
Updatable Privacy-Preserving Blueprints

 Bernardo David, Felix Engelmann, Tore Frederiksen,
Markulf Kohlweiss, Elena Pagnin, and Mikhail Volkhov

ia.cr/2023/1787

O1Labs
misha@o1labs.org

{z_i} is a database of
"bad content", e.g. CSAM

Regulation compliance & data scanning

hiding x hiding z_i

user

regulator

Owns some
data x

P ({zi}, X) :=
Y

(X − zi)

P ({zi}, x) = 0

 1/30

{z_i} is a database of
"bad content", e.g. CSAM

Regulation compliance & data scanning

hiding x hiding z_i

user

regulator

Owns some
data x

Solutions:

P ({zi}, X) :=
Y

(X − zi)

P ({zi}, x) = 0

FATF approved but
not private

 1/30

1. U sends the data to X, or the provider must store it

{z_i} is a database of
"bad content", e.g. CSAM

Regulation compliance & data scanning

hiding x hiding z_i

user

regulator

Owns some
data x

Solutions:

P ({zi}, X) :=
Y

(X − zi)

P ({zi}, x) = 0

FATF approved but
not private

 1/30

1. U sends the data to X, or the provider must store it

2. General interaction-heavy MPC e.g. SPDZ [DPSZ12] "from somewhat homomorphic enc"

{z_i} is a database of
"bad content", e.g. CSAM

Regulation compliance & data scanning

hiding x hiding z_i

user

regulator

Owns some
data x

Solutions:

P ({zi}, X) :=
Y

(X − zi)

P ({zi}, x) = 0

"Bugs in our Pockets" by Abelson et al.

e.g. SPDZ [DPSZ12] "from somewhat homomorphic enc"

1. U sends the data to X, or the provider must store it

2. General interaction-heavy MPC

3. Client-side scanning: requires "authority code" running on
 the client, native or in SGX. Prone to leaking z.

FATF approved but
not private

 1/30

Privacy-Preserving Blueprints [KLN22]

user

regulator

P ({zi}, X) :=
Y

(X − zi)

pkR, skR

x

pkRknows

{zi}

 encrypted
 "blueprint"
containing

 2/30

Eurocrypt23
Kohlweiss, Lysyanskaya,
An Nguyen

{zi} are committed &
 cannot be changed
 on the fly

Privacy-Preserving Blueprints [KLN22]

user

regulator

P ({zi}, X) :=
Y

(X − zi)

pkR, skR

x

pkRknows

{zi}

 encrypted
 "blueprint"
containing

 2/30

Eurocrypt23
Kohlweiss, Lysyanskaya,
An Nguyen

[P (x, {zi}) = 0]

reveals only

escrow(x)

{zi} are committed &
 cannot be changed
 on the fly

Privacy-Preserving Blueprints [KLN22]

Verifies escrow

user

regulator

P ({zi}, X) :=
Y

(X − zi)

P ({zi}, x) = 0

pkR, skR

x

pkRknows

learns whether

{zi}

 encrypted
 "blueprint"
containing

 2/30

Eurocrypt23
Kohlweiss, Lysyanskaya,
An Nguyen

[P (x, {zi}) = 0]

reveals only

escrow(x)

{zi} are committed &
 cannot be changed
 on the fly

Privacy-Preserving Blueprints [KLN22]

Verifies escrow

user

regulator

P ({zi}, X) :=
Y

(X − zi)

P ({zi}, x) = 0

pkR, skR

x

pkRknows

learns whether

{zi}

 encrypted
 "blueprint"
containing

 2/30

Eurocrypt23
Kohlweiss, Lysyanskaya,
An Nguyen

More features in the next talk

[P (x, {zi}) = 0]

reveals only

escrow(x)

{zi} are committed &
 cannot be changed
 on the fly

Q: Can we allow users to update their secret?

Global
setup:

Updatable Blueprints

Verifies escrow report
escrow

{zi}, x0 = 0

+x1

+x2

+x3

{zi}, x1

{zi}, x1 + x2

P ({zi}, X) :=
Y

(X − zi)

P ({zi},
X

xi) = 0

 3/30

Things user doesn't know:

Updatable Blueprints: Privacy Expectations

{zi}, x+ x′

{zi}, x

+x′

x′

{zi}
x

P ({zi},
X

xi) = 0

Things user knows:

• their own

• regulator's

• previous step

• whether

 4/30

More Applications

xi ∈ [0,∆]

[t, . . . , t+∆]

P (X, t) =
∆Y

i=0

(X − (t+ i))each

 5/30

More Applications

xi ∈ [0,∆]

[t, . . . , t+∆]

P (X, t) =
∆Y

i=0

(X − (t+ i))each

1. Banks tracking rating for regulator
 (credit score/tx limits)

x+ xi ∈ [t, . . . , t+∆]

0 t t+∆

 5/30

More Applications

xi ∈ [0,∆]

[t, . . . , t+∆]

P (X, t) =
∆Y

i=0

(X − (t+ i))each

1. Banks tracking rating for regulator
 (credit score/tx limits)

x+ xi ∈ [t, . . . , t+∆]

t, x t, x+ xi+xi

regulator

banks

end users

0 t t+∆

 5/30

More Applications [t, . . . , t+∆]

P (X, t) =
∆Y

i=0

(X − (t+ i))each

if
regulator
learns

(one vote per party)

xi ∈ [0, δ]

δ = 1
nX

xi > t

1. Banks tracking rating for regulator
 (credit score/tx limits)

2. Primitive voting

sum of votes

 5/30

More Applications

each

1. Banks tracking rating for regulator
 (credit score/tx limits)

2. Primitive voting

3. (Extension) Euclidian proximity testing

regulator
learns

e.g. covid prox. testing; each antenna communicates relative change only

x, y ∈ [0, δ]

(
X

x− tx)
2 + (

X
y − ty)

2 > ∆2

 5/30

ia.cr/2023/1787 github.com/volhovm/ublu-impl/

tx

Our Contributions

- Updatable blueprints

P (t,
X

xi,)

 • A novel primitive for MPC predicate checking

 • Regulator learns

 (user's , regulator's)

 6/30

- Efficient instantiation for range predicates
 - Showcases updatable NIZKs

- Extendable to a large class of predicates

threshold

user

regulator

Syntax

sk, pk, hint0 ← KeyGen(P, t)

xι
 7/30

threshold

0/1 ← VfHintpk(hintι−1)

hintι ← Updatepk(hinti−1, xι)

ι++

user

regulator

Syntax

sk, pk, hint0 ← KeyGen(P, t)

xι ∈ [0, δ]
• hint is well-formed
• (at each prev step)

xι

"contains" {tixj}

 7/30

threshold

0/1 ← VfHintpk(hintι−1)

hintι ← Updatepk(hinti−1, xι)

escι ← Escrowpk(hintι)

escιι++

user

regulator

Syntax

sk, pk, hint0 ← KeyGen(P, t)

xι ∈ [0, δ]
• hint is well-formed
• (at each prev step)

xι

"contains" {tixj}

"contains" [P (t, x) = 0]

 7/30

threshold

0/1 ← VfHintpk(hintι−1)

hintι ← Updatepk(hinti−1, xι)

escι ← Escrowpk(hintι)

0/1 ← VfEscrowpk(escι)

0/1 ← Decryptsk(escι)

escιι++

user

regulator

Syntax

sk, pk, hint0 ← KeyGen(P, t)

xι ∈ [0, δ]
• hint is well-formed
• (at each prev step)

xι

"contains" {tixj}

"contains" [P (t, x) = 0]

decrypts to [P (t,
X

xi,) = 1]

 7/30

Construction Idea
(honest case)

hint0 := ElGamal enc P in the
 exponent to regulator's pk

 8/30

Encpk(”P (t, 0)”)
1. Initial hints:

Construction Idea
(honest case)

hint0 :=

hintι ≈ Enc(P (t, x))

hintι+1 ≈ Enc(P (t, x+ xι))

 ElGamal enc P in the
 exponent to regulator's pk

 8/30

Encpk(”P (t, 0)”)
1. Initial hints:

2. Each step
 updates hints

Construction Idea
(honest case)

hint0 :=

hintι ≈ Enc(P (t, x))

hintι+1 ≈ Enc(P (t, x+ xι))

 ElGamal enc P in the
 exponent to regulator's pk

 8/30

Enc(β · P (t, x)) P (t, x) = 0 =⇒ βP (t, x) = 0
P (t, x) ̸= 0 =⇒ βP (t, x) ≈ β

1. Initial hints:

2. Each step
 updates hints

3. On query from R, randomise & report

Encpk(”P (t, 0)”)

Predicate polynomial

Threshold predicate for range [t, d+t]

Can be efficiently represented as:

Where Ui are Stirling coefficients

Pd(T,X) =
h d−1Y

i=0

(X − (T + i)) = 0
i
∈ {0, 1}

 9/30

{Ai = Gri , Bi = G(0−t)iHri}
On KeyGen, the accumulated value x is 0

Hints = ElGamal ciphertexts of powers in P(t,x):

{Ai = Gri , Bi = G(x−t)iHri}di=0

Hints & P evaluation

10/30

{Ai = Gri , Bi = G(0−t)iHri}
On KeyGen, the accumulated value x is 0

Hints = ElGamal ciphertexts of powers in P(t,x):

{Ai = Gri , Bi = G(x−t)iHri}di=0

(
Y

AUi
i ,

Y
BUi

i) =

G

P
Uiri , G

P
Ui(x−t)iH

P
Uiri

�

= Enc

P (t, x); r =

X
Uiri

�

Hints & P evaluation

10/30

Due to Stirling coeff representation we can eval P

(

dY

δ=0

(AUi
i)β ,

dY

δ=0

(BUi
i)β) = Enc(β · P (t, x))

{Ai = Gri , Bi = G(x−t)iHri}di=0

Escrow reminder: hints

Escrow is created by evaluating polynomial
 using hints with a randomizer

11/30

Updating hints

(X − T + Y)i =

iX

j=0

��i

j

�
Y i−j

�
· (X − T)j

known to the User
stored in hints

➤ If Y is update value

12/30

Updating hints

(X − T + Y)i =

iX

j=0

��i

j

�
Y i−j

�
· (X − T)j

known to the User
stored in hints

{Ai, Bi}d0 7→ {Âi := Ai, B̂i := Gyi
iY

j=1

B
(ij)·yi−j

i }d0

➤ If Y is update value

➤ This means hints can be updated too:

(x− t)accumulated value remains secret
12/30

Honest construction with hints

{Ai, Bi}di=0
{Âi, B̂i}di=0

{Âi := Ai, B̂i := Gyi
iY

j=1

B
(ij)·yi−j

i }

t, x
t, x+ y

from prev. updater to next updater

← Upd()y

13/30

Honest construction with hints

decrypt

{Ai, Bi}di=0
{Âi, B̂i}di=0

{Âi := Ai, B̂i := Gyi
iY

j=1

B
(ij)·yi−j

i }

β · P (t,
X

xi)

t, x
t, x+ y

from prev. updater to next updater

← Upd()y

Escrow() = (

dY

δ=0

(ÂUi
i)β ,

dY

δ=0

(B̂Ui
i)β)

regulator
13/30

against the regulator
Achieving Privacy

x =
X

xi

Problem:
 We will need to send hints to the Regulator
 for soundness, but hints reveal
 accumulated

up to last
 update

14/30

{Ai, Bi} 7→ {Âi := Ai, B̂i := Bi ·Wα
i }

against the regulator
Achieving Privacy

0 in hints

x =
X

xi

Problem:
 We will need to send hints to the Regulator
 for soundness, but hints reveal
 accumulated

up to last
 update

Solution: blind hints before escrowing

14/30

Achieving Soundness: NIZKs

2) Trace proof:
 Maintaining a history of updates
3) Key proof:
 Proving knowledge of t by regulator
4) Escrow proof:
 Building escrow encryption

1) Consistency of updates & escrow
 (proving hint was updated correctly)

Σ-protocols

15/30

Achieving Soundness: NIZKs

Schnorr would be linear in #updates.
 => use updatable NIZKs

2) Trace proof:
 Maintaining a history of updates
3) Key proof:
 Proving knowledge of t by regulator
4) Escrow proof:
 Building escrow encryption

1) Consistency of updates & escrow
 (proving hint was updated correctly)

CH20

Σ-protocols

15/30

(x,w) ∈ R

Controlled ⃰ Malleability in NIZKs

(x′, w′) ∈ R

Tx(x) Tw(w)

(updatability)

* NB: Not to be confused with Controlled Malleability as a security notion

Tx TwL.Update()

16/30

(x,w) ∈ R π x ∈ LR

Controlled ⃰ Malleability in NIZKs

(x′, w′) ∈ R

Tx(x) Tw(w)

(updatability)

* NB: Not to be confused with Controlled Malleability as a security notion

Tx Tw

NIZK.Prove

L.Update()

16/30

(x,w) ∈ R π x ∈ LR

π′
x′ ∈ L′

Controlled ⃰ Malleability in NIZKs

(x′, w′) ∈ R

Tx(x) Tw(w)

w.r.t.

(updatability)

* NB: Not to be confused with Controlled Malleability as a security notion

Tx Tw Tπ

NIZK.Prove

NIZK.Update()L.Update()

16/30

Groth-Sahai

malleable w/o recursion

RO
CRS

heavy

lightweight

Landscape of Malleable NIZKs

Sigma

Halo

malleable via recursion

FH NIZKs

STARKs

(?folding)

Compressed Σ

Bulletproofs

Garuda/Pari
Polymath

Pinocchio
Sonic

Spartan
Fractal
Binius
Brakedown

PLONK KZG
Plonk IPA

non-malleable
 (Strong Simulation-Extractable)

randomizable

& FS

common ref str

[CLPO21] SPSs:
 [KSD19]
 [CLPK22][CH20]

[GOS06]

Groth16

17/30

Lalg = {x⃗ ∈ Gl | ∃w⃗ ∈ Zt
p : M(x⃗) · w⃗ = x⃗}

M(X⃗) ∈ P l×t

For the algebraic language:

where

Couteau, Geoffroy, and Dominik Hartmann.
"Shorter non-interactive zero-knowledge arguments and ZAPs for algebraic languages."
CRYPTO 2020.

[CH20] is akin to the Σ-protocol

18/30

CH20 NIZK

π

Couteau, Geoffroy, and Dominik Hartmann.
"Shorter non-interactive zero-knowledge arguments and ZAPs for algebraic languages."
CRYPTO 2020.

∈ Gl
1

... but done with pairings

∈ Gt
2

19/30

π

π̂

CH20 NIZK is updatable!

...for blinding-compatible transformations
new notion necessary to achieve
 proof updatability

* Improved Constructions of Anonymous Credentials From Structure-Preserving Signatures on Equivalence Classes
 Aisling Connolly1, Pascal Lafourcade, and Octavio Perez Kempner

observed in [CLPK22] ⃰ for a variant of CH20

20/30

Transformations and Blinding-Compatibility

(Txm, Txa, Twm, Twa)Let be a valid language transformation:

(x,w) ∈ R =⇒ (Txm · x+ Txa, Twm · w + Twa) ∈ R

[⃗a]1 = [M]1r⃗

[d⃗]2 = [e]2 · w⃗ + [r⃗]2

x = [M] · w

[⃗a′]1 = Txm · [⃗a]1 + Txa

[d⃗′]2 = Twm · [d⃗]2 + Twa

Could we transform the proof like this?

=⇒looks like
witness?

looks like
instance?

21/30

Tam ·
�M(x⃗) · s⃗

x⃗

�
+ Taa = M(Txm · x⃗) + Txa ·

�
Twm · s⃗+ Twa

�

pseudo-instance

uniform; pseudo-witness

Transformations and Blinding-Compatibility

(Txm, Txa, Twm, Twa)Let be a valid language transformation:

(x,w) ∈ R =⇒ (Txm · x+ Txa, Twm · w + Twa) ∈ R

[⃗a]1 = [M]1r⃗

[d⃗]2 = [e]2 · w⃗ + [r⃗]2

x = [M] · w

[⃗a′]1 = Txm · [⃗a]1 + Txa

[d⃗′]2 = Twm · [d⃗]2 + Twa

Could we transform the proof like this?

=⇒looks like
witness?

looks like
instance?

([a]1, [d]2)This does not work! are unlike a proper inst/wit
 because witness is not uniformly distributed!

Therefore we require T to be blinding-compatible: ∃Tam, Taa. ∀x ∈ L, ∀s

instance

21/30

evalupdate

where

ElGamal

regulator learns:

{Encpk(xitj)} {Encpk(x̂itj)}

x̂ = x+ xι

UBlu with updatable NIZKs

whether P (t, x̂) = 0

22/30

Encpk(β · P (t, x̂))

eval

Use CH20 to prove consistency of update/eval

update

where

π

π 7→ π̂

π̂ verifies
π̂

ElGamal

regulator learns:

{Encpk(xitj)} {Encpk(x̂itj)}

x̂ = x+ xι

UBlu with updatable NIZKs

whether P (t, x̂) = 0

22/30

Encpk(β · P (t, x̂))

eval

Use CH20 to prove consistency of update/eval

update

where

π

π 7→ π̂

π̂ verifies
π̂

ElGamal

regulator learns:

{Encpk(xitj)} {Encpk(x̂itj)}

x̂ = x+ xι

UBlu with updatable NIZKs

whether P (t, x̂) = 0

22/30

Encpk(β · P (t, x̂))

{Ai, Bi}di=0
{Âi, B̂i}di=0

t, x
t, x+ y

from prev. updater to next updater

← Upd()y

History: Tracking updates

Problem:

 Right now we cannot reason about
 "update number i" and order in general
since hints at each step look exactly the same

23/30

{Ai, Bi}di=0
{Âi, B̂i}di=0

t, x
t, x+ y

from prev. updater to next updater

y

History: Tracking updates

,tag' ← Upd(tag,)

is a chain of lightweight "update receipts"

Xι = Xι−1 ·GxιHr
Schnorr proof of

tag
tag′

{tagi}ι0
tagι = (πι, Xι := Com(

ιX
xi))

23/30

{Ai, Bi}di=0
{Âi, B̂i}di=0

t, x
t, x+ y

from prev. updater to next updater

y

History: Tracking updates

,tag' ← Upd(tag,)

is a chain of lightweight "update receipts"

VfHistory({tagι}) → {0, 1}

Xι = Xι−1 ·GxιHr
Schnorr proof of

tag
tag′

{tagi}ι0
tagι = (πι, Xι := Com(

ιX
xi))

Then, checks all proofs
tags are hiding and can be put on the bulletin board

23/30

Security Properties

{xi}

Dec = [P (t,
X

xi) = 0]

{xi}Updates produce tags that "bind"

(variant of kerMDH, falsifiable)

with history tags
note: [CH20] is only Sound,
 we can't extract

• History verifies ➡ prefix verifies
• One can't produce alternative verifying history that has different tags
 in the middle, but same suffix&prefix

All: game-based definitions, under DDH & NIZK assumptions

• Verify History ➡ extract update values

• Verify Hint & Escrow ➡

24/30

➤ Soundness

➤ History binding

➤ Hiding x4: Threshold, history, tags, escrow

from straightline-extractable
 history proofs

Performance: Size

linear only in the degree
of the predicate polynomial

P (T,X)

25/30

Performance: Asymptotic time

CH20
proof update

{(x− t)i}d0 7→ {(x+ y − t)i}d0 is inherently quadratic

26/30

Xeon E-2286G CPU @ 4 GHz; 6 cores, 12 threads

1 sec

10 sec

quadratic

27/30

Extensions

(x− t)i

xitj

(x+ y)itj =

iX

k=0

�
i

k

�
yi−k(tjxk)

Note: hints are consistent powers

With quadratic number of hints: with updates

Escrow polynomial with given coefficients

28/30

• Arbitrary polynomial predicates:

Extensions

(x− t)i

xitj

(x+ y)itj =

iX

k=0

�
i

k

�
yi−k(tjxk)

Note: hints are consistent powers

With quadratic number of hints: with updates

Escrow polynomial with given coefficients

28/30

• Multivariate polynomials:

• Arbitrary polynomial predicates:

Run construction in parallel
& bind with commitments

Extensions

(x− t)i

xitj

(x+ y)itj =

iX

k=0

�
i

k

�
yi−k(tjxk)

Binary predicate is

Secondary value on success:

βP (t, x)

Note: hints are consistent powers

With quadratic number of hints: with updates

Escrow polynomial with given coefficients

(β1P (t, x),β2P (t, x) + P2(t, x))

returns either (rand, rand)
 or (0, P_2(t,x))

28/30

• Multivariate polynomials:

• Arbitrary polynomial predicates:

• Non-binary outputs:

Run construction in parallel
& bind with commitments

Open Questions

P (TX , TY , X, Y) = (X − TX)2 + (Y − TY)
2

Lalg = {x⃗ ∈ Gl | ∃w⃗ ∈ Zt
p : M(x⃗) · w⃗ = x⃗}

Applications:
 - How powerful is the primitive with extensions?
 - E.g. Euclidian distance is achievable via

Applications of CH20:
 - Fits many group-based commitment/signature scenarios

 - Graph statistics? Asynchronous view?
 - Which languages are blinding compatible?

Performance:
 - Does [GKLS24] log-size optimisation apply to the updatable case?
 - Supporting bigger poly-sized d?

29/30

Summary

ia.cr/2023/1787
github.com/volhovm/ublu-impl/

t x

P (
X

xi, t)

([CH20], of independent interest)

- New notion: updatable blueprints

 • Regulator sets , users update

 • Regulator learns only

- Efficiency via updatable algebraic NIZK

- Extendable to more powerful predicates
 and applications

30/30

Questions?

Thank you!

Describe BC issue and show matrices for original / BC lang

2/N

CH20 Updatability: Blinding Compatible Transformations

Issue:
 witnesses are not distributed uniformly,
 but blinder for commitment stage is!

Therefore: our transformations have to work for pseudo-witnesses too

