ZK-IOPs Approaching Witness Length

Noga Ron-Zewi

Mor Weiss

Interactive Oracle Proofs (IOPs) [BCS16, RRR17]

- **Goal:** prove that $x \in L$
- $x \in L \Rightarrow$ verifier accepts whp
- $x \notin L \Rightarrow$ for any P^* , verifier rejects whp

Interactive Oracle Proofs (IOPs) [BCS16, RRR17]

• **Goal:** prove that $x \in L$

x, w

- $x \in L \implies$ verifier accepts whp
- $x \notin L \Rightarrow$ for any P^* , verifier rejects whp
- Probabilistically Checkable Proofs (PCPs) [ALMSS92,AS92]: no verifier messages, one oracle from P
- Motivation: hardness of approximation, succinct arguments R_1

Zero-Knowledge IOPs

Verifier learns only that $x \in L$

- Proof generation (necessarily) randomized
- Cannot get ZK against any PPT verifier (as in standard ZK proofs): *V*^{*} can read entire oracles
- Instead, i.t. ZK against query restricted V* (t-restricted verifier)
- Motivation: succinct BB ZK arguments

Proof Length in PCPs and IOPs

• Large body of works on reducing PCP/IOP length

- Proof length: total length of all prover messages
- -n is instance length
- IOPs beat SotA PCP construction, overcome known limitations* #queries

*Omitting many other works

Proof Length in **Zero-Knowledge** PCPs and IOPs

- First **ZK-PCPs** in late 1990s [KPT97]
- After ~30 years of research, still **no linear-length ZK-PCPs for NP**
- In particular, no "best of all worlds" ZK-PCPs
 - (Large) polynomial proof length [KPT97,IW14,IWY16]
 - Large query complexity of honest verifier [IKOS07,HVW21]
 - Inefficient honest prover [GOS24]
 - Adaptive honest verification [KPT97,IW14]
 - Inefficient ZK simulation [IWY16]
 - All constructions (except [GOS24]) eliminate algebraic structure of underlying (non-ZK) PCP
- **ZK-IOP** constructions significantly better than SotA ZK-PCPs: for n^{ϵ} -ZK
 - 2-round $\tilde{O}(n)$ -length for NTIME(n), honest verifier makes $poly \log n$ queries [BCGV16,BCFGRS17,BBHR19,CHMMVW20]
 - O(n)-length for R1CS over large \mathbb{F} [BCRSVW19] (even with O(n)-time P [BCL22])
 - Constructions are algebraic in nature (similar to standard PCPs)
- No ZK-IOPs approaching witness length (even with honest-verifier ZK)

This Work: ZK-IOPs approaching Witness Len

- **ZK-IOPs approaching witness length:** for every constant $\delta > 0$ 3SAT has ZK-IOP of length $(1 + \delta)m$
 - *m* is witness length (length of satisfying assignment)
 - m^{ϵ} -ZK, constant $\epsilon > 0$ depends on δ
 - 0(1) queries and rounds, constant soundness error
 - Sublinear-time verification (+ poly(m) local preprocessing), prover runs in poly time
- Previously:
 - Shortest IOPs: IOPs approaching witness length [RR20], no ZK
 - [RR20]'s IOPs for large class of languages, we focus on 3SAT
 - Shortest ZK-IOPs: O(n)-length ZK-IOPs [BCRSVW19,BCL22]
 - $(1 + \delta)m \text{ vs. } O(n)$
 - *n* is *instance length*, in worst case $n = m^3$
- New constructions of main building blocks
 - Strong ZK properties of general tensor codes
 - Sublinear-CC ZK sumcheck protocol for general tensor codes
 - Not just a means to an end!

How to Construct (ZK) IOPs

IOPs for 3SAT: Blueprint

IOPs for 3SAT Approaching Witness Length [RR20]

Zero-Knowledge IOPs for 3SAT: Blueprint

Zero-Knowledge IOPs for 3SAT: Blueprint

Tensors of Zero-Knowledge Codes

Tensor Codes 101

• **Base codes:** $C_1: \mathbb{F}^{k_1} \to \mathbb{F}^{n_1}, C_2: \mathbb{F}^{k_2} \to \mathbb{F}^{n_2}$ with encoding functions Enc_1, Enc_2

- Their **tensor** $C_1 \otimes C_2$: $\mathbb{F}^{k_1 \cdot k_2} \to \mathbb{F}^{n_1 \cdot n_2}$
 - − Columns $\in C_1$, rows $\in C_2$
 - Naturally extends to higher dimensions
- Very useful: tensor codes underly many PCP\IOP constructions
 - Special case: Low-Degree Extension (LDE) tensor of Reed-Solomon
- Today: tensors of *zero-knowledge* codes

C1 C2

 \dot{m}_k

 \dot{m}_2

....

 m_1

Zero-Knowledge Codes

- $C: \mathbb{F}^k \to \mathbb{F}^n$ with *randomized* encoding function *Enc*
- *t*-ZK: *t* codeword symbols reveal nothing about msg
- Tensors of ZK codes are very useful
 - Bivariate Shamir (tensor of Reed-Solomon) used in MPC protocols
 - 2-dim tensors used for verifiable secret sharing and MPC [CDM00]
 - Tensors of ZK codes underly ZK-IOPs [BCGV16,...,BCL22]
- Main question: how does tensoring affect ZK?
 - Our work: *m-dimensional* tensors of general codes
 - This talk: **2**-dimensional tensors $C_1 \otimes C_2$

Does Tensoring Preserve ZK?

- For $i = 1, 2, C_i : \mathbb{F}^{k_i} \to \mathbb{F}^{n_i}$ has t_i -ZK
- What ZK properties does $C_1 \otimes C_2$ have?
- We focus on a (specific) natural randomized encoding function

 Encoding used in Shamir sharing, and by [BCL22]
- [BCL22] show $C_1 \otimes C_2$ has min{ t_1, t_2 }-ZK
- [BCL22] asked: can bound be improved?
 - In particular, does $C_1 \otimes C_2$ have max{ t_1, t_2 }-ZK?
- We show: $C_1 \otimes C_2$ has ZK against:
 - Adversaries reading t₁ full rows
 - Adversaries reading t₂ full columns
 - In particular, answer to [BCL22]'s question is: YES!

- We show: $C_1 \otimes C_2$ has ZK against:
 - Adversaries reading t₁ full rows
 - Adversaries reading t₂ full columns
 - In particular, answer to [BCL22]'s question is: YES!
- Our results are more general:
 - Only one of the codes needs to have ZK
 - E.g., C_1 has t_1 -ZK $\Rightarrow C_1 \otimes C_2$ has ZK against t_1 full rows (even if C_2 has no ZK guarantees)
 - Ask now, decide later: ZK against adversaries that make point queries, then decide whether to query rows or columns (if C_1 , C_2 have "uniform" ZK)

Does Tensoring Preserve ZK? (Cont.)

- For $i = 1, 2, C_i : \mathbb{F}^{k_i} \to \mathbb{F}^{n_i}$ has t_i -ZK
- We show: $C_1 \otimes C_2$ has ZK against:
 - Adversaries reading t₁ full rows
 - Adversaries reading t₂ full columns

 $t_1 \cdot t_2$ codeword symbols \leq

- Question: can we get ZK against *arbitrary* $t_1 \cdot t_2$ point queries?
- We show the answer is NO: $\exists t$ -ZK C s.t. $C \otimes C$ not $\omega(t)$ -ZK
 - See paper for details

Zero-Knowledge IOPs for 3SAT: Blueprint

Zero-Knowledge IOPs for 3SAT: Blueprint

The Sumcheck Protocol [LFKN90,Mei13]

- The sumcheck protocol: IOP for checking $\sum_{i,j\in[k]}m(i,j) = \alpha$
 - Using encoding $c \in C \otimes C$ of $m \in \mathbb{F}^{k \cdot k}$
 - Amazingly, requires only one query to c!
- Many ZK-IOPs use **Zero-Knowledge sumchecks**
 - **ZK:** verifier's view efficiently simulatable with *few queries to c*
 - How few? One query\ same as verifier\ slightly more than verifier
 - Prover's messages reveal (almost) nothing on m!
- Existing ZK sumcheck IOPs: apply IOP on randomly shifted codeword c' (use standard sumcheck as BB)* [BCGV16,BCF+17,BCG+17a,BCR+19, CHM+20]

*Omitting sublinear-CC sumchecks for *polynomial codes* (with HVZK [XZZ+19] or for sparse polynomials [BCL22])

ZK Sumcheck with Sublinear CC?

- Existing ZK sumchecks have ≥ linear CC [BCGV16, BCFGRS17, BCGRSSVW19, ZXZS20, CHMMVW20]
 - Long masking hides (all but few) symbols of c
 - BB in underlying sumcheck

- Sublinear-CC ZK sumcheck requires shorter mask
- High-level idea for reducing randomness:
 - Exploit structure of *specific* sumcheck protocol (we use [RR20])
 - Tailor randomness to hide type of information sumcheck reveals
- Our ZK sumcheck reveals full *columns* of *c*
 - More than fully-masked sumchecks...
 - ... but combined with our new results on tensors of ZK codes, still suffices for ZK-IOPs

The Sumcheck of [RR20] (Simplified)

• $c \in C \otimes C$ encoding $m \in \mathbb{F}^{k \cdot k}$, $\alpha = \sum_{i,j \in [k]} m(i,j)$

Check $z \in C$ and z has "correct" sum

Based on slides by Ron Rothblum and Noga Ron-Zewi

Information Revealed in [RR20]'s Sumcheck

• $c \in C \otimes C$ encoding $m \in \mathbb{F}^{k \cdot k}$, $\alpha = \sum_{i,j \in [k]} m(i,j)$

Check $z \in C$ and z has "correct" sum

Masking [RR20]'s Sumcheck

- [RR20]'s sumcheck reveals row + column
 - Codewords in base code!
- Our sublinear-CC ZK sumcheck: mask in *base code*
 - Sending mask requires sublinear CC

Our ZK Sumcheck with Sublinear CC (Simplified)

- $C : \mathbb{F}^k \to \mathbb{F}^n$
- $c \in C \otimes C$ encoding $m \in \mathbb{F}^{k \cdot k}$

Wrapping Up: ZK-IOPs Approaching Witness Len

