

Hard-Label Cryptanalytic Extraction of Neural Network Models

② Yi Chen¹, Xiaoyang Dong¹, Jian Guo², Yantian Shen¹, Anyu Wang¹, Xiaoyun Wang¹⊠

¹ Tsinghua University, Beijing, China
 ² Nanyang Technological University, Singapore, Singapore

> Model Parameter Extraction as a Cryptanalytic Problem

> Our attack in the hard-label setting

Model parameter extraction

Similar to a cryptanalysis problem (chosen-plaintext attack)

- f_{θ} : neural network
- f: network architecture
- θ : network parameters

Problem Statement

Feedbacks

$$egin{array}{ccc} f_{ heta}(x) & \operatorname{Pr} & \operatorname{topk}(\operatorname{Pr}) & (z, \operatorname{Pr}[z]) & z \end{array} \end{array}$$

$$\overbrace{x \longrightarrow f_{\theta}(x) \in \mathbb{R}^{d}}^{\text{raw output}} \xrightarrow{\text{scores}} \text{hard label}$$

$$z = \begin{cases} 1 \text{ if } f_{\theta}(x) > 0 \text{ else } 0, \ d = 1 \text{ ------} \text{ Is it a panda?} \\ \arg\max(f_{\theta}(x)), \qquad d > 1 \text{ ------} \text{ What kind of animal is it?} \end{cases}$$

The Motivation of Our Work

Motivation

- The problem of model parameter extraction was first proposed by Baum in 1990 [1].
- When the feedback is raw output, there are attacks with polynomial computation and query complexity [5,6].
- Previous papers state that the hard-label setting (i.e., the feedback is the hard-label) is a strong defense against model parameter extraction [2,3,4,5,6].

$$\overbrace{x \longrightarrow f_{\theta}(x) \in \mathbb{R}^{d}}^{\text{raw output}} \xrightarrow{\text{scores}} \text{hard label}$$

Outline

> Model Parameter Extraction as a Cryptanalytic Problem

> Our attack in the hard-label setting

$$k ext{ deep ReLU FCN: } f_{ heta}(x) = f_{k+1} \circ \sigma \circ f_k \circ \cdots \sigma \circ f_2 \circ \sigma \circ f_1$$

Linear layer: $f_j(h) = W^{(j)}h + b^{(j)}$ where $W^{(j)} \in \mathbb{R}^{d_j \times d_{j-1}}, b^{(j)} \in \mathbb{R}^{d_j}$

ReLU activation function: $\sigma(h) = \max(0,h)$

Neuron:
$$y = \sigma(W_i^{(j)}h + b_i^{(j)})$$

dimension of layer $j: d_j$

input dimension: d_0

output dimension: d_{k+1}

Architecture: $d_0 - d_1 - \cdots - d_{k+1}$

_: real parameters _____: extracted parameters

 $\begin{array}{ll} \text{Goal:} & \text{Def. 1 (Extended Functionally Equivalent Extraction):} \\ & \text{For } x \in \mathbb{R}^{d_0}, \ f_{\widehat{\theta}}(x) \!=\! c \!\times\! f_{\theta}(x) \text{ where } c \in \mathbb{R}^+ \text{ is fixed.} \end{array} \end{array}$

Def. 2 (Extended (ε, δ) – Functional Equivalence): $\mathbf{Pr}_{x \in S} \Big[|f_{\hat{\theta}}(x) - c \times f_{\theta}(x)| \leq \varepsilon \Big] \geq 1 - \delta$

Assumptions:

 $egin{aligned} ext{Architecture knowledge:} f \ ext{Full domain inputs:} x \in \mathbb{R}^{d_0} \ ext{ReLU activations:} \max(0,h) \end{aligned}$

Precise computations

 $\text{Scalar output: } d_{k+1} \!=\! 1$

Hard-label feedback: $z(f_{\theta}(x))$

Decision Boundary Point: Input located at the decision boundary.

 $f_{ heta}(x) = 0 ext{ when } d_{k+1} = 1$

Model Activation Pattern: The set of neuron states, denoted by \mathcal{P} .

$$\mathcal{P} = (\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \cdots, \mathcal{P}^{(k)}) \\ \mathcal{P}^{(i)} = \mathcal{P}^{(i)}_1 \| \mathcal{P}^{(i)}_2 \| \cdots \| \mathcal{P}^{(i)}_{d_i} \qquad \mathcal{P}^{(i)}_j = \begin{cases} 1, \text{if } h^{(i)}_j > 0 \\ 0, \text{if } h^{(i)}_j = 0 \end{cases} \qquad \cdots \qquad \underbrace{ \begin{array}{c} & & & \\ 0, \text{if } h^{(i)}_j = 0 \\ & & & \\ \end{array}} \qquad \cdots \qquad \underbrace{ \begin{array}{c} & & & \\ 0, \text{if } h^{(i)}_j = 0 \\ & & & \\ \end{array}}$$

Model Signature: The set of local affine transformations, denoted by S_{θ} .

$$f_{ heta}(x) = \Gamma_{\!\mathcal{P}} \cdot x + B_{\!\mathcal{P}} ext{ for } \mathcal{P} ext{ } \mathcal{S}_{ heta} = \{ \left(\Gamma_{\!\mathcal{P}}, B_{\!\mathcal{P}}
ight) ext{ for all the } \mathcal{P} \}$$

0-Deep FCN:
$$f_{\theta}(x) = A^{(1)} \cdot x + b^{(1)}$$
 where $A^{(1)} = [w_1^{(1)}, \cdots, w_{d_0}^{(1)}]$

k-Deep Extraction Attack: Core Idea

k-Deep FCN:

$$egin{aligned} f_{ heta}(x) &= A^{(k+1)} \cdots ig(I^{(2)}_{\mathcal{P}}ig(A^{(2)}ig(I^{(1)}_{\mathcal{P}}ig(A^{(1)} \cdot x + b^{(1)}ig)ig) + b^{(2)}ig)ig) \cdots + b^{(k+1)} \ &= \Gamma_{\mathcal{P}} \cdot x + B_{\mathcal{P}} \end{aligned}$$

Recover Weights Layer by Layer:

Under the target MAP, the real and extracted LATs are:

$$f_{\theta}(x) = \mathcal{G}_{j}^{(i)} \left(\left(\sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,1}^{(i-1)} \right) x_{1} + \dots + \left(\sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,d_{0}}^{(i-1)} \right) x_{d_{0}} \right) + B_{\mathcal{P}}$$

$$f_{\hat{\theta}}(x) = \widehat{\Gamma}_{\mathcal{P}} \cdot x + \widehat{B}_{\mathcal{P}} = \left(\left(\frac{\sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,1}^{(i-1)}}{\left| \sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,1}^{(i-1)} \right|} \right) x_{1} + \dots + \left(\frac{\sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,d_{0}}^{(i-1)}}{\left| \sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,1}^{(i-1)} \right|} \right) x_{d_{0}} \right) + \widehat{B}_{\mathcal{P}}$$

A system of linear equations:

$$\sum_{v=1}^{d_{i-1}} \widehat{w}_{j,v}^{(i)} \widehat{C}_{v,k}^{(i-1)} = \frac{\sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,k}^{(i-1)}}{\left|\sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,1}^{(i-1)}\right|}, \text{ for } k \in \{1, \cdots d_0\}$$

k-Deep Extraction Attack: Core Idea

Finally, we have:

$$f_{\hat{ heta}}(x) = rac{f_{ heta}(x)}{\left|\sum\limits_{v=1}^{d_k} w_v^{(k+1)} C_{v,1}^{(k)}
ight|} \qquad (arepsilon,\delta) \leftarrow (0,0)$$

小子

$$\hat{A}_{j}^{(i)} \!=\! \! \left[\! egin{aligned} & \left. \left| \sum_{v=1}^{d_{i-2}} w_{1,v}^{(i-1)} C_{v,1}^{i-2}
ight|_{v,v} + \left| \sum_{v=1}^{d_{i-2}} w_{d_{i-1},v}^{(i-1)} C_{v,1}^{(i-2)}
ight|_{v,v} + \left| \left| \sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,1}^{(i-1)}
ight|_{v,v} + \left| \sum_{v=1}^{d_{i-1}} w_{j,v}^{(i)} C_{v,v}^{(i-1)}
ight|_{v,$$

$$\widehat{b^{(i)}} = \Bigg[rac{b^{(i)}_1}{\left|\sum\limits_{v=1}^{d_{i-1}} w^{(i)}_{1,v} C^{(i-1)}_{v,1}
ight|}, \cdots, rac{b^{(i)}_{d_i}}{\left|\sum\limits_{v=1}^{d_{i-1}} w^{(i)}_{d_i,v} C^{(i-1)}_{v,1}
ight|}\Bigg], i \in \{1, \cdots, k+1\}$$

Practical Experiments

Table 1. Experiment results on untrained k-deep neural networks.

Table 2. Experiment results on neural networks trained on MNIST or CIFAR10.

Architecture	Parameters	ϵ	PMR	Queries	$(\varepsilon, 0)$	$\max \theta - \hat{\theta} $
512-2-1	1029	10^{-12}	100%	219.35	$2^{-12.21}$	$2^{-16.88}$
		10^{-14}	100%	$2^{19.59}$	$2^{-19.84}$	$2^{-24.62}$
2048-4-1	8201	10^{-12}			$2^{-3.77}$	$2^{-10.44}$
		10^{-14}	100%	$2^{23.51}$	$2^{-13.70}$	$2^{-17.75}$
25120-4-1	100489	10^{-14}	122.020 Acres 0.020 Acres 0.020	25.01	$2^{-2.99}$	$2^{-14.67}$
		10^{-16}	100%	$2^{26.67}$	$2^{-13.01}$	$2^{-23.19}$
50240-2-1	100485	10^{-14}		200 C	$2^{-7.20}$	$2^{-15.58}$
		10^{-16}	100%	$2^{26.31}$	$2^{-14.44}$	$2^{-22.67}$
32-2-2-1	75	10^{-12}		$2^{17.32}$	$2^{-10.99}$	$2^{-14.78}$
		10^{-14}	100%	$2^{17.56}$	$2^{-18.21}$	$2^{-20.61}$
512-2-2-1	1035	10^{-12}			$2^{-10.34}$	$2^{-14.01}$
		10^{-14}	100%	$2^{21.59}$	$2^{-14.17}$	$2^{-17.29}$
1024-2-2-1		10^{-12}			$2^{-6.10}$	$2^{-13.77}$
		10^{-14}	100%	$2^{22.49}$	$2^{-14.16}$	$2^{-20.38}$

 ϵ : the precision used to find decision boundary points.

 $\max|\theta - \hat{\theta}|$: the maximum extraction error of model parameters. PMR: prediction matching ratio.

 $(\varepsilon, 0)$ -Functional Equivalence

task	architecture	accuracy	parameters	ε	Queries	$(\varepsilon, 0)$	$\max \theta - \hat{\theta} $
'0' vs '1'	784-2-1	0.9035	1573	$ \begin{array}{c} 10^{-12} \\ 10^{-14} \end{array} $	$2^{20.11}$ $2^{20.32}$	$2^{-16.39}$ $2^{-20.56}$	$2^{-17.85}$ $2^{-22.81}$
'2' vs '3'	784-2-1	0.8497	1573	$\frac{10^{-12}}{10^{-14}}$	$2^{20.11}$ $2^{20.32}$	$2^{-7.00}$ $2^{-14.32}$	$2^{-7.80}$ $2^{-15.06}$
'4' vs '5'	784-2-1	0.8570	<mark>15</mark> 73	$\frac{10^{-12}}{10^{-14}}$	$2^{20.02}$ $2^{20.32}$	$2^{-8.47}$ $2^{-15.62}$	$2^{-8.82}$ $2^{-15.81}$
'6' vs '7'	784-2-1	0.9290	1 573	$\frac{10^{-12}}{10^{-14}}$	$2^{20.11}$ $2^{20.32}$	$2^{-7.02}$ $2^{-12.00}$	$2^{-7.93}$ $2^{-12.91}$
'8' vs '9'	784-2-1	0.9501	1573	$ \begin{array}{r} 10^{-12} \\ 10^{-14} \end{array} $	$2^{20.11}$ $2^{20.32}$	$2^{-10.58}$ $2^{-19.63}$	$2^{-11.62}$ $2^{-21.72}$
airplane vs automobile	3072-2-1	0.8120	6149	$\frac{10^{-12}}{10^{-14}}$	$2^{22.08}$ $2^{22.29}$	$2^{-4.84}$ $2^{-12.41}$	$2^{-7.48}$ $2^{-15.20}$
bird vs cat	3072-2-1	0.6890	6149	$\frac{10^{-12}}{10^{-14}}$	$2^{22.07}$ $2^{22.29}$	$2^{-8.37}$ $2^{-12.27}$	$2^{-9.80}$ $2^{-14.73}$
deer vs dog	3072-2-1	0.6870	6149	10^{-12} 10^{-14}	$2^{22.01}$ $2^{22.22}$	$2^{-9.55}$ $2^{-13.19}$	$2^{-13.25}$ $2^{-15.82}$
frog vs horse	3072-2-1	0.8405	6149	$ \begin{array}{r} 10^{-12} \\ 10^{-14} \end{array} $	$2^{22.08}$ $2^{22.29}$	$2^{-9.56}$ $2^{-13.58}$	$2^{-10.71}$ $2^{-15.58}$
ship vs truck	3072-2-1	0.7995	6149	$\frac{10^{-12}}{10^{-14}}$	$2^{22.08}$ $2^{22.29}$	$2^{-8.63}$ $2^{-12.95}$	$2^{-8.90}$ $2^{-13.02}$

 $\max |\theta - \hat{\theta}|$: the maximum extraction error of model parameters. accuracy: classification accuracy of the victim model f_{θ} . for saving space, prediction matching ratios are not listed.

References

Baum, E.B: A polynomial time algorithm that learns two hidden unit nets. Neural Comput. 2(4), 1990.
 Tramer, F., et al.: Stealing machine learning models via prediction APIs. USENIX Security 2016.
 Jagielski, M., et al.: High accuracy and high fidelity extraction of neural networks. USENIX Security 2020.
 Rolnick, D., et al.: Reverse-engineering deep ReLU networks. ICML 2020: 8178-8187
 Carlini, N., et al.: Cryptanalytic extraction of neural network models. CRYPTO 2020.
 Canales-Martinez, et al.: Polynomial-time cryptanalytic extraction of neural network models.
 EUROCRYPT 2024.

Thank you!

Thank Adi Shamir for his guidance, and the anonymous reviewers for their detailed and helpful comments.