Bounded Collusion-Resistant
Registered Functional
Encryption for Circuits

Yyian Zhang Jie Chen Debiao He Yuqing Zhang

UNIVERSITY
=P OF WOLLONGONG

Functional Encryption

Zg\t/:te Want to learn f(x)
‘ | | g/

i

m‘

Functional Encryption

Zg\t/:te Want to learn f(x)
9, ; —

) ct, « Enc(mpk, x)
F > @ f(x) « Dec(sky, cty)

Functional Encryption
4

(mpk, msk) « Setup(14) 8 sky < KeyGen(msk, f)
_

: Trusted Authority
Zg\t/:te Want to learn f(x)
9, ; —

% ct, <« Enc(mpk, x)
et > @ f(x) < Dec(sky,cty)

~

J

#V

Functional Encryption
4

(mpk, msk) « Setup(1%) sk < KeyGen(msk, f)

- J

- Trusted Authority
Zg\t/:tf Want to learn f(x)
—

e S ct, < Enc(mpk, x)
F > @ f(x) < Dec(sky, cty)

® Security: reveal nothing except for f(x)

® Functionality: f could be any polynomial-sized circuit [SS10,GVW12,..]

Functional Encryption
4

(mpk, msk) « Setup(1%) sk < KeyGen(msk, f)

Private Trusted Authority

Want to learn
data x ant to learn f(x)

—

ct, <« Enc(mpk, x)

)

f(x) < Dec(sky,cty)

U IRYSTRNIWY sk must be kept secret by trusted authority (key-escrow issue)

® Functionality: f could be any polynomial-sized circuit [SS10,GVW12,..]

Registered Functional Encryption

data x
Chy
r @

Registered Functional Encryption

crs « Setup(14,L)
L is the maximum amount of users
Initialize aux to store auxiliary info

Private
data x

D

D (pk,sk) <« Gen(crs, aux)

Registered Functional Encryption

-

crs « Setup(14,L)
L is the maximum amount of users “
Initialize aux to store auxiliary info

Private
datax
‘ ct, < Enc(mpk, x)
ng > (pk,sk) <« Gen(crs, aux)

f(x) < Dec(hsk, sk, ct,)

Curator Public, Deterministic and
Compact output of size poly(f,log L)

w,@

Registered Functional Encryption

~

crs « Setup(14,L)
L is the maximum amount of users d
Initialize aux to store auxiliary info

Curator Public, Deterministic and
@{ Compact output of size poly(f,log L)

ct, < Enc(mpk, x)
> @ (pk,sk) <« Gen(crs, aux)

f(x) < Dec(hsk, sk, ct,)

® Security: remove msk and hence resolve key-escrow issue

Private
data x

® Functionality: f could be any polynomial-sized circuit [FFm+23,DPY24]

RFE: Adaptive SIM Security

‘ J Collude with Q corrupted/malicious users
and acquire sk, ..., skq

RFE: Adaptive SIM Security

~ J Collude with Q corrupted/malicious users
and acquire sk, ..., skq

Real world indistinguishable N ldeal world
ct, <« Enc(mpk, x) ~ ct, « Enc(crs, mpk, f1(x), ..., fo(x))

RFE: Adaptive SIM Security
N

Collude with Q corrupted/malicious users
and acquire sk, ..., skq

Real world indistinguishable N ldeal world
ct, <« Enc(mpk, x) ~ ct, « Enc(crs, mpk, f1(x), ..., fo(x))

Impossibility It is even hard to build efficient full-collusion FE
[BSW11,AGVW13] for circuits from mild assumptions

| |
Full-collusion RFE for limited functions Bounded-collusion RFE for circuits

RFE: Adaptive SIM Security
Selective security: ‘ J
Provide the challenge Collude with Q corrupted/malicious users
Info in advance ':II]:' and acquire sk, ..., skg

Real world indistinguishable N ldeal world
ct, <« Enc(mpk, x) ~ ct, « Enc(crs, mpk, f1(x), ..., fo(x))

Impossibility It is even hard to build efficient full-collusion FE
[BSW11,AGVW13] for circuits from mild assumptions

| |
Full-collusion RFE for limited functions Bounded-collusion RFE for circuits

State-of-the-art [ZLZ+24]:
® Simple linear/quadratic function

® \/ery selective security

RFE: Adaptive SIM Security
Selective security: ‘ J
Provide the challenge Collude with|Q corruptedfmalicious users
Info in advance ':II]:' and acquire sk, ..., skg

Real world indistinguishable ldeal world
ct, < Enc(mpk, x) ~ ct, « Enc(crs, mpk, f1(x), ..., fo(x))
Impossibility It is even hard to build efficient full-collusion FE
[BSW11,AGVW13] for circuits from mild assumptions
, . Our focus
Full-collusion RFE for limited functions | Bounded-collusion RFE for circuits |
State-of-the-art [ZLZ+24]: Existing generic framework [BLM+24]:

® Simple linear/quadratic function Linear RFE = Bounded RFE

® \/ery selective security

Bounded RFE

Significant Features: assume a collusion bound 0 « L, it requires

(1) Syntax: crs « Setup(1%,L, Q)
(2) Security: At most (users are corrupted

(3) Efficiency: All parameters depend on Q, so it has relaxed compactness:
impk| = poly(Q, f,log L), |hsk| = poly (O, f,log L)

Bounded RFE

Significant Features: assume a collusion bound 0 « L, it requires

(1) Syntax: crs « Setup(1%,L, Q)

@ Security: At most () users are corrupted

(3) Efficiency: All parameters depend on Q, so it has relaxed compactness:
impk| = poly(Q, f,log L), |hsk| = poly (O, f,log L)

Some Concerns about Branco et al.’s framework [BLV+24, DPY24,71.7+24]
Linear RFE|= Bounded RFE

— — —

Hard to build Very selective No post-quantum O(L¢)-size crs
SIM security guarantee

Bounded RFE

Significant Features: assume a collusion bound 0 « L, it requires

(1) Syntax: crs « Setup(1%,L, Q)
(2) Security: At most (users are corrupted

(3) Efficiency: All parameters depend on Q, so it has relaxed compactness:
impk| = poly(Q, f,log L), |hsk| = poly (O, f,log L)

Question: Can we construct a bounded RFE with adaptive SIM
security from weaker assumptions?

This Work

Our goal: build bounded RFE for circuits with following properties:
» Weaker building block

» Adaptive SIM security

» Post-guantum security

» Unbounded users, i.e., compact parameters of size poly(log L)

This Work

Our goal: build bounded RFE for circuits with following properties:
» Weaker building block

» Adaptive SIM security

» Post-guantum security

» Unbounded users, i.e., compact parameters of size poly(log L)

Our result: a new generic framework

Global Registered Broadcast Encryption|= Bounded RFE

Pairing: MDDH assumption
Lattice: (evasive) LWE assumptions

Our Technique

1-bound 1-slot RFE = 1-bound L-slot RFE = Q-bound L-slot RFE

Our Technique

[1-bound|1-slot RFE =|1-bound|L-slot RFE =|Q-bound]L-slot RFE

tad) sl vre ~beundl st e (g

Against Q = 1 corrupted users

Our Technique

1-bound|(1-slot RFE}= 1-bound|L-slot RFE|= Q-bound|L-slot RFE]

\ My [HLLW23]

All L > 1 users register functions Bounded RFE
Into the system in one shot

Basic Construction

1-bound 1-slot RFE

Setup(l’l, Crs

Gen(crs,i) — (pk;, sk;)

Ver(crs,i,pk;) - 0/1

Agg(crs, {pk;, Ci}ieny) = (mpk, {hsk;}ier))
Enc(mpk,x) — ct,

Dec(hsk, sk, ct,) = C(x)

Basic Construction

1-bound 1-slot RFE

Sahai-Seyalioglu construction }

A
Setup(17, crs [from general PKE [ss10]

Gen(crs,i) — (pk;, sk;)

Ver(crs,i,pk;) - 0/1

Agg(crs, {pki, Ci}ierr)) = (mpk, {hsk;}iep)
Enc(mpk,x) — ct,

Dec(hsk, sk, ct,) = C(x)

Basic Construction

1-bound 1-slot RFE

3 All pk; are sampled via PKE
Setup (17, Crs

ers = () () -~ ()

Basic Construction

1-bound 1-slot RFE

All are sampled via PKE

- pky || pPhy | eee | DEn

Gen(crs,i) — (pk;, sk;)

Basic Construction

1-bound 1-slot RFE

Put all public keys together

pky || pPky | o | DRy

mpk 4
Ver(crs,i,pk;) - 0/1 -\

Agg(CTS, {pki' Ci}iE[L]) - (mpk, {hSki}iE[L]) hsk = 1

Basic Construction

1-bound 1-slot RFE

Enc(mpk,x) — ct,
Dec(hsk, sk, ct,) = C(x)

Basic Construction

1-bound 1-slot RFE

labl,C—[l] labzlé[z] ‘labn’é[n]

- pky || Pky | eee | Dy

laby ¢ laby c(2 laby,cn]

Garble universal circuit
Ulx](C) = C(x)

Enc(mpk,x) — ct
(mpk, x) X ct, = {PKE.Enc(pky,p,lab,,)}

Dec(hsk, sk, ct,) = C(x)

Basic Construction

1-bound 1-slot RFE

lablf[l] laszé[z] ‘labnlf[n]

- pky || PRy | e | DRy

laby ¢ laby c(2 laby,cn]

Garble universal circuit
Ulx](C) = C(x)

cty, = {PKE.Enc(pky,p,lab,, p)}

- BN EEE B BN BN EEE BN EEE EEE I BN EEE BN BN EEE EEE BEE B B I BEE BEE B B EE BEE BEE B B Ba B B e e

Enc(mpk,x) — ct,
Dec(hsk, sk, ct,) = C(x)

Trivial Solution

1-bound L-slot RFE

Setup(l’l, CrS

When L = 2, register circuits C; and C,:

RFE.mpk

) i)~ e

cty, = {PKE.Enc(pky, p,lab,,)}

Trivial Solution

1-bound L-slot RFE

Setup (14, Crs

When L = 2, register circuits C; and C,:

RFE.mpk Generalized RFE. mpk
4 N p f A
\ J y S y

cty, = {PKE.Enc(pky, p,lab,,)}
X Too heavy: poly(L)-size parameters

Multi-Slot Setting

1-bound L-slot RFE

Setup (14, crs o) Our idea: replace PKE with slotted
Registered Broadcast Encryption
(RBE)

Multi-Slot Setting

1-bound L-slot RFE

Setup (14, crs o) Our idea: replace PKE with slotted
Registered Broadcast Encryption
RFE.mpk (RBE)

RFE.hsk; = {RBE.hsk;,, p}

I

JI coe :)

]) . RFE.ct, = {RBE.Enc(laby, 1)}
|

ka,C1 [2] sz,cz [2]

Multi-Slot Setting

1-bound L-slot RFE

Registered Broadcast Encryption

Setup (14, Ccrs @ Our idea: replace PKE with slotted
RFE.mpk (RBE)

RFE.hsk; = {RBE.hsk;,, p}

I

J I ot § J

]) g RFE.ct, = {RBE.Enc(laby, 1)}
| ||

) .) ’ (1,2}
RW’ Example: If C;[w] = C,[w], both user 1

and user 2 can recover lab,, ¢, from ct,
ka,Cl[Z] ka,CZ[Z]

Multi-Slot Setting

1-bound L-slot RFE

Setup (14, crs o) Our idea: replace PKE with slotted
Registered Broadcast Encryption
RFE.mpk (RBE)

RFE.hsk; = {RBE.hsk;,, p}

I

JI coe :)

]) . RFE.ct, = {RBE.Enc(laby, 1)}
|

— = " Still heavy:
RW’\ when |Sw,b| = L, it has |mpkw,b|, |h5ki,w,b|'

ct,.| = voly(|S|,logL) = poly(L
Pkac, 2] PK2.c,21| «++ |PR2,cL[2] [ctx| = poly(|Sl,log L) = poly(L)

New Primitive

1-bound L-slot RFE

‘ The formal definition of Global (slotted) RBE \

Setup(14,L) - crs

Gen(crs,i) = (pk;, sk;)

Ver(crs,i,pk;) - 0/1

Agg(crs, {i, pki}ierr)) = (mpk, thsk;}ie)
Enc(mpk, msg) — ct

Dec(hsk, sk,ct) » msg/L

New Primitive

1-bound L-slot RFE
Setup(14,L) - crs
Gen(crs,i) - (pk;, sk;) Efficiency |4

k|, |hsk;|, |ct| = poly(logL
Ver(crs,i,pk;) = 0/1 Impk|, |hsk;|, |ct| = poly(logL)

Agg(crs,{i,pki}ier) > (mpk, {hsk;}iep)
Enc(mpk, msg) — ct
Dec(hsk, sk,ct) » msg/L

New Primitive

1-bound L-slot RFE

‘ The formal definition of Global (slotted) RBE \

Enc(mpk, msg) — ct
Dec(hsk, sk,ct) » msg/L

Functionality

All reqgistered users
can decrypt ct

Efficiency

|mpk]|, |hsk;|, |ct| = poly(logL)

IND Security ‘v

Enc(mpk,msg) =~ Enc(mpk, random)
for adversary who has no idea about any sk

Multi-Slot Setting

1-bound L-slot RFE

Our solution: replace RBE with GRBE

RFE.mpk Pl .

' [pk".'cz["] RFE.hsk; = {GRBE.hsk;,, }

pkn,CL [n]

Multi-Slot Setting

Our solution: replace RBE with GRBE

RFE.mpk

\ S .

J \

J

RFE.ct, = {GRBE.Enc(

1-bound L-slot RFE

[

[

]

pkn,C1 [n]

pkn,Cz [n]

pkn,CL [n]

\ labw,b)}

v' |RFE.mpk|, |RFE. hsk;|, |RFE.ct,| = poly(n,logL)

RFE.hsk; = {GRBE.hsk;,, p}

Multi-Slot Setting

1-bound L-slot RFE

Adaptive SIM Security:
For a corrupted user with circuit C, we can simulate ct, as follows:

Multi-Slot Setting

Adaptive SIM Security:

1-bound L-slot RFE

For a corrupted user with circuit C, we can simulate ct, as follows:

labl'c[l]

labzlc[z]

EﬂPkLcm] %’sz,cm] Enpkn,C[n]]

labn,c [n]

{—— Simulated by garbled circuit
only using C(x)

Multi-Slot Setting

1-bound L-slot RFE

Adaptive SIM Security:
For a corrupted user with circuit C, we can simulate ct, as follows:

laby ¢y laby ¢ (2] laboery| <—— Simulated by garbled circuit
r 1[)) only using C
Z’”pkl,cm Z’npkz,c[z] XX Enpk”)c[”]J y g C(x)

J J

Z’nPk1,é[1] ankz,é[Z] Enpkn,C[nL

J J

labi gy | |labycpa labyey| <—— Randomized by RBE since
Random Random Random he has no decryption access

Multi-Slot Setting

1-bound L-slot RFE

Adaptive SIM Security:
For a corrupted user with circuit C, we can simulate ct, as follows:

labicpy | |labycp laboery| <—— Simulated by garbled circuit
f 1()) only using C
ankl,C[l]J Z/nka,C[Z]J Enpkn,an y g ()
Z/npkl,C_[l]J Zﬂpkz,é[zL E'npkn,C[n]J
labi gy | |labycpa labyey| <—— Randomized by RBE since
Random Random Random he has no decryption access

Adaptive IND secure GRBE = Adaptive SIM secure Bounded RFE

Construct Global RBE

1-bound L-slot RFE

» Registered Attribute-Based Encryption (RABE)

Refer to Freitag-Waters-Wu generic compiler for Flexible/Distributed Broadcast Encryption

[FWW?23], but it needs dummy attribute/policy, incurring extra costs.

» This work: efficient schemes with adaptive security

GRBE < Zhu et al.’s pairing-based GRBE < Transformation from lattice-

RABE [72GQ23] based Witness Encryption [FWW23]

Compact crs =_RFE with unbounded users

Multi-Key Security

O-bound L-slot RFE

This bootstrap can be done by Gorbunov-
Vaikuntanathan-Wee approach [Gvw12]

Multi-Key Security

O-bound L-slot RFE

/ This bootstrap can be done by Gorbunov-
— Vaikuntanathan-Wee approach [cvw12]

Subsystem 1

Subsystem 2

| |
| |
| |
| |
| |
! :
: Subsystem 3 i
| |
| |
| |
| |
| |
| |

- [Subsystem N]

Multi-Key Security

O-bound L-slot RFE

/ This bootstrap can be done by Gorbunov-
---------------------- Vaikuntanathan-Wee approach [cvw12]

|

| Subsystem 1
- User 1
|

| Subsystem 2
I

: Subsystem 3
|

|

|

|

|

|

|
I
I
|
: User 2
|
I
I

| [Subsystem N]

Multi-Key Security

O-bound L-slot RFE

/ This bootstrap can be done by Gorbunov-
----------- Vaikuntanathan-Wee approach [cvw12]

Subsystem 1

User 1 Example:

» For some subsystems (e.g., 1 and N), we rely

Subsystem 2

on 1-bound security of underlying RFE

» For other subsystems (e.g., 2), we adopt

User 2 dynamic reusable MPC protocol [WOG88,AV19]

|
|
|
|
|
|
: Subsystem 3
|
|
|
|
|
|

Multi-Key Security

O-bound L-slot RFE

/ This bootstrap can be done by Gorbunov-
----------- Vaikuntanathan-Wee approach [cvw12]

I

Subsystem 1 |
| Example:
I

Subsystem 2 » For some subsystems (e.g., 1 and N), we rely

on 1-bound security of underlying RFE

» For other subsystems (e.g., 2), we adopt

dynamic reusable MPC protocol [WOG88,AV19]

Small Pairwise Intersection

| & Cover Freeness
. (N depends on Q)

===) Corrupt Security

|
|
|
|
|
|
: Subsystem 3
|
|
|
|
|
|

|
I
I
|
: User 2
|
I
I

Summary

We present a generic construction for bounded RFE for circuits:

v Only requires a weak primitive namely Global Registered Broadcast Encryption
which is implied by RABE

v Adaptive simulation-based security

v Concrete instances over pairings or lattices

v' All parameters of size poly(Q,log L) as long as the underlying GRBE also owns

parameters of size poly(logL)

Thank You!

