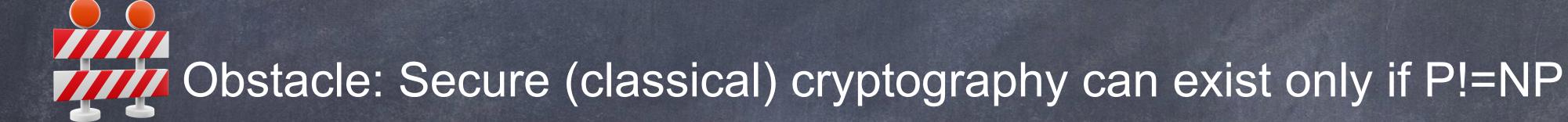
The Complexity-Theoretic Foundations of Quantum Cryptography

Dakshita Khurana NTT Research, UIUC

1

Based on joint work with Kabir Tomer (UIUC)

Build cryptography without making any unproven assumptions



For classical crypto, the minimal assumption = existence of one-way functions 0

Dream: Build cryptography while only making minimal unproven assumptions

Algorithmica: P=NP

Pessiland: P!=(avg)NP, no OWF

Heuristica: avgNP∈P

FRIOMANI

Minicrypt: /F, no PKE

Cryptomania: OWF, PKE, MPC...

Image courtesy: Quanta magazine

QKD

Cryptography without any unproven assumptions

Cryptography is about (much) more than key distribution. For example, we care about commitments, MPC, signatures, PKE, …

Guantum Cryptography

Quantum Commitments and MPC

 Just like QKD, commitments secure against computationally unbounded adversaries were believed to exist
 See e.g., [Bennett-Crepeau-Josza-Langlois'93]

Quantum MPC believed to exist, based on commitments against unbounded adversaries
 First proposed in [Crepeau-Kilian'88], proven secure in [Mayers-Salvail'94, Yao'95]

Years later: proof that commitments against unbounded adversaries are impossible! In independent works [Mayers'97], [Lo-Chau'97]

Secure Computation

Theorem

[Bartusek-Coladangelo-K-Ma'21, Grilo-Lin-Song-Vaikuntanathan'21, Ananth-Qian-Yuen'22]: (One-way functions =>) Commitments => secure computation with quantum participants

(Provably impossible without quantum capabilities [Impagliazzo-Rudich'89])

Public-Key Encryption with Quantum Public Keys

Theorem

[Barooti-Grilo-HugueninDumittan-Malavolta-Vu-Walter'24, Kitagawa-Morimae-Nishimaki-Yamakawa'24]: <u>One-way functions</u> => public-key encryption with quantum public keys

(Provably impossible with classical keys [Impagliazzo-Rudich'89])

Minicrypt: OWF, QMPC, QPKE

Can commitments/quantum crypto be based on assumptions *weaker than* OWF?

A Promised Land

- Relative to a quantum oracle, commitments can exist even if BQP = QMA 0 [Kretschmer'21]
- Relative to a classical oracle, commitments can exist even if P = NP 0 [Kretschmer-Qian-Sinha-Tal'23]
- 0 classically described can be easily solved? [Lombardi-Ma-Wichs'24]

(Maybe?) relative to a classical oracle, commitments can exist even if all problems that can be

Meaning — there's a strong possibility that quantum cryptography can be based on assumptions that are mathematically weaker than one-way functions/that maybe true even if P = NP

"Pseudorandom" states imply commitments [Ananth-Qian-Yuen'22, Morimae-Yamakawa'22]

• Gen (s) —> $|\psi_s\rangle$, where $|s| < ||\psi_s\rangle|$ s.t. $|\psi_s\rangle$ is computationally indistinguishable from "random" state

[Tomoyuki Morimae, invited talk at TQC]

Private Q money

OWSGs

q-time DS

PRUs

PRFSs -

PRSGs

UPSGs.

Many-time MAC

Many-time SKE

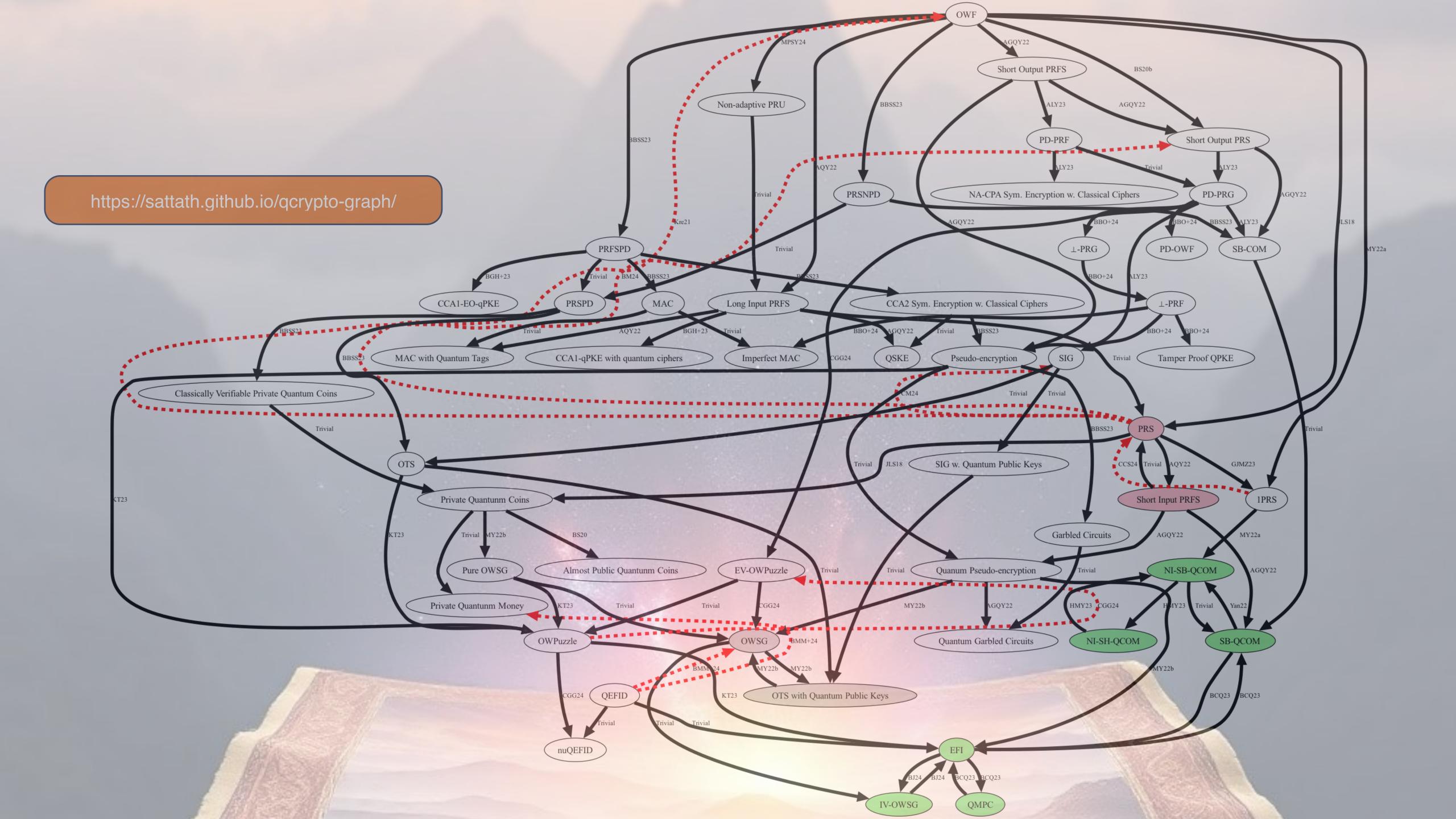
One-time SKE

1-PRSGs

MPC

Commitments

EFI



Is there a quantum analogue of one-way functions? 1. What hard problems should we base quantum cryptosystems on? 2.

What connections does quantum cryptography have with complexity 3. theory?

SCHACE GUIGESUCIAS

1.

2.

What connections does quantum cryptography have with complexity 3. theory?

SCHACE GUISSELCHAS

Is there a quantum analogue of one-way functions?

What hard problems should we base quantum cryptosystems on?

What Do Quantum One-way Assumptions Look Like?

Q One-way functions

Quantumly computable f s.t. inverting f(x) is hard, w.h.p over uniformly chosen x

What Do Quantum One-way Assumptions Look Like?

Q One-way functions

One-way states

(Quantum) efficient algorithm $x \rightarrow |\psi_x\rangle$ s.t. inverting $|\psi_{x}\rangle^{\otimes t}$ is hard

> Digital signatures, encryption schemes, etc. where the hard task is to find a classical secret [Morimae-Yamakawa'22]

What Do Quantum One-way Assumptions Look Like?

One-way states

One-way puzzles

Quantum process sampling hard-on-average problems along with solutions

(Efficient)

Given y, computationally intractable to find x s.t. $\Re(x, y) = 1$ 0

ONCHIAN FUZZUES [K-Tomer'24a]

$(x, y) \quad s \cdot t \cdot \mathscr{R}(x, y) = 1$

Quantum process sampling hard-on-average problems along with solutions

(Efficient)

Given y, computationally intractable to find x s.t. $\Re(x, y) = 1$ 0

CARE AND FULL LES [K-Tomer'24a]

$(x, y) \quad s \cdot t \cdot \mathscr{R}(x, y) = 1$

Not necessarily an NP relation!

For a classical sampler, it is wlog for \mathscr{R} to be an NP relation

What Do "Quantum" One-way Assumptions Look Like?

One-way states

One-way puzzles

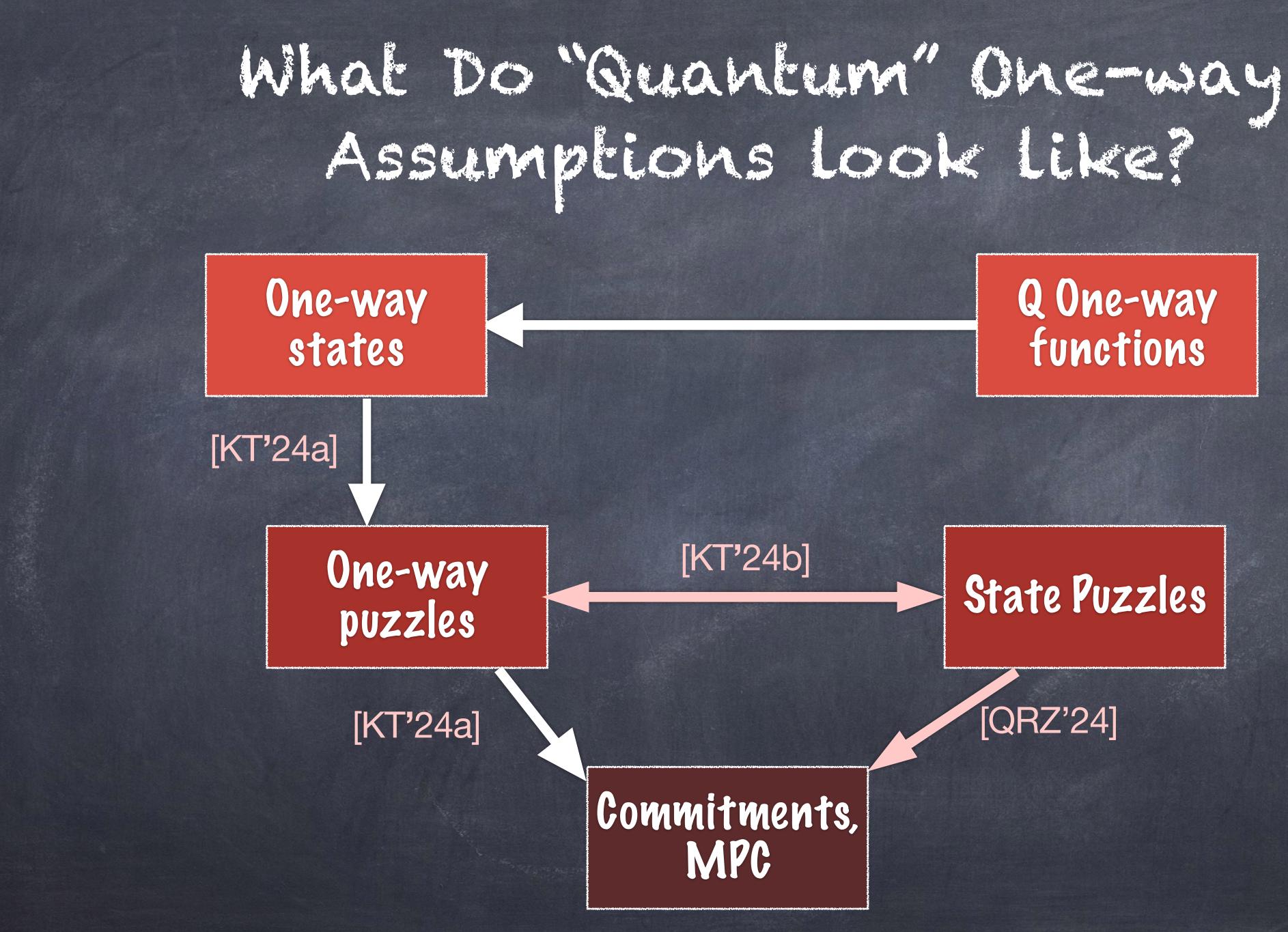
State puzzles

Capture the hardness of synthesizing a quantum state given a public string

(Efficient)

Computationally infeasible to invert, i.e. 0 given s output a state that overlaps with $|\psi_s\rangle$ Implied by quantum money "mini-schemes"

[K-Tomer'24, Qian-Raizes-Zhandry'24]



Distributional Que May Puzzles

Hardness of distributional inversion

Samp

(Efficient)

Given y, computationally intractable to sample $x \sim X | y$ 0

[Chung-Goldin-Gray'24]

Distributional one-way puzzles \iff one-way puzzles [Chung-Goldin-Gray'24]

What Do "Quantum" One-way Assumptions Look Like?

One-way states

One-way puzzles

[KT'24a, CGG'24]

Q One-way functions

State Puzzles

Commitments, MPC

1. 2.

What connections does quantum cryptography have with complexity 3. theory?

SCHACE GUISELCHAS

Is there a quantum analogue of one-way functions?

What hard problems should we base quantum cryptosystems on?

Goal: Build one-way puzzles from mathematical problems that are harder than problems in NP

Quantum process sampling hard-on-average problems along with solutions

(Efficient)

Given y, computationally intractable to find x s.t. $\Re(x, y) = 1$ 0

ONCHIAN FUZZUES [K-Tomer'24a]

$(x, y) \quad s \cdot t \cdot \mathscr{R}(x, y) = 1$

increasing hardness

one-way puzzles

one-way functions

PSPACE

PH

NP

P

Theorem [K-Tomer'24b (arXiv: 2409.15248)] Then one-way puzzles exist iff $P^{\#P} \neq BQP$.

One-way puzzles from #Phardness

Assume certain conjectures from the quantum advantage literature,

BULLAUMO MULLZUES

Goal: Build one-way puzzles from the mildest possible assumption 0

One-way puzzles are invertible by #P, so they exist only if $P^{\#P} \neq BQP$ [CGGHLP'24] 0 Can we base one-way puzzles only on #P-hardness? 0

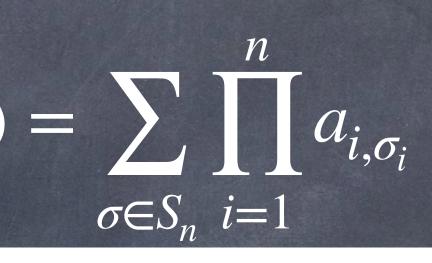
#P is a counting complexity class Captures the complexity of answering: 6 how many satisfying assignments does this Boolean formula have?

Dream: GCrypto from #P Hardness

• The permanent of a matrix $perm(A) = \sum \left[a_{i,\sigma_i} \right]$

$$\operatorname{perm} egin{pmatrix} a & b & c \ d & e & f \ g & h & i \end{pmatrix} =$$

#P hard in the worst case. Also #P hard in the average case (great for crypto!)
Quantum cryptography from the hardness of computing perm(A) for a given A?



aei + bfg + cdh + ceg + bdi + afh.

0 BQP machines cannot find x given y

• Can we set (x, y) = (perm(A), A)?

Unlikely that random matrices can be (quantumly) efficiently sampled 0 together with their permanents.

Goal: Puzzle sampler needs to efficiently sample (x, y) such that:

BosonSampling, Random Circuit Sampling, IQP, etc.,

0 probabilities of outputs encode permanents of unitary matrices

Permanents hard to compute \Longrightarrow 0 probabilities of outcomes are hard to compute [Aaronson-Arkhipov'11]

Quantum circuits can efficiently sample from a distribution A such that

\circ For a random a, it is hard to compute $\Pr[a]$

Can we set $(x, y) = \left(\begin{array}{c} \Pr[a], a \end{array} \right)$? This, again, is hard to sample :(All that is easy to sample is $a \leftarrow A$ 0

$a \leftarrow A$

The following is a distributional one-way puzzle: Sample $a \leftarrow A$. Say, *a* is *n* bits long. Sample $i \leftarrow [0, n-1]$. Output $(y, x) \leftarrow (a_1 a_2 \dots a_{i-1}, a_i)$ 0

Let's use some indirection

• Given Adv that on input $(a_1a_2...a_{i-1})$ samples a_i perfectly • We will build a machine R to approximate Pr [a]. Say a = 0100... $a \leftarrow A$ Run Adv on puz = 0 many times to approximate $p_{1|0}$. Set $p_{01} = p_0 \cdot p_{1|0}$ Run Adv on puz = 01 many times to approximate $p_{010} = p_{01} \cdot p_{0|01}$ 0

Proof loversimplified)

• Run Adv on puz = 010 many times to approximate $p_{0100} = p_{010} \cdot p_{0|010}$

Given Adv that on input $(a_1a_2...a_{i-1})$ samples a_i perfectly 0 6

- 0
- So, B will only be able to approximate Pr[a] on average.

Proof loversimplified)

We built a machine B to approximate every Pr[a] (upto small errors)

When Adv is a distributional puzzle inverter, it only samples from a distribution that has (1/poly) statistical distance from the correct dist.

$a \leftarrow A$

Implied by conjectures in sampling-based quantum advantage

- 0
- 0 are #P-hard to approximate on average [Boixo et.al.'18....]
- IQP [Bremner-Montanaro-Shepherd'14....]

on che Assumption

Assumption: Quantum computers can efficiently sample from a distribution A such that Pr [a] are hard to approximate (on average) & not always < _____ $p(n).2^n$

BosonSampling — Permanents of random matrices with $\mathcal{N}(0,1)$ Gaussian entries are #P-hard to approximate on average [Aaronson-Arkhipov'11]

Random Circuit Sampling — Output probabilities of Random Quantum Circuits

- Does this imply one-way functions? 0
 - 0
 - 0 This would counter quantum advantage conjectures.
 - 0

on the Assumption

<u>Hard Problem</u>: For a quantumly efficiently sampleable distribution A, approximate Pr [a] (on average) $a \leftarrow A$

Proofs of sampling-based advantage require that this problem cannot be solved in BPPNP.

If a BPP reduction could use a OWF inverter to solve this problem, then BPP^{NP} will solve this problem.

More generally, this is conjectured to be #P-hard, so we don't even expect BQP or PH reductions.

Assumptions in a Crypto

 One-way puzzles, state puzzles a BosonSampling/IQP conjectures

What about other quantum cryptographic primitives, such as signatures, public-key encryption or pseudorandom states?

One-way puzzles, state puzzles and commitments can be based on RCS/

1. 2.

What connections does quantum cryptography have with complexity 3. theory?

SCHACE GUESSELCHS

Is there a quantum analogue of one-way functions?

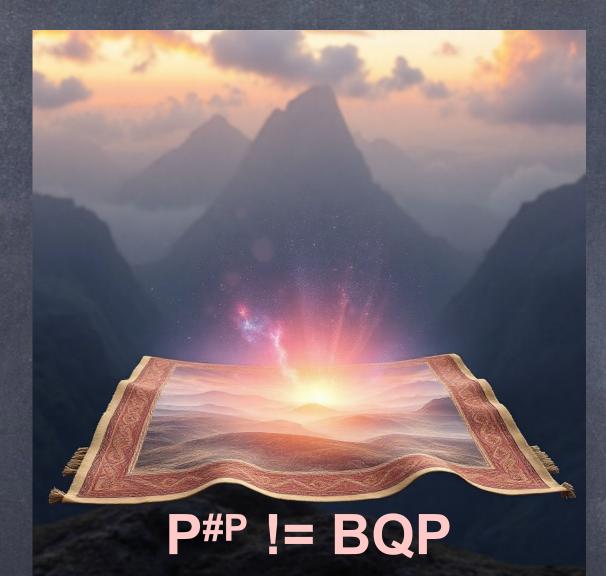
What hard problems should we base quantum cryptosystems on?

Quantum Complexity Theory

Traditional complexity theory considers the problem of deciding languages with *classical* instances

Quantum cryptographic tasks (e.g., breaking a quantum commitment) cannot be neatly framed as classical-instance problems

New "complexity theory" studying unitary transformations [Bostanci-Efron-Metger-Poremba-Qian-Yuen'23, Lombardi-Ma-Wright'23, Chia-Chung-Huang-Shih'24...]

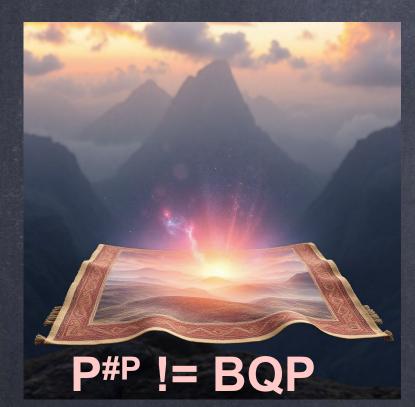


Commitments, MPC

Minicrypt: **OWF** exist

NP != BQP

QPKE, signatures, **Commitments, MPC**



EVcrypt: **OWSG** exist

Efficiently verifiable QPKE, Signatures

MiniQcrypt: **QOWF** exist

Q Cryptography with classical communication

0 Yamakawa'24]:

Unitary oracles separating OWSG and QOWF from one-way puzzles.

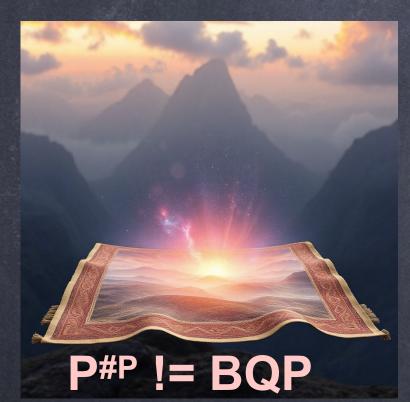
[Kretschmer-Qian-Tal'24]: 0

Classical oracles separating OWF from QOWF.

[Goldin-Morimae-Mutreja-Yamakawa'24]: 0

Unitary oracles separating QOWF from classical communication primitives.

[Chen-Coladangelo-Sattath'24, Bostanci-Chen-Nehoran'24, Behera-Malavolta-Morimae-Mour-



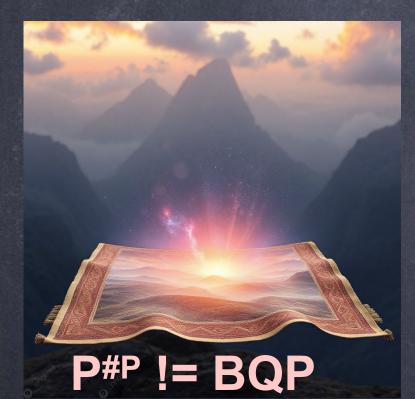
EVcrypt: **OWSG** exist

Efficiently verifiable **QPKE**, Signatures

MiniQcrypt: **QOWF** exist

QCMA != BQP

Q Cryptography with classical communication



EVcrypt: **OWSG** exist

Efficiently verifiable QPKE, Signatures

MiniQcrypt: **QOWF** exist

Q Cryptography with classical communication

Can we further weaken assumptions for commitments? (Can we efficiently implement every unitary if P = PSPACE?)

What is the relationship between quantum advantage and quantum cryptography?

When can we extract computational/cryptographic hardness from physical processes?

Open Problems

