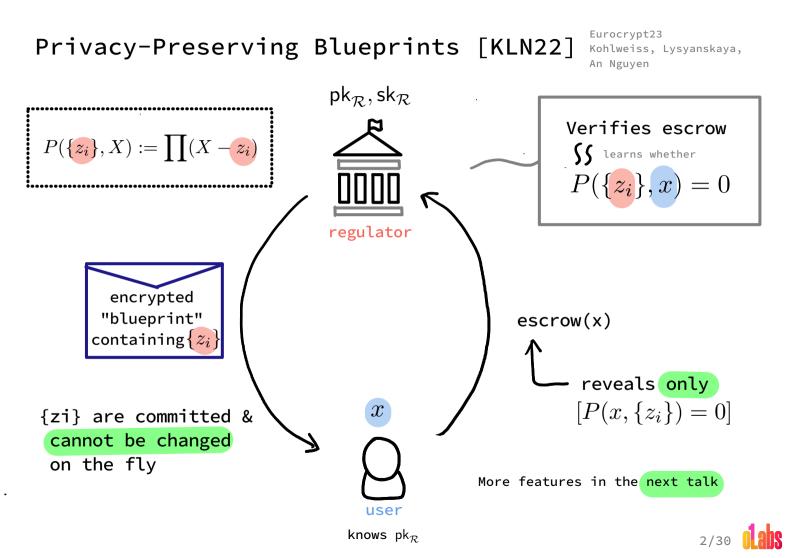




knows $pk_{\mathcal{R}}$

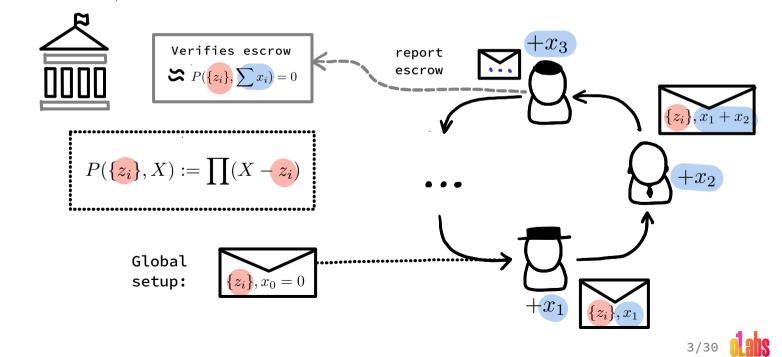
2/30





Updatable Blueprints

Q: Can we allow users to update their secret?



Updatable Blueprints: Privacy Expectations

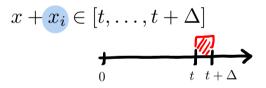


More Applications

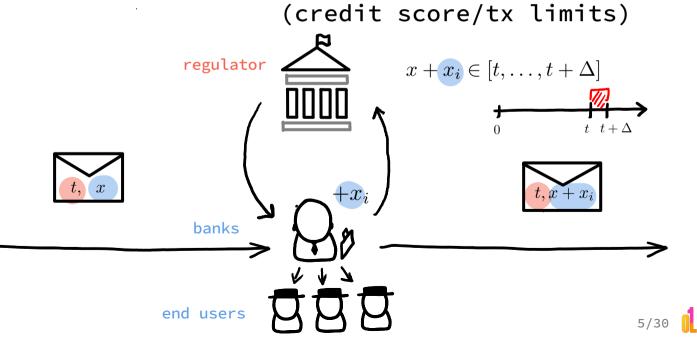
$$[t, \dots, t + \Delta]$$
$$P(X, t) = \prod_{i=0}^{\Delta} (X - (t+i))$$

each
$$oldsymbol{x_i} \in [0,\Delta]$$

1. Banks tracking rating for regulator (credit score/tx limits)



1. Banks tracking rating for regulator



More Applications
$$[t, \dots, t + \Delta]$$

each $x_i \in [0, \delta]$ $P(X, t) = \prod_{i=0}^{\Delta} (X - (t+i))$

- 1. Banks tracking rating for regulator
 (credit score/tx limits)
- 2. Primitive voting

if
$$\delta = 1$$
 regulator $\sum_{\text{sum of votes}}^{n} x_i > t$ learns

More Applications

each
$$x,y\in [0,\delta]$$

- 1. Banks tracking rating for regulator
 (credit score/tx limits)
- 2. Primitive voting

3. (Extension) Euclidian proximity testing

e.g. covid prox. testing; each antenna communicates relative change only

regulator
$$(\sum x - t_x)^2 + (\sum y - t_y)^2 > \Delta^2$$
learns

- Updatable blueprints
 - A novel primitive for MPC predicate checking

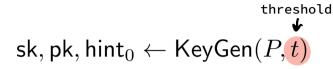
• Regulator learns
$$P(t, \sum x_i,)$$
 (user's x , regulator's t)

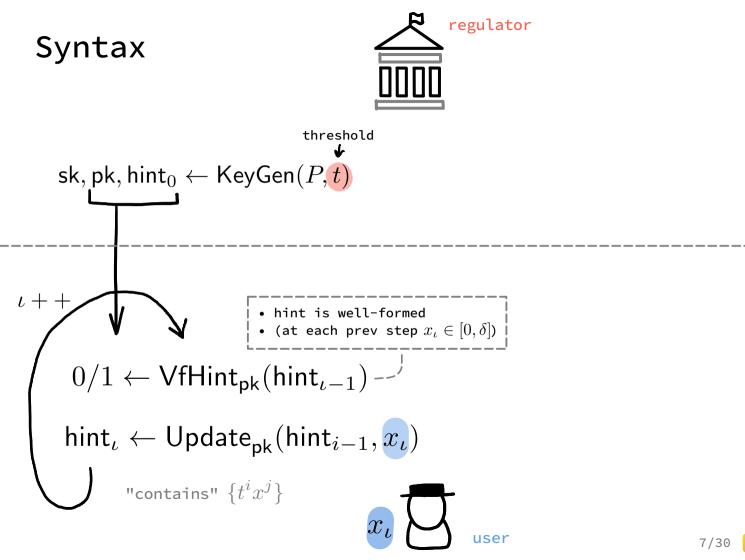
- Efficient instantiation for range predicates
 Showcases updatable NIZKs
- Extendable to a large class of predicates

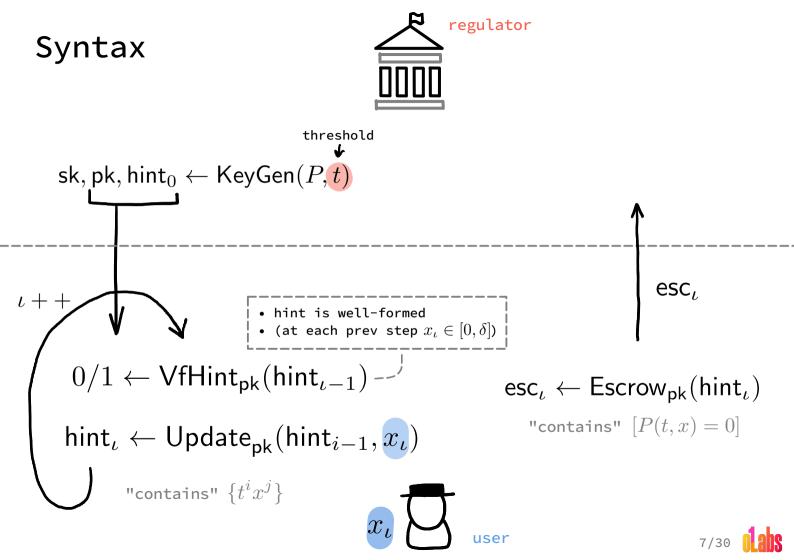
ia.cr/2023/1787

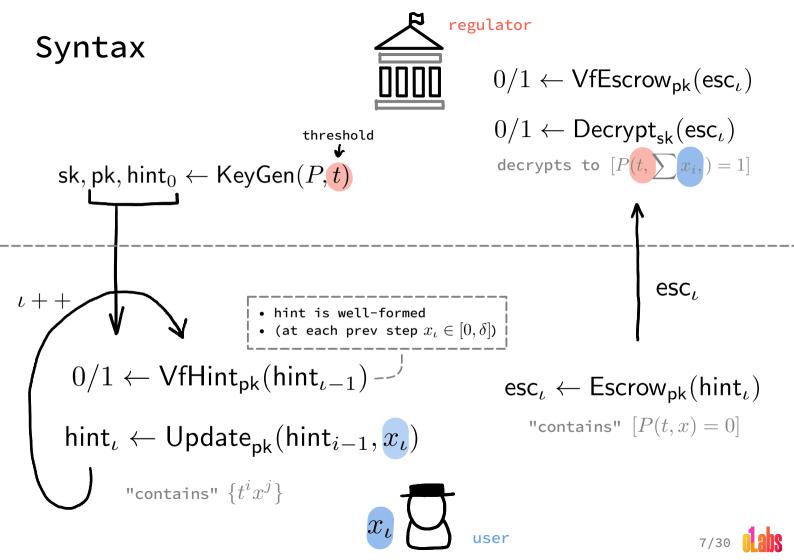
github.com/volhovm/ublu-impl/

Syntax









Construction Idea (honest case)

1. Initial hints: ElGamal enc P in the exponent to regulator's pk

$$hint_0 := \mathsf{Enc}_{\mathsf{pk}}("P(t, 0)")$$

Construction Idea (honest case)

1. Initial hints: ElGamal enc P in the exponent to regulator's pk

$$\mathsf{hint}_0 := \mathsf{Enc}_{\mathsf{pk}}("P(t, 0)")$$

2. Each step updates hints

$$\begin{split} \mathsf{hint}_{\iota} &\approx \mathsf{Enc}(P(t, x)) \\ & \checkmark \\ \mathsf{hint}_{\iota+1} &\approx \mathsf{Enc}(P(t, x + x_{\iota})) \end{split}$$

Construction Idea (honest case)

- 1. Initial hints: ElGamal enc P in the exponent to regulator's pk $hint_0 := \text{Enc}_{pk}("P(t,0)")$
- 2. Each step updates hints $\begin{array}{c} \text{hint}_{\iota} \approx \text{Enc}(P(t, x)) \\ \checkmark \\ \text{hint}_{\iota+1} \approx \text{Enc}(P(t, x + x_{\iota})) \end{array}$
- 3. On query from R, randomise & report

$$\mathsf{Enc}(\beta \cdot \mathbf{P}(t, x)) \quad \begin{array}{c} P(t, x) = 0 \implies \beta P(t, x) = 0 \\ P(t, x) \neq 0 \implies \beta P(t, x) \approx \beta \end{array}$$

8/30

Predicate polynomial

Threshold predicate for range [t, d+t]

$$P_d(T, X) = \left[\prod_{i=0}^{d-1} (X - (T+i)) \stackrel{\mathbf{i}}{=} 0\right] \in \{0, 1\}$$

Can be efficiently represented as:

$$\prod_{\delta=0}^{d-1} ((X-T)-\delta) = \sum_{i=0}^{d} U_i (X-T)^i$$

Where Ui are Stirling coefficients

9/30 **1as**

Hints & P evaluation

Hints = ElGamal ciphertexts of powers in P(t,x): $\{A_i = G^{r_i}, B_i = G^{(x-t)^i} H^{r_i}\}_{i=0}^d$

On KeyGen, the accumulated value x is 0 $\{A_i=G^{r_i},B_i=G^{(0-t)^i}H^{r_i}\}$

Hints & P evaluation

Hints = ElGamal ciphertexts of powers in P(t,x): $\{A_i = G^{r_i}, B_i = G^{(x-t)^i} H^{r_i}\}_{i=0}^d$

On KeyGen, the accumulated value x is 0 $\{A_i = G^{r_i}, B_i = G^{(0-t)^i} H^{r_i}\}$

Due to Stirling coeff representation we can eval P

$$(\prod A_i^{U_i}, \prod B_i^{U_i}) = (G^{\sum U_i r_i}, G^{\sum U_i (x-t)^i} H^{\sum U_i r_i})$$
$$= \operatorname{Enc}(P(t, x); r = \sum U_i r_i)$$

Escrow

reminder: hints

$$\{A_i = G^{r_i}, B_i = G^{(x-t)^i} H^{r_i}\}_{i=0}^d$$

Escrow is created by evaluating polynomial using hints with a randomizer

$(\prod_{\delta=0}^d (A_i^{U_i})^\beta, \prod_{\delta=0}^d (B_i^{U_i})^\beta) = \mathsf{Enc}(\beta \cdot P(t, x))$

Updating hints

► If Y is update value

$$(X - T + Y)^{i} = \sum_{j=0}^{i} \left(\underbrace{\binom{i}{j} Y^{i-j}}_{\text{stored in hints}} \cdot \underbrace{(X - T)^{j}}_{\text{stored in hints}} \right)$$

known to the User

Updating hints

► If Y is update value

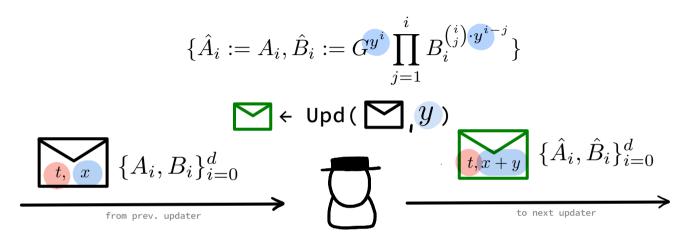
$$(X - T + Y)^{i} = \sum_{j=0}^{i} \left(\underbrace{\binom{i}{j} Y^{i-j}}_{\text{known to the User}} \cdot \underbrace{(X - T)^{j}}_{\text{stored in hints}} \right)$$

➤ This means hints can be updated too:

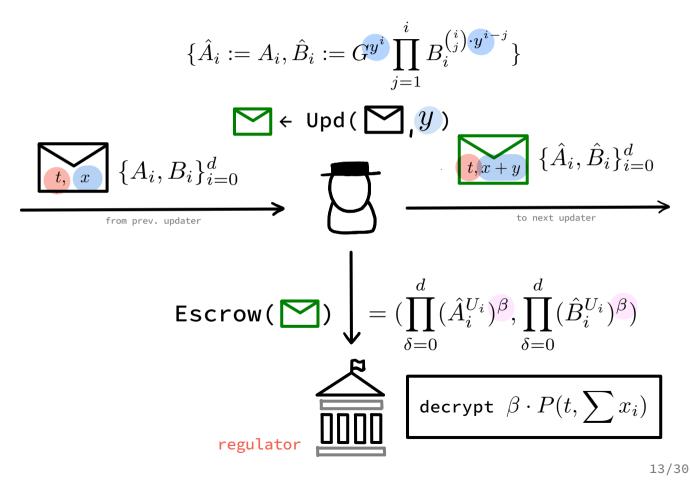
$$\{A_i, B_i\}_0^d \mapsto \{\hat{A}_i := A_i, \hat{B}_i := G^{y^i} \prod_{j=1}^i B_i^{\binom{i}{j} \cdot y^{i-j}} \}_0^d$$

accumulated value $\left(x-t
ight)$ remains secret

Honest construction with hints



Honest construction with hints



Achieving Privacy against the regulator

Problem:

We will need to send hints to the Regulator for soundness, but hints reveal update $x = \sum_{i=1}^{up \text{ to last}} x_i$

Achieving Privacy against the regulator

Problem:

We will need to send hints to the Regulator for soundness, but hints reveal $x = \sum_{i=1}^{up \text{ to last}} x_i$

Solution: blind hints before escrowing $\{A_i, B_i\} \mapsto \{\hat{A}_i := A_i, \hat{B}_i := B_i \cdot W_i^{\alpha}\}$

Achieving Soundness: NIZKs

1) Consistency of updates & escrow (proving hint was updated correctly)

- 2) Trace proof: Maintaining a history of updates
- 3) Key proof: Proving knowledge of t by regulator
- 4) Escrow proof: Building escrow encryption

Σ-protocols

Achieving Soundness: NIZKs

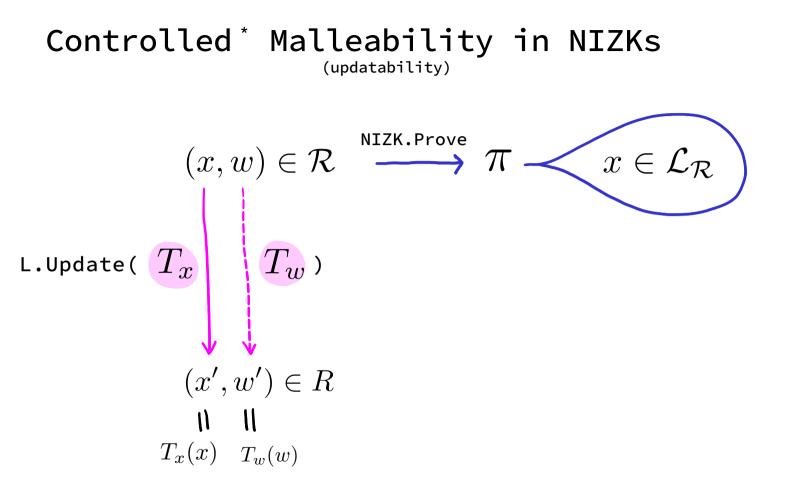
- - 2) Trace proof: Maintaining a history of updates
 - 3) Key proof: Proving knowledge of t by regulator
 - 4) Escrow proof: Building escrow encryption

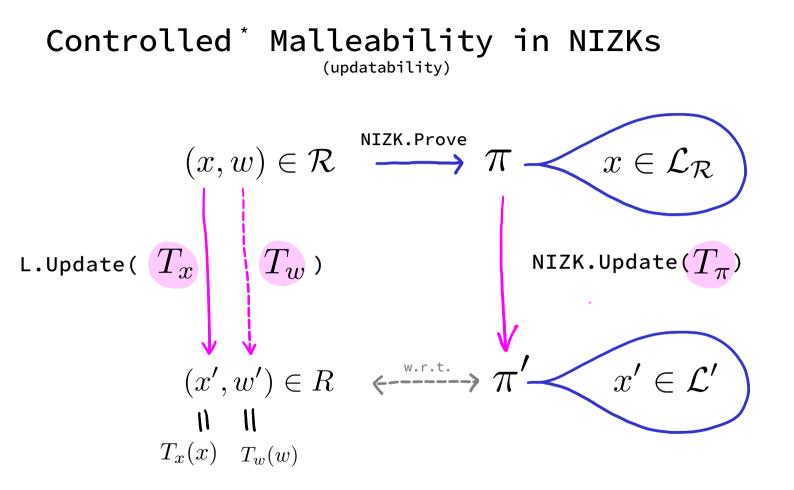
Σ-protocols

Schnorr would be linear in #updates.
=> use updatable NIZKs

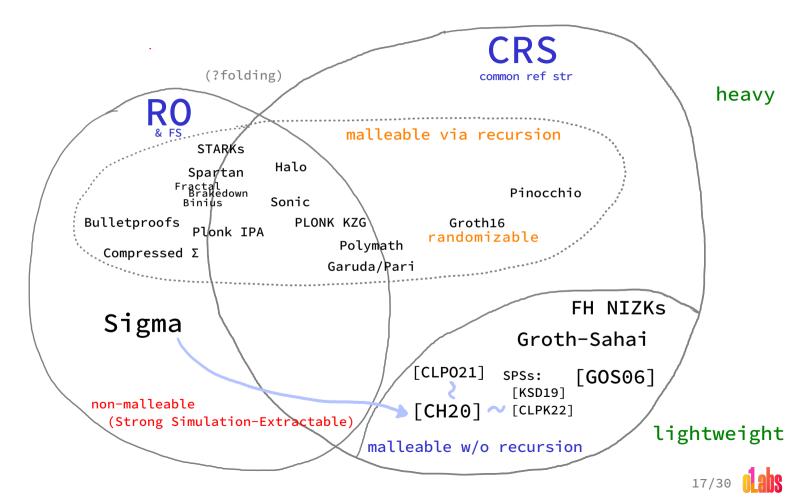
Controlled * Malleability in NIZKs (updatability)

$$(x,w) \in \mathcal{R}$$
L.Update(T_x , T_w)
(x',w') $\in R$
 $\|$ $\|$ $\|$
 $T_x(x)$ $T_w(w)$

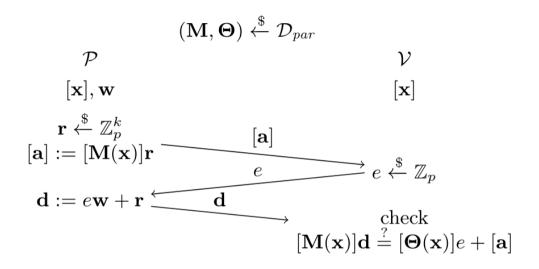




Landscape of Malleable NIZKs



[CH20] is akin to the Σ -protocol



For the algebraic language:

$$\begin{split} \mathcal{L}_{\mathsf{alg}} &= \{ \vec{x} \in \mathbb{G}^l \mid \exists \vec{w} \in \mathbb{Z}_p^t : M(\vec{x}) \cdot \vec{w} = \vec{x} \} \\ & \text{where} \quad M(\vec{X}) \in \mathcal{P}^{l \times t} \end{split}$$

Couteau, Geoffroy, and Dominik Hartmann.

"Shorter non-interactive zero-knowledge arguments and ZAPs for algebraic languages." CRYPTO 2020.

CH20 NIZK

... but done with pairings

$$\frac{\text{Verify } (\text{CRS}, ([\mathbf{M}]_1, [\mathbf{\Theta}]_1), [\mathbf{x}]_1, \sigma = ([\mathbf{a}]_1, [\mathbf{d}]_2)):}{\text{check}}$$
$$[\mathbf{M}(\mathbf{x})]_1 \bullet [\mathbf{d}]_2 \stackrel{?}{=} [\mathbf{\Theta}(\mathbf{x})]_1 \bullet [e]_2 + [\mathbf{a}]_1 \bullet [1]_2$$

Couteau, Geoffroy, and Dominik Hartmann. "Shorter non-interactive zero-knowledge arguments and ZAPs for algebraic languages." CRYPTO 2020.

CH20 NIZK is updatable!

observed in [CLPK22] * for a variant of CH20

 $\begin{array}{ccc} & \mathcal{T} & - \\ & \text{Define Update}(([\boldsymbol{a}]_1, [\boldsymbol{d}]_2), T := (T_{\mathsf{am}}, T_{\mathsf{aa}}, T_{\mathsf{xm}}, T_{\mathsf{xa}}, T_{\mathsf{wm}}, T_{\mathsf{wa}})) \text{ as a function} \\ & \text{returning } \pi' = ([\boldsymbol{a}']_1, [\boldsymbol{d}']_2) \text{ constructed as follows:} \end{array}$

$$\hat{\pi} \quad \begin{bmatrix} \mathbf{a}' \end{bmatrix}_1 = T_{\mathsf{am}} \cdot \begin{bmatrix} \mathbf{a} \end{bmatrix}_1 \\ \times \end{bmatrix} + \begin{bmatrix} 1 \end{bmatrix}_1 \cdot T_{\mathsf{aa}} + \begin{bmatrix} M(\mathsf{x}') \end{bmatrix}_1 \cdot \hat{s} \\ \begin{bmatrix} \mathbf{d}' \end{bmatrix}_2 = T_{\mathsf{wm}} \cdot \begin{bmatrix} \mathbf{d} \end{bmatrix}_2 + \begin{bmatrix} z \end{bmatrix}_2 \cdot T_{\mathsf{wa}} + \begin{bmatrix} 1 \end{bmatrix}_2 \cdot T_{\mathsf{wa}} + \begin{bmatrix} 1 \end{bmatrix}_2 \cdot \hat{s}$$

where \hat{s} is sampled uniformly at random.

...for blinding-compatible transformations new notion necessary to achieve proof updatability

* Improved Constructions of Anonymous Credentials From Structure-Preserving Signatures on Equivalence Classes Aisling Connolly1, Pascal Lafourcade, and Octavio Perez Kempner

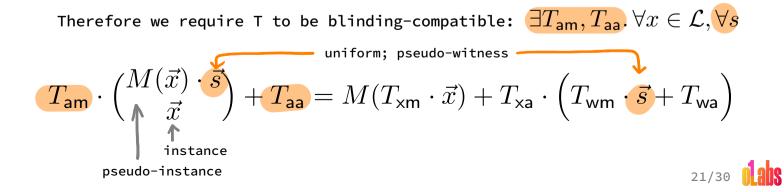
Transformations and **Blinding-Compatibility**

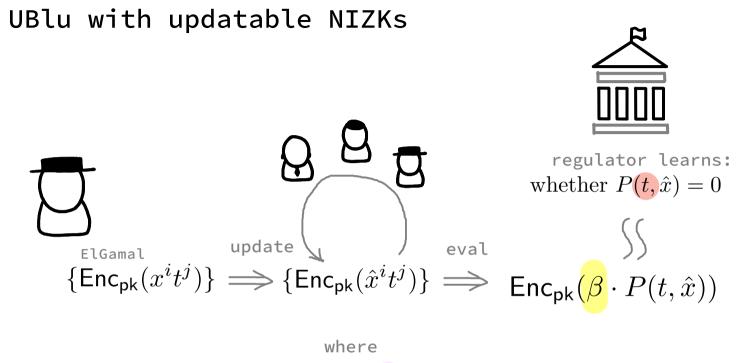
Let $(T_{xm}, T_{xa}, T_{wm}, T_{wa})$ be a valid language transformation: $(x,w) \in \mathcal{R} \implies (T_{\mathsf{xm}} \cdot x + T_{\mathsf{xa}}, T_{\mathsf{wm}} \cdot w + T_{\mathsf{wa}}) \in \mathcal{R}$ $x = [M] \cdot w$ Could we transform the proof like this? $\begin{array}{ll} \begin{array}{ll} \text{looks like} & [\vec{a}]_1 = [M]_1 \vec{r} \\ \text{looks like} \\ \text{witness?} & [\vec{d}]_2 = [e]_2 \cdot \vec{w} + [\vec{r}]_2 \end{array} \longrightarrow \begin{array}{ll} [\vec{a}']_1 = T_{\mathsf{xm}} \cdot [\vec{a}]_1 + T_{\mathsf{xa}} \\ [\vec{d}']_2 = T_{\mathsf{wm}} \cdot [\vec{d}]_2 + T_{\mathsf{wa}} \end{array}$

Transformations and **Blinding-Compatibility**

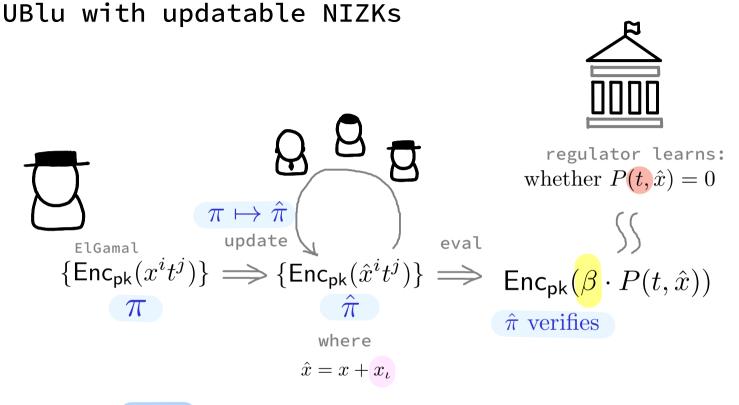
Let $(T_{\mathrm{xm}}, T_{\mathrm{xa}}, T_{\mathrm{wm}}, T_{\mathrm{wa}})$ be a valid language transformation: $(x, w) \in \mathcal{R} \implies (T_{\mathrm{xm}} \cdot x + T_{\mathrm{xa}}, T_{\mathrm{wm}} \cdot w + T_{\mathrm{wa}}) \in \mathcal{R}$ $x = [M] \cdot w$ Could we transform the proof like this? $[\vec{a}]_1 = [M]_1 \vec{r}$ $[\vec{a}]_1 = [M]_1 \vec{r} \implies [\vec{a}]_1 = T_{\mathrm{xm}} \cdot [\vec{a}]_1 + T_{\mathrm{xa}}$ $[\vec{a}']_2 = [e]_2 \cdot \vec{w} + [\vec{r}]_2 \implies [\vec{a}']_2 = T_{\mathrm{wm}} \cdot [\vec{a}]_2 + T_{\mathrm{wa}}$

This does not work! $([a]_1, [d]_2)$ are unlike a proper inst/wit because witness is not uniformly distributed!

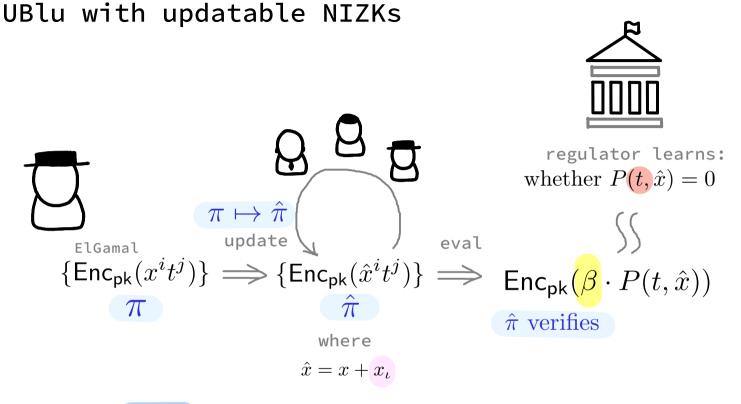




$$\hat{x} = x + x_{\iota}$$



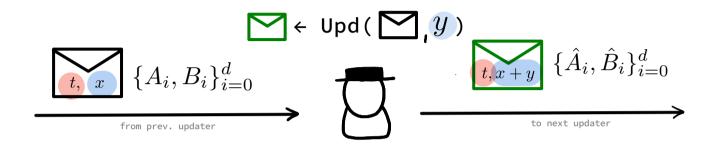
Use CH20 to prove consistency of update/eval



Use CH20 to prove consistency of update/eval

22/30 **1 abs**

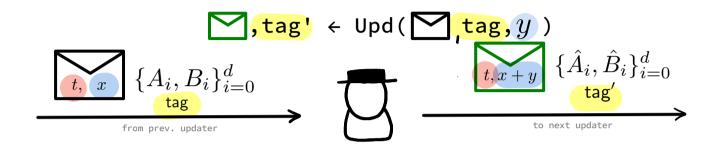
History: Tracking updates



Problem:

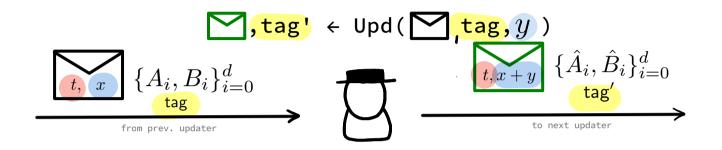
Right now we cannot reason about "update number i" and order in general since hints at each step look exactly the same

History: Tracking updates



$$\begin{split} \{ \mathsf{tag}_i \}_0^\iota \text{ is a chain of lightweight "update receipts"} \\ \mathsf{tag}_\iota &= (\pi_\iota, X_\iota := \mathsf{Com}(\sum_{\iota} x_i)) \\ \overbrace{\mathsf{Schnorr proof of}}^{\mathsf{Schnorr proof of}} X_\iota &= X_{\iota-1} \cdot G^{x_\iota} H^r \end{split}$$

History: Tracking updates



$$\begin{split} \{ \mathtt{tag}_i \}_0^\iota \text{ is a chain of lightweight "update receipts"} \\ \mathtt{tag}_\iota &= (\pi_\iota, X_\iota := \mathtt{Com}(\sum^\iota x_i)) \\ \overbrace{}^{\mathtt{Schnorr proof of}} \\ X_\iota &= X_{\iota-1} \cdot G^{x_\iota} H^r \end{split}$$

Then, $\mathsf{VfHistory}(\{\mathsf{tag}_\iota\}) \to \{0,1\}$ checks all proofs

tags are hiding and can be put on the bulletin board

Security Properties

➤ Soundness

• Verify History

extract update values {x_i}
 from straightline-extractable
 history proofs

note: [CH20] is only Sound, we can't extract

• Verify Hint & Escrow \rightarrow $\text{Dec} = [P(t, \sum x_i) = 0]$

History binding

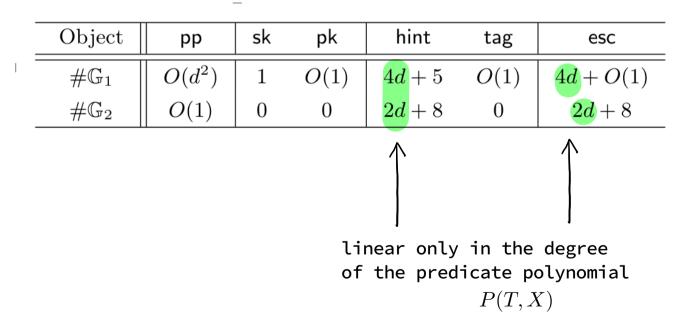
Updates produce tags that "bind" $\{x_i\}$

- History verifies → prefix verifies
- One can't produce alternative verifying history that has different tags in the middle, but same suffix&prefix

Hiding x4: Threshold, history, tags, escrow

All: game-based definitions, under DDH & NIZK assumptions (variant of kerMDH, falsifiable)

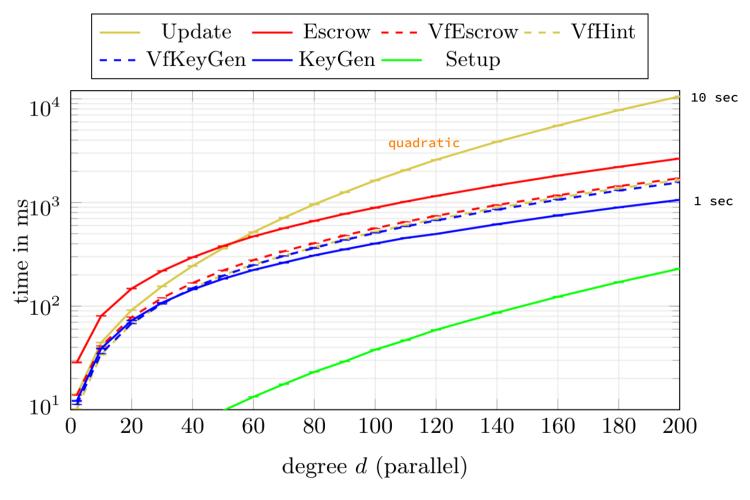
Performance: Size



Performance: Asymptotic time

Algorithm	#P	$\#E_1$	$\#E_2$	
Setup	0	O(1)	O(1)	
KeyGen	0	9d + O(1)	4d + O(1)	
Update	0	$4d^2 + O(d)$	$1.5d^2 + O(d)$	CH20
Escrow	0	14d + O(1)	4d + O(1)	proof update
Decrypt	0	O(1)	0	
VfKeyGen	2d + O(1)	10d + O(1)	6d + O(1)	
VfHint	2d + O(1)	10d + O(1)	6d + O(1)	
VfHistory	0	$O(\iota_{\sf cur})$	$O(\iota_{\sf cur})$	
VfEscrow	2d + O(1)	10d + O(1)	6d + O(1)	

 $\{(x-t)^i\}_0^d\mapsto \{(x+y-t)^i\}_0^d$ is inherently quadratic \checkmark



Xeon E-2286G CPU @ 4 GHz; 6 cores, 12 threads

Extensions

• Arbitrary polynomial predicates: Note: hints are consistent powers $(x-t)^i$

With quadratic number of hints: $x^i t^j$ with updates

$$(x+y)^{i}t^{j} = \sum_{k=0}^{i} \binom{i}{k} y^{i-k}(t^{j}x^{k})$$

Escrow polynomial with given coefficients

Extensions

- Arbitrary polynomial predicates: Note: hints are consistent powers $(x-t)^i$

With quadratic number of hints: $x^i t^j$ with updates

$$(x+y)^i t^j = \sum_{k=0}^i \binom{i}{k} y^{i-k} (t^j x^k)$$

Escrow polynomial with given coefficients

• Multivariate polynomials:

Run construction in parallel & bind with commitments

Extensions

• Arbitrary polynomial predicates:

Note: hints are consistent powers $(x-t)^i$

With quadratic number of hints: $x^i t^j$ with updates

$$(x+y)^{i}t^{j} = \sum_{k=0}^{i} \binom{i}{k} y^{i-k}(t^{j}x^{k})$$

Escrow polynomial with given coefficients

• Multivariate polynomials:

Run construction in parallel & bind with commitments

- Non-binary outputs: Binary predicate is $\beta P(t,x)$

Secondary value on success: $\begin{array}{c} \begin{array}{c} {}^{\text{returns either}} & (\text{rand, rand}) \\ {}_{\text{or}} & (0, \text{P}_2(\text{t}, x)) \end{array} \\ & \left(\beta_1 P(t, x), \beta_2 P(t, x) + P_2(t, x)\right) \end{array}$

Open Questions

Applications:

- How powerful is the primitive with extensions?
- E.g. Euclidian distance is achievable via

$$P(T_X, T_Y, X, Y) = (X - T_X)^2 + (Y - T_Y)^2$$

Applications of CH20:

- Fits many group-based commitment/signature scenarios

$$\mathcal{L}_{\mathsf{alg}} = \{ \vec{x} \in \mathbb{G}^l \mid \exists \vec{w} \in \mathbb{Z}_p^t : M(\vec{x}) \cdot \vec{w} = \vec{x} \}$$

- Graph statistics? Asynchronous view?
- Which languages are blinding compatible?

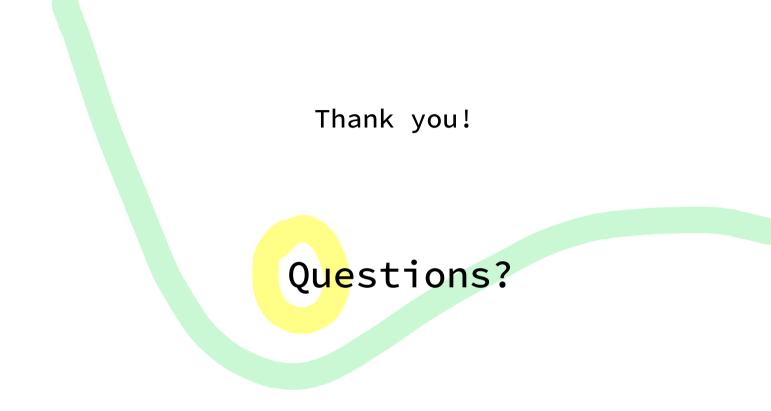
Performance:

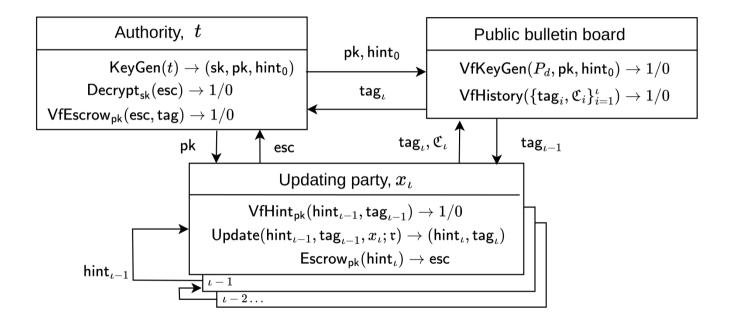
- Does [GKLS24] log-size optimisation apply to the updatable case?
- Supporting bigger poly-sized d?

Summary

- New notion: updatable blueprints
 - Regulator sets ${t\over t}$, users update x
 - Regulator learns only $P(\sum x_i, t)$
- Efficiency via updatable algebraic NIZK ([CH20], of independent interest)
- Extendable to more powerful predicates and applications

ia.cr/2023/1787 . github.com/volhovm/ublu-impl/





CH20 Updatability: Blinding Compatible Transformations

Issue:

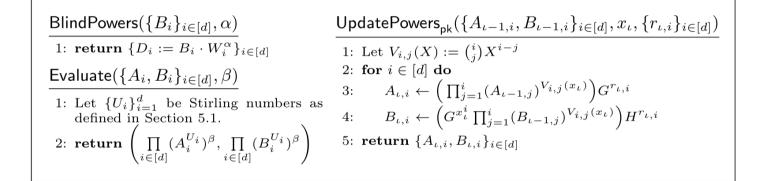
witnesses are not distributed uniformly, but blinder for commitment stage is!

Therefore: our transformations have to work for pseudo-witnesses too

$$\begin{aligned} \mathfrak{T} &= G^{t} \mathfrak{H}^{r_{t}} \\ \mathfrak{A} &= G^{\alpha} \mathfrak{H}^{r_{\alpha}} \end{aligned} \qquad \begin{aligned} \mathfrak{X} &= G^{\hat{x}} \mathfrak{H}^{\hat{r}_{\chi}} \\ (A_{i}, D_{i}) &= (G^{\hat{r}_{i}}, G^{(\hat{x}-t)^{i}} H^{\hat{r}_{i}} W_{i}^{\alpha}) \text{ for } i \in [d] \end{aligned}$$

Describe BC issue and show matrices for original / BC lang

$$\begin{split} &1. \ S'_{\mathfrak{T}} = S_{\mathfrak{T}}. \\ &2. \ S'_{\mathfrak{X}} = S_{\mathfrak{X}} G^{U_x} \mathfrak{H}^{U_{r_{\mathfrak{X}}}}. \\ &3. \ S'_{\mathfrak{X}} = G^{U_\alpha} \mathfrak{H}^{U_r} \mathfrak{H}^{U_{r_{\mathfrak{X}}}}. \\ &4. \ S'_{A_1} = S_{A_1} G^{U_{r_1}}. \\ &5. \ S'_{D_1} = S_{D_1} G^{U_x} H^{U_{r_1}} W_1^{U_{\alpha}} \\ &6. \ S'_{A_i} = \left(\prod_{j=1}^{i} (S_{A_j})^{V_{i,j}(U_x)}\right) G^{U_{r_i}} \text{ for } i \in [1, d] \\ &7. \ S'_{D_i} = G^{U_x} \left(\prod_{j=1}^{i} S_{D_j}^{(j-1)} U_x^{i-j}\right) \left(\prod_{j=1}^{i-1} D_j^{\binom{i-1}{j}} U_x^{i-j}\right) H^{U_{r_i}} W_i^{U_{\alpha}} \text{ for } i \in [1, d] \\ &8. \ S'_{3+2d+1} = S_{3+2d+1} \\ &9. \ S'_{3+2d+2} = 1 \\ &10. \ S'_{5+2d+i} = \left(\prod_{j=1}^{i} (S_{5+2d+j})^{V_{i,j}(U_x)}\right) \left(\prod_{j=1}^{i} (A_j)^{\binom{i}{j}} U_x^{i-j+1}\right) \left(\prod_{j=1}^{i} (S_{A_j})^{-\binom{i}{j}} U_x^{i-j+1}\right) \\ &\qquad \text{ for } i \in [1, d-1] \end{split}$$



 $\mathsf{Setup}(1^{\lambda},\mathfrak{pp})$ % To ensure G1 is the same for Pedersen BCS and the pairing system 1: parse pp as $(\mathbb{G}_1, G, \mathfrak{H}, P_d)$ 2: $pp_{\mathsf{BLG}} \leftarrow \mathsf{BLG}.\mathsf{Setup}(1^{\lambda}; \mathbb{G}_1, G)$ % Blinding factors for $\{D_i\}_{i=1}^d$ % d comes from the predicate P_d in pp 3: $\{W_i\}_{i \in [d]} \xleftarrow{\$} \mathbb{G}_1$ 4: $(crs_{\Pi}, td_{\Pi}) \leftarrow \Pi.Setup(1^{\lambda}, pp_{\mathsf{PLC}})$ 5: $(\operatorname{crs}_{\Pi_u}, \operatorname{td}_{\Pi_u}) \leftarrow \Pi_u^{\mathcal{L}_c}.\operatorname{Setup}(1^{\lambda}, \operatorname{pp}_{\mathsf{BLC}})$ 6: $pp \leftarrow (pp, pp_{\mathsf{BLG}}, \{W_i\}_{i \in [d]}, 0, P_d, \operatorname{crs}_{\Pi}, \operatorname{crs}_{\Pi_{\mathsf{H}}})$ 7: td \leftarrow (td_{Π}, td_{Π}) 8: return (pp.td) KeyGen(t)1: sk $\xleftarrow{\$} \mathbb{Z}_a, H \leftarrow G^{sk}$ 2: $\{r_{0,i}\}_{i=1}^{d}, r_{t} \xleftarrow{\$} \mathbb{Z}_{q}$ 3: for $i \in [d]$ do ElGamal encryptions of t^i $A_{0,i} \leftarrow G^{r_{0,i}}, B_{0,i} \leftarrow G^{((-t)^{i})} H^{r_{0,i}}$ 4: 5: $\mathfrak{T} \leftarrow \mathfrak{Commit}(t; r_t)$ % Pedersen $\mathfrak{T}=G^t\mathfrak{H}^{r_{\mathrm{t}}}$ $% \mathfrak{X}_0 = 1_{\mathbb{G}_1}$ 6: $\mathfrak{X}_0 \leftarrow \mathfrak{Commit}(0;0)$ 7: $\mathfrak{A}_0 \leftarrow \mathfrak{Commit}(0; 0)$ 8: $\mathbf{x}_{e} \leftarrow (H, \{A_{0,i}, B_{0,i}\}_{i \in [d]}, \mathfrak{T}, \mathfrak{X}_{0}, \mathfrak{A}_{0})$ 9: $\mathbf{w}_{c} \leftarrow \begin{pmatrix} t, r_{t}, \{r_{0,i}\}_{i \in [d]}, \hat{x} := 0, \\ \hat{r}_{x} := 0, \{r_{0,i} \cdot (0-t)\}_{i \in [d]}, \\ \alpha := 0, r_{\alpha} := 0 \\ \alpha \cdot (\hat{x} - t) := 0, r_{\alpha} := 0 \end{pmatrix}$ 10: $\pi_c \stackrel{\$}{\leftarrow} \Pi^{\mathcal{L}_c}_{\mathsf{H}}.\mathsf{Prove}(\mathsf{x}_c, \mathsf{w}_c)$ 11: $\pi_{\mathsf{pk}} \xleftarrow{\$} \Pi^{\mathcal{L}_{\mathsf{pk}}}$.Prove $((H, B_{0,1}, \mathfrak{T}), (\mathsf{sk}, t, r_{0,1}, r_{\mathsf{t}}))$ 12: $\mathsf{pk} \leftarrow (H, \mathfrak{T}, \pi_{\mathsf{pk}})$ 13: $hint_0 \leftarrow (\{A_{0,i}, B_{0,i}\}_{i \in [d]}, \mathfrak{X}_0, \pi_c)$ 14: return $(sk, pk, hint_0)$ $\mathsf{Update}_{\mathsf{pk}}(\mathsf{hint}_{\iota-1}, \mathsf{tag}_{\iota-1}, x_{\iota}; \mathfrak{r})$ 1: parse tag_{i-1} as $(\pi_{t,i-1}, \mathfrak{X}_{i-1})$ 2: $r_{\mathsf{x},\iota} \xleftarrow{\$} \mathbb{Z}_q$ 3: $hint_{\iota} \leftarrow UpdateHint(hint_{\iota-1}, x_{\iota}, r_{x,\iota})$ 4: $\mathfrak{C}_{\iota} \leftarrow \mathfrak{Commit}(x_{\iota}, \mathfrak{r})$ 5: parse hint_{$\iota-1$} as $(\cdot, \mathfrak{X}_{\iota-1}, \cdot)$ 6: **parse** hint_{ι} as $(\cdot, \mathfrak{X}_{\iota}, \cdot)$ 7: $\pi_{\mathfrak{t},\iota} \xleftarrow{\$} \Pi^{\mathcal{L}_{\mathfrak{t}}}.\mathsf{Prove}(\begin{pmatrix} H, \\ \mathfrak{X}_{\iota-1}, \mathfrak{X}_{\iota}, \\ \mathfrak{C}_{\iota}, \pi_{\mathfrak{t}}, \iota-1 \end{pmatrix}, \begin{pmatrix} x_{\iota}, \\ r_{\chi,\iota}, \\ \mathfrak{r}_{\iota} \end{pmatrix})$ 8: tag_i \leftarrow $(\pi_{t,\iota}, \mathfrak{X}_{\iota})$ 9: return (hint, tag.)

1: $(\{A_i, B_i\}_{i \in [d]}, \mathfrak{X}, \pi_c\} \leftarrow \mathsf{UpdateHint}_{\mathsf{pk}}(\mathsf{hint}_i, 0, 0)$ 2: $\alpha, \beta, r_\alpha, r_\beta \stackrel{\circledast}{\leftarrow} \mathbb{Z}_q^*$ 3: $\mathfrak{A} \leftarrow \mathfrak{Commit}(\alpha; r_\alpha)$ 4: $\mathfrak{B} \leftarrow \mathfrak{Commit}(\beta; r_\beta)$ 5: $\{D_i\}_{i \in [d]} \leftarrow \mathsf{BindPowers}(\{B_i\}_{i \in [d]}, \alpha)$ 6: $(E_1, E_2) \leftarrow \mathsf{Evaluate}(\{A_i, B_i\}_{i \in [d]}, \beta)$ 7: $\mathbf{x} \leftarrow (H, \{A_i, B_i\}_{i \in [d]}, \mathfrak{T}, \mathfrak{X}, \mathfrak{A} : = 1)$ 8: $\mathsf{w}_{\mathsf{upd},\mathsf{c}} \leftarrow \begin{pmatrix} x_\iota := 0, \{r_\iota, i := 0\}_{i \in [d]}, \\ r_{x,\iota} := 0, \alpha, r_\alpha \end{pmatrix}$ 9: $\pi'_c \stackrel{\leqslant}{\underset{\iota}{\leftarrow}} \stackrel{\And}{\Pi} \stackrel{\mathsf{L}^c}{\operatorname{Update}}(\mathfrak{m}_c; \mathbf{x}_c, T_{\mathsf{upd}}(\mathsf{w}_{\mathsf{upd},\mathsf{c}}))$ 10: $\mathsf{w}_e \leftarrow (\alpha, r_\alpha, \beta, r_\beta) \\ \stackrel{\mathsf{W}}{\underset{\iota}{\mathsf{U}}_i} \mathsf{U}_i \text{ are the Stirling numbers}$ 11: $\pi_e \leftarrow \Pi^{\mathcal{L}e}, \mathsf{Prove}\left(\left(\stackrel{\mathsf{E}_1, E_2, \mathfrak{B}, \mathfrak{A}, \mathfrak{A}_i \\ \Pi \stackrel{\mathsf{A}^U_i}{\underset{\iota}{\underset{\iota}{\leftarrow}}}, \Pi \stackrel{\mathsf{D}^U_i}{\underset{\iota}{\underset{\iota}{\leftarrow}}}\right), \mathsf{w}_e\right)$ 12: $\mathsf{esc} \leftarrow \left(\{A_i, D_i\}_{i \in [d]}, \mathfrak{A}, \mathfrak{B} \right)$ 13: $\mathsf{return} \mathsf{esc}$

 $\begin{array}{l} \underline{\mathsf{Decrypt}_{\mathsf{sk}}(\mathsf{esc})}\\ \hline 1: \text{ parse esc as } (E_1, E_2, \cdot)\\ 2: \ M \leftarrow E_1^{-\mathsf{sk}} \ast E_2\\ \% \ \mathsf{ElGamal decryption} \ M = G^{\beta P(t, \hat{x})} \end{array}$

3: return
$$[M \stackrel{?}{=} 1_{\mathbb{G}_1}]$$

 $\frac{\mathsf{VfKeyGen}(P_d, \mathsf{pk}, \mathsf{hint}_0)}{1: \mathsf{parse pk as } (H, \mathfrak{T}, \pi_{\mathsf{pk}})}$ $2: \mathsf{parse hint}_0 \mathsf{as } (\{A_i, B_i\}_{i \in [d]}, \mathfrak{X}, \pi_c)$ $3: \mathsf{assert } \mathfrak{X} = 1_{\mathbb{G}}$ $4: \mathsf{assert } \Pi^{\mathcal{L}_{\mathsf{pk}}}.\mathsf{Verify}(\pi_{\mathsf{pk}}; (H, B_1, \mathfrak{T}))$ $5: \mathsf{assert } \Pi^{\mathcal{L}_c}.\mathsf{Verify}\left(\pi_{\mathsf{c}}; \left(\begin{array}{c} \{A_i, B_i\}_{i \in [d]}, \\ \mathfrak{T}, \mathfrak{X}, H, \mathfrak{A} := 1 \end{array}\right)\right)$ $6: \mathsf{return } 1$ $\frac{\mathsf{VfHistory}_{\mathsf{pk}}(\{\mathsf{tag}_i, \mathfrak{C}_i\}_{i=1}^{\iota})}{1: \mathsf{Set } \mathfrak{X}_0 \leftarrow 1_{\mathbb{G}}, \pi_{\mathsf{t},0} \leftarrow \pi_{\mathsf{pk}}}$ $2: \mathsf{parse } \mathsf{tag}_{\iota} \mathsf{as } (\pi_{\mathsf{t},\iota}, \mathfrak{X}_{\iota}) \mathsf{ for all } i \in [\iota]$ $3: \mathsf{ for } i \in [\iota] \mathsf{ do}$ $4: \mathsf{ assert } \Pi^{\mathcal{L}_{\mathsf{t}}}.\mathsf{Verify}\left(\pi_{\mathsf{t},i}; \left(\begin{array}{c} H, \mathfrak{X}_{i-1}, \mathfrak{X}_{i}, \\ \mathfrak{C}_{i}, \pi_{\mathsf{t},i-1} \end{array}\right)\right)$ $5: \mathsf{ return } 1$

VfHint_{pk}(hint, tag) 1: parse hint as $(\{A_i, B_i\}_{i \in [d]}, \mathfrak{X}, \pi_c)$ 2: parse tag as (π_t, \mathfrak{X}) 3: return $\Pi_{u}^{\mathcal{L}c}$ Verify $\left(\pi_{c}; \left(\begin{array}{c}H, \{A_{i}, B_{i}\}_{i \in [d]}\\ \Im & \Im & \Im \end{array}\right)\right)$ $VfEscrow_{pk}(esc, tag)$ 1: parse esc as $\begin{pmatrix} E_1, E_2, \pi_e, \pi_c, \mathfrak{X} \\ \{A_i, D_i\}_{i \in [d]}, \mathfrak{A}, \mathfrak{B} \end{pmatrix}$ 2: parse tag as (\cdot, \mathfrak{X}') 3: assert $\mathfrak{X}' = \mathfrak{X}$ 4: assert $\Pi_{\mathsf{u}}^{\mathcal{L}_{\mathsf{c}}}$:Verify $\left(\pi_{\mathsf{c}}; \left(\begin{array}{c}H, \{A_{i}, D_{i}\}_{i \in [d]}, \\ \mathfrak{T}, \mathfrak{X}, \mathfrak{A}\end{array}\right)\right)$ 5: assert $\Pi^{\mathcal{L}_{e}}$. Verify $\left(\pi_{e}; \begin{pmatrix} H, E_{1}, E_{2}, \mathfrak{B}, \\ \mathfrak{A}_{i}, \{A_{i}, D_{i}\} \} \in [d] \right) \right)$ 6: **return** 1

Definition 7 (Correctness). Let BC and $P \in \mathcal{P}_{\mathbb{V}}$ be as in Definition 6, and $\lambda \in \mathbb{N}$. A UPPB scheme for (BC, P) is correct if the following statements hold for all $\mathfrak{pp} \stackrel{*}{\leftarrow} \mathfrak{Setup}(1^{\lambda})$, $(\mathfrak{pp}, \cdot) \stackrel{*}{\leftarrow} \mathfrak{Setup}(1^{\lambda}, \mathfrak{pp})$ (remember these are implicit in all the algorithms):

- Full correctness: for all $t \in \mathbb{V}$, all poly-sized sequences of values $x_1, \ldots, x_n \in \mathbb{V}$ and $\mathfrak{r}_1, \ldots, \mathfrak{r}_n \in \mathbb{R}$:

$$\Pr \begin{bmatrix} \mathsf{VfKeyGen}(\mathsf{pk},\mathsf{hint}_0) = 1 \land & (\mathsf{sk},\mathsf{pk},\mathsf{hint}_0) \stackrel{\$}{\leftarrow} \mathsf{KeyGen}(t) \\ \text{for all } i \in [n] : & \text{for } i \in [n] : \\ \mathsf{VfHint}_{\mathsf{pk}}(\mathsf{hint}_i,\mathsf{tag}_i) = 1 \land & (\mathsf{hint}_i,\mathsf{tag}_i) \, \urcorner \, \$ \\ \mathsf{VfHistory}_{\mathsf{pk}}(\{\mathsf{tag}_j,\mathfrak{C}_j\}_{j=1}^i) = 1 \land & : \\ \mathsf{VfEscrow}_{\mathsf{pk}}(\mathsf{esc}_i,\mathsf{tag}_i) = 1 \land & \mathsf{esc}_i \stackrel{\$}{\leftarrow} \mathsf{Escrow}_{\mathsf{pk}}(\mathsf{hint}_i) \\ \mathsf{Decrypt}_{\mathsf{sk}}(\mathsf{esc}_i) = P(t,\sum_{j=1}^i x_j) & \mathfrak{C}_i \leftarrow \mathfrak{Commit}(x_i;\mathfrak{r}_i) \end{bmatrix} = 1$$

- Update correctness: for all pk, hint₀ s.t. VfKeyGen(pk, hint₀) = 1, and all hint_n, $\{tag_j, \mathfrak{C}_j\}_{i=1}^n$ such that VfHint_{pk}(hint_n, tag_n) = 1 and VfHistory_{pk}($\{tag_j, \mathfrak{C}_j\}_{j=1}^n$) = 1, and for all $x \in \mathbb{V}, \mathfrak{r} \in \mathbb{R}$:

$$\Pr \begin{bmatrix} \mathsf{VfHint}_{\mathsf{pk}}(\mathsf{hint}_{n+1}, \mathsf{tag}_{n+1}) = 1 \land & (\mathsf{hint}_{n+1}, \mathsf{tag}_{n+1}) \uparrow \mathfrak{s} \\ \mathsf{VfHistory}_{\mathsf{pk}}(\{\mathsf{tag}_j, \mathfrak{C}_j\}_{j=1}^{n+1}) = 1 \land & : \\ \mathsf{VfEscrow}_{\mathsf{pk}}(\mathsf{esc}_{n+1}, \mathsf{tag}_{n+1}) = 1 & \\ \mathsf{vfEscrow}_{\mathsf{pk}}(\mathsf{esc}_{n+1}, \mathsf{tag}_{n+1}) = 1 & \\ \mathfrak{C}_{n+1} \leftarrow \mathfrak{Commit}(x; \mathfrak{r}) \end{bmatrix} = 1$$

In both statements, the probability is taken over the random coins internally sampled by the randomized algorithms of UPPB.

Definition 9 (Soundness). A UPPB scheme for (BC, P) is sound if there exists a deterministic poly-time black-box extractor Ext, such that for all PPT A:

1. Valid history can be explained in terms of base commitments: for all $\iota > 0$,

_

$$\Pr \begin{bmatrix} \mathfrak{pp} \stackrel{\$}{\leftarrow} \mathfrak{Setup}(1^{\lambda}) \\ \mathsf{VfKeyGen}(\mathsf{pk},\mathsf{hint}_0) = 1 \land & (\mathsf{pp},\mathsf{td}) \stackrel{\$}{\leftarrow} \mathsf{Setup}(1^{\lambda},\mathfrak{pp}) \\ \mathsf{VfHistory}_{\mathsf{pk}}(\{\mathsf{tag}_i,\mathfrak{C}_i\}_{i=1}^{\iota}) = 1 \land & : (\mathsf{pk},\mathsf{hint}_0,\{\mathsf{tag}_i,\mathfrak{C}_i\}_{i=1}^{\iota}) \uparrow_{\$} \\ \mathfrak{C}_{\iota} \neq \mathfrak{Commit}(x_{\iota},\mathfrak{r}_{\iota}) & \mathcal{A}(\mathsf{pp}) \\ & (x_{\iota},\mathfrak{r}_{\iota}) \leftarrow \mathsf{Ext}(\mathsf{td},\mathsf{tag}_{\iota}) \end{bmatrix} \leq \mathsf{negl}(\lambda)$$

2. Decryption always reveals the predicate computed for the sum of update values: for all $t \in \mathbb{V}$, $\iota > 0$,

$$\Pr \begin{bmatrix} \mathfrak{pp} \stackrel{\$}{\leftarrow} \mathfrak{Setup}(1^{\lambda}) & (\mathfrak{pp}, \mathsf{td}) \stackrel{\$}{\leftarrow} \mathfrak{Setup}(1^{\lambda}, \mathfrak{pp}) \\ \mathsf{VfHistory}_{\mathsf{pk}}(\{\mathsf{tag}_{i}, \mathfrak{C}_{i}\}_{i=1}^{\iota}) = 1 \land & (\mathsf{sk}, \mathsf{pk}, \mathsf{hint}_{0}) \stackrel{\$}{\leftarrow} \mathsf{KeyGen}(t) \\ \mathsf{VfEscrow}_{\mathsf{pk}}(\mathsf{esc}^{\star}, \mathsf{tag}_{\iota}) = 1 \land & (\mathsf{esc}^{\star}, \{\mathsf{tag}_{i}, \mathfrak{C}_{i}\}_{i=1}^{\iota}) \stackrel{\uparrow}{\vee} \mathfrak{s} \\ \mathsf{Decrypt}_{\mathsf{sk}}(\mathsf{esc}^{\star}) \neq P(t, \sum_{i=1}^{\iota} x_{i}) & \mathcal{A}(\mathsf{pp}, \mathsf{pk}, \mathsf{hint}_{0}) \\ \mathsf{for} \ i \in [1, \iota] : \\ (x_{i}, \mathfrak{r}_{i}) \leftarrow \mathsf{Ext}(\mathsf{td}, \mathsf{tag}_{i}) \end{bmatrix} \leq \mathsf{negl}(\lambda) \end{bmatrix}$$

Definition 8 (History Binding). A UPPB scheme for (BC, P) is history binding if for all PPT \mathcal{A} , it holds that $\Pr[\mathcal{G}_{\mathcal{A}}(1^{\lambda}) = 1] \leq \operatorname{negl}(\lambda)$, where game $\mathcal{G}_{\mathcal{A}}(1^{\lambda})$ is as follows:

$$1: \mathfrak{pp} \stackrel{\$}{\leftarrow} \mathfrak{Setup}(1^{\lambda}); (\mathfrak{pp}, \cdot) \stackrel{\$}{\leftarrow} \mathsf{Setup}(1^{\lambda}, \mathfrak{pp})$$

$$2: (\mathfrak{pk}, \mathsf{hint}_{0}, \{\{\mathsf{tag}_{i}^{(b)}, \mathfrak{C}_{i}^{(b)}\}_{i=1}^{\iota}\}_{b\in\{0,1\}}) \stackrel{\$}{\leftarrow} \mathcal{A}(\mathfrak{pp})$$

$$3: \mathbf{return} \, \mathsf{VfKeyGen}(\mathfrak{pk}, \mathsf{hint}_{0}) = 1 \land$$

$$4: \quad \mathsf{VfHistory}_{\mathfrak{pk}}(\{\mathsf{tag}_{i}^{(0)}, \mathfrak{C}_{i}^{(0)}\}_{i=1}^{\iota}) = 1 \land$$

$$5: \quad \left(\mathsf{VfHistory}_{\mathfrak{pk}}(\{\mathsf{tag}_{i}^{(0)}, \mathfrak{C}_{i}^{(0)}\}_{i=1}^{\iota-1}) \neq 1 \lor$$

$$6: \quad \mathsf{VfHistory}_{\mathfrak{pk}}(\{\mathsf{tag}_{i}^{(1)}, \mathfrak{C}_{i}^{(1)}\}_{i=1}^{\iota}) = 1 \land$$

$$7: \quad \mathsf{tag}_{\iota}^{(0)} = \mathsf{tag}_{\iota}^{(1)} \land \exists i. (\mathsf{tag}_{i}^{(0)}, \mathfrak{C}_{i}^{(0)}) \neq (\mathsf{tag}_{i}^{(1)}, \mathfrak{C}_{i}^{(1)})\right)$$

Definition 10 (Threshold Hiding). A UPPB scheme for (BC, P) is threshold hiding if for all PPT A it holds that:

$$\Pr\left[b \stackrel{?}{=} b^{\star} : \begin{array}{c} \mathfrak{pp} \stackrel{\$}{\leftarrow} \mathfrak{Setup}(1^{\lambda}); \ (\mathsf{pp}, \cdot) \stackrel{\$}{\leftarrow} \mathfrak{Setup}(1^{\lambda}, \mathfrak{pp}) \\ b \stackrel{?}{=} b^{\star} : \begin{array}{c} (t_0, t_1) \leftarrow \mathcal{A}(\mathsf{pp}), \ b \stackrel{\$}{\leftarrow} \{0, 1\} \\ (\cdot, \mathsf{pk}, \mathsf{hint}_0) \stackrel{\$}{\leftarrow} \mathsf{KeyGen}(t_b) \\ b^{\star} \leftarrow \mathcal{A}(\mathsf{pk}, \mathsf{hint}_0) \end{array}\right] \leq \frac{1}{2} + \mathsf{negl}(\lambda)$$

Tag hiding states that tags do not reveal any additional information than already revealed by \mathfrak{C} itself.

Definition 11 (Tag Hiding). A UPPB scheme for BC defined over (\mathbb{V}, \mathbb{R}) and $P(T, X) \in \mathcal{P}_{\mathbb{V}}$ is *(perfectly)* hiding in tags if, for $(\mathsf{pp}, \mathsf{td}) \stackrel{*}{\leftarrow} \mathsf{Setup}(1^{\lambda}, \mathbb{V}, \mathcal{P})$ all $t \in \mathbb{V}$, all pk , all pairs (hint, tag) such that $\mathsf{VfHint}_{\mathsf{pk}}(\mathsf{hint}, \mathsf{tag}) = 1$, and for all $x \in \mathbb{V}$, $\mathfrak{r} \in \mathbb{R}$, there exists a PPT \mathcal{S} such that:

$$\Big\{\mathsf{tag}' \mid (\cdot,\mathsf{tag}') \xleftarrow{\hspace{0.1cm}} \mathsf{Update}_{\mathsf{pk}}(\mathsf{hint},\mathsf{tag},x,\mathfrak{r}) \Big\} = \Big\{\mathcal{S}(\mathsf{td},\mathsf{pk},\mathsf{tag},\mathfrak{C}:=\mathfrak{Commit}(x,\mathfrak{r})) \Big\}$$

where distributions are over the internal randomness of the Update algorithm and the simulator. For the first update, this holds conditioned on hint := hint₀, tag := \perp .

Definition 12 (Hint Hiding). A UPPB scheme for BC defined over (\mathbb{V}, \mathbb{R}) and $P(T, X) \in \mathcal{P}_{\mathbb{V}}$ is (computationally value) hiding in hints if, for all $t \in \mathbb{V}$ and all PPT \mathcal{A} , it holds that $\Pr[\mathcal{G}_{\mathcal{A}}(1^{\lambda}) = 1] \leq 1/2 + \operatorname{negl}(\lambda)$, where game $\mathcal{G}_{\mathcal{A}}(1^{\lambda})$ is:

1:
$$\mathfrak{pp} \stackrel{\$}{\leftarrow} \mathfrak{Setup}(1^{\lambda})$$
; $(\mathfrak{pp}, \cdot) \stackrel{\$}{\leftarrow} \mathfrak{Setup}(1^{\lambda}, \mathfrak{pp})$
2: $(\cdot, \mathfrak{pk}, \mathsf{hint}_0) \stackrel{\$}{\leftarrow} \mathsf{KeyGen}(t)$; $b \stackrel{\$}{\leftarrow} \{0, 1\}$
3: $(\mathsf{hint}^*, \mathsf{tag}^*, x^{(0)}, x^{(1)}, \mathfrak{r}) \stackrel{\$}{\leftarrow} \mathcal{A}(\mathfrak{pp}, \mathfrak{pk}, \mathsf{hint}_0)$
4: $(\mathsf{hint}, \cdot) \stackrel{\$}{\leftarrow} \mathsf{Update}_{\mathfrak{pk}}(\mathsf{hint}^*, \mathsf{tag}^*, x^{(b)}, \mathfrak{r})$
5: $b^* \stackrel{\$}{\leftarrow} \mathcal{A}(\mathsf{hint})$
6: $\mathbf{return} \ b^* \stackrel{?}{=} b \land \mathsf{VfHint}_{\mathfrak{pk}}(\mathsf{hint}^*, \mathsf{tag}^*) \stackrel{?}{=} 1$

Definition 13 (Escrow hiding). A UPPB scheme for BC defined over (\mathbb{V}, \mathbb{R}) and $P(T, X) \in \mathcal{P}_{\mathbb{V}}$ is escrow hiding if there exists a PPT simulator S such that for all PPT A, it holds that $\Pr[\mathcal{G}_{A}(1^{\lambda}) = 1] \leq 1/2 + \operatorname{negl}(\lambda)$, where game $\mathcal{G}_{A}(1^{\lambda})$ is as follows:

1:
$$(pp, td) \stackrel{\$}{\leftarrow} Setup(1^{\lambda}, \mathbb{V}, \mathcal{P}).$$

2: $(t, pk, hint_0, \{tag_i, x_i, \mathfrak{r}_i\}_{i=1}^{\iota}, hint_{\iota}) \stackrel{\$}{\leftarrow} \mathcal{A}(pp)$
3: $b \stackrel{\$}{\leftarrow} \{0, 1\}$
4: $esc \leftarrow if \ b = 0 \ then \ Escrow_{pk}(hint_{\iota}) \ else \ \mathcal{S}(td, pk, P(t, \sum_{i \in [\iota]} x_i), tag_{\iota}))$
5: $b^* \stackrel{\$}{\leftarrow} \mathcal{A}(esc)$
6: $return \ b^* = b \land$
7: $VfKeyGen(pk, hint_0) = 1 \land$
8: $VfHistory_{pk}(\{tag_i, \mathfrak{Commit}(x_i, \mathfrak{r}_i)\}_{i=1}^{\iota}) = 1 \land$
9: $VfHint(hint_{\iota}, tag_{\iota}) = 1$