ZK-10Ps Approaching Witness Length

Noga Ron-Zewi Mor Weiss
o ‘ 0\9 Bar-llan University

University of Haifa

Interactive Oracle Proofs (IOPs) [BCS16,RRR17]

* Goal: provethatx € L
e x €L = verifier accepts whp
e« x &L = forany P, verifier rejects whp

R,
“THm
>
<€ RZI
>

R, [Accept! ”

Interactive Oracle Proofs (IOPs) [BCS16,RRR17]

* Goal: provethatx € L
e x €L = verifier accepts whp
e« x &L = forany P, verifier rejects whp

* Probabilistically Checkable Proofs (PCPs) [ALMSSS2,AS592]:
no verifier messages, one oracle from P

* Motivation: hardness of approximation, succinct arguments

R,
“THm
>
<€ RZI
>
R,
<€
~ EEE W

Zero-Knowledge I0Ps

Verifier learns only that x € L

* Proof generation (necessarily) randomized

e Cannot get ZK against any PPT verifier (as in standard ZK proofs):
V" can read entire oracles

* Instead, i.t. ZK against query restricted V™ (t-restricted verifier)
-~ ¢ Motivation: succinct BB ZK arguments

Proof Length in PCPs and I0OPs

e Large body of works on reducing PCP/IOP length
— Proof length: total length of all prover messages

— n s instance length

* |OPs beat SotA PCP construction, overcome known limitations™
#queries

A
0(n¢) "'IZCPS °
I0Ps ..., cktSAT
~~~~~~ [BKKMS16]
cktSAT e PCP Thm
(and more) cktSA'F~.,. NTIME(n) [ALMSS92,
[RR20] [BCGRSl7]"[B,§HSV05, Din07] AS92]
0(1) o ®e -, ) ® Prooflen
- ——_——— >
(1+&)n 0(n) 0(n) poly(n)

*Omitting many other works



Proof Length in Zero-Knowledge PCPs and I0OPs

First ZK-PCPs in late 1990s [KPTS7]
After ~30 years of research, still no linear-length ZK-PCPs for NP

In particular, no “best of all worlds” ZK-PCPs
— (Large) polynomial proof length [KPT97,IW14,IWY16]
— Large query complexity of honest verifier [IKOSO7,HVW21]
— Inefficient honest prover [GOS24]
— Adaptive honest verification [KPTS7,IW14]
— Inefficient ZK simulation [IWY16]
— All constructions (except [GOS24]) eliminate algebraic structure of underlying
(non-ZK) PCP
ZK-10P constructions significantly better than SotA ZK-PCPs: for n€-ZK

— 2-round 0(n)-length for NTIME(n), honest verifier makes poly log n queries
[BCGV16,BCFGRS17,BBHR19,CHMMVW?20]

— 0(n)-length for R1CS over large IF [BCRSVW19] (even with O(n)-time P [BCL22])
— Constructions are algebraic in nature (similar to standard PCPs)

No ZK-10Ps approaching witness length (even with honest-verifier ZK)



This Work: ZK-IOPs approaching Witness Len

» ZK-1OPs approaching witness length:
for every constant & > 0 3SAT has ZK-IOP of length (1 + 6)m
— m is witness length (length of satisfying assignment)
— m¢&-ZK, constant € > 0 depends on &
— 0(1) queries and rounds, constant soundness error
— Sublinear-time verification (+ poly(m) local preprocessing), prover runs
in poly time
* Previously:
— Shortest IOPs: I0OPs approaching witness length [RR20], no ZK
* [RR20]’s 10Ps for large class of languages, we focus on 3SAT
— Shortest ZK-10Ps: O (n)-length ZK-10Ps [BCRSVW19,BCL22]
e (14+6)mvs.0(n)
* nisinstance length, in worst casen = m
* New constructions of main building blocks
— Strong ZK properties of general tensor codes
— Sublinear-CC ZK sumcheck protocol for general tensor codes
— Not just a means to an end!

3



How to Construct (ZK) IOPs



|OPs for 3SAT: Blueprint

Goal: Prove that ¢ € 3SAT

Encoding (Arithmetization)

w = C(w)
Usually, C is Low- EEEW

w
Degree Extension (LDE) >
Checkw € C
Verification —e =
q M -
— onw:verifyw |y
9 satisfies @ )

o o

p e




|OPs for 3SAT

Approaching Witness Length [RR20]
Goal: Prove that ¢ € 3SAT

Encoding (Arithmetization)

c =C(w)
C
US%LOW- > EEEW

Degreegfxi®asion (LDE)
C is high-rate encoding Check ¢ € C
Verification —e Sublinear CC =
< y :l‘/ ___ “code switching”:

Emulate sumcheck

onw:verifyw |y on W using c

satisfies @ )

\_

o o

p e




Zero-Knowledge I0Ps for 3SAT: Blueprint

Goal: Prove that ¢ € 3SAT

Encoding (Arithmetization)

c = C(w)
C is high-rate ¢ Eﬂ;ﬁ

zero-knowledge code

Checkc € C

Verificati —r  zero-knowledge
eritication Sul:lﬁinearcg R e

< Y, e

on W using c: verify |y
w satisfies

N\ ),

o o

p e




C is high-rate
zero-knowledge code



Tensors of Zero-Knowledge Codes



Tensor Codes 101

Base codes: C;: F*1 — F™, C,: F¥2 — F"2 with encoding
functions Ency, Enc,

(my, ...,my) — (cq,...,Cpn)

——t i t
m m; .. My € Cp .. Cp

Their tensor C; ® C,: Fk1k2 — Famz

— Columns € C4, rows € C,

— Naturally extends to higher dimensions
Very useful: tensor codes underly many PCP\IOP constructions

— Special case: Low-Degree Extension (LDE) - tensor of Reed-Solomon

Today: tensors of zero-knowledge codes « Ny —

A

Ency

l : |

Enc,

=




Zero-Knowledge Codes

C: F* — F™ with randomized encoding function Enc
t-ZK: t codeword symbols reveal nothing about msg

Tensors of ZK codes are very useful
— Bivariate Shamir (tensor of Reed-Solomon) used in MPC protocols

— 2-dim tensors used for verifiable secret sharing and MPC [CDMO00]
— Tensors of ZK codes underly ZK-10Ps [BCGV16,....,BCL22]

Main question: how does tensoring affect ZK?
— Our work: m-dimensional tensors of general codes
— This talk: 2-dimensional tensors C; @ C,



Does Tensoring Preserve ZK? L

Fori = 1,2, C;: F*i — F™ has t;-ZK
What ZK properties does C; @ C, have?
We focus on a (specific) natural randomized encoding function
— Encoding used in Shamir sharing, and by [BCL22]
[BCL22] show C; ® C, has min{t,, t,}-ZK
'BCL22] asked: can bound be improved?
— In particular, does C; @ C, have max{t, t,}-ZK?
We show: C; @ C, has ZK against:
— Adversaries reading t, full rows

— Adversaries reading t, full columns
— In particular, answer to [BCL22]‘s question is: YES!



Does Tensoring Preserve ZK?

| T T T T T T
m 1 7 &y €3 wo iCh

/Why rows\columns?
e  What we need for our short ZK-IOPs
e Secret shares in Bivariate Shamir

(m,f‘l, ...,/'"/\/,,1) —> (Cl,...,Cn)

I 1 t 1 t t t
m " e —1 Cl C2 Cn

\_

N

ncoding function
P2]

K3

We show: C; @ C, has ZK against:
— Adversaries reading t; full rows
— Adversaries reading t, full columns

— In particular, answer to [BCL22]‘s question is: YES!

Our results are more general:
— Only one of the codes needs to have ZK

* E.g.,, C; has t;-ZK = C; @ C, has ZK against t; full rows

(even if C, has no ZK guarantees)

— Ask now, decide later: ZK against adversaries that make point queries, then
decide whether to query rows or columns (if Cy, C, have “uniform” ZK)



Does Tensoring Preserve ZK? (Cont.)

e Fori= 1,2, C;: F*i — F™ has t;-ZK
 We show: C; @ C, has ZK against:

— Adversaries reading t; full rows
— Adversaries reading t, full columns

t{ - t, codeword symbols <

* Question: can we get ZK against arbitrary t, - t, point queries?
* We show the answer is NO: 3 t-ZK C s.t. C @ C not w(t)-ZK

— See paper for details



We show: high-rate C with ZK
against row\column adversaries




— zero-knowledée I

€

Sublinear C

X




The Sumcheck Protocol [LFKN90,Meil3]

* The sumcheck protocol: IOP for checking Z; jcxym(i, j) = «
— Using encodingc € C ® C of m € Fk*¥
— Amazingly, requires only one query to c!

* Many ZK-IOPs use Zero-Knowledge sumchecks

— ZK: verifier’s view efficiently simulatable with few queries to ¢
* How few? One query\ same as verifier\ slightly more than verifier

— Prover’s messages reveal (almost) nothing on m!

* Existing ZK sumcheck IOPs: apply IOP on randomly shifted
codeword ¢’ (use standard sumcheck as BB)*
[BCGV16,BCF+17,BCG+17a,BCR+19, CHM+20]

> linear CC!

e ]

C

*Omitting sublinear-CC sumchecks for polynomial codes (with HVZK [X77+19]
or for sparse polynomials [BCL22])




/K Sumcheck with Sublinear CC?

Existing ZK sumchecks have = linear CC [BCGV16, BCFGRS17,
BCGRSSVW19, 7X7S520, CHMMVW20]

— Long masking hides (all but few) symbols of ¢

— BB in underlying sumcheck

Sublinear-CC ZK sumcheck requires shorter mask
High-level idea for reducing randomness:

— Exploit structure of specific sumcheck protocol (we use [RR20])
— Tailor randomness to hide type of information sumcheck reveals

Our ZK sumcheck reveals full columns of ¢

— More than fully-masked sumchecks...

— ... but combined with our new results on tensors of ZK codes, still suffices
for ZK-IOPs



The Sumcheck of [RR20] (Simplified)

* c€C Q Cencodingm € F¥*, a = 3; icrym(, j)
o

-

Check z € C and
Z has “correct” sum

)

P Based on slides by Ron Rothblum and Noga Ron-Zewi V O




Information Revealed in [RR20]‘s Sumcheck
* c€C Q Cencodingm € F¥*, a = 3; icrym(, j) /\
c’

a
=

-

One row + one column:
Codewords in base code!

|,

VA

Check z € C and
Z has “correct” sum

m e o

p e




Masking |[RR20]‘s Sumcheck

 [RR20]’s sumcheck reveals row + column
— Codewords in base code!

e Our sublinear-CC ZK sumcheck: mask in base code
— Sending mask requires sublinear CC




Our ZK Sumcheck with Sublinear CC (Simplified)

« C:F¥>F"

e ¢ €C ® C encodingm € FF¥

e

Checkr € C

Check z’' € C with

>  “correct” sum




Wrapping Up: ZK-IOPs Approaching Witness Len

* Strong ZK properties for tensor codes
« ZK against max{t,, t,} queries
» ZK against rows\columns
* Limitations: can’t achieve t; - t,-ZK in
general case

We show: high-rate C with ZK
against row\column adversaries

We show:
Sublinear-CC ZK sumcheck
(reveals columns of c)

| How? Mask in base code |

U

First ZK-IOPs approaching witness length
For details: eprint.iacr.org/2024/816

Thank you!



	Slide 1: ZK-IOPs Approaching Witness Length
	Slide 2: Interactive Oracle Proofs (IOPs) [BCS16,RRR17]
	Slide 3: Interactive Oracle Proofs (IOPs) [BCS16,RRR17]
	Slide 4: Zero-Knowledge IOPs
	Slide 5: Proof Length in PCPs and IOPs
	Slide 6: Proof Length in Zero-Knowledge PCPs and IOPs
	Slide 7: This Work: ZK-IOPs approaching Witness Len
	Slide 8: How to Construct (ZK) IOPs
	Slide 9: IOPs for 3SAT: Blueprint
	Slide 10: IOPs for 3SAT  Approaching Witness Length [RR20]
	Slide 11: Zero-Knowledge IOPs for 3SAT: Blueprint
	Slide 12: Zero-Knowledge IOPs for 3SAT: Blueprint
	Slide 13: Tensors of Zero-Knowledge Codes
	Slide 14: Tensor Codes 101
	Slide 15: Zero-Knowledge Codes
	Slide 16: Does Tensoring Preserve ZK?
	Slide 17: Does Tensoring Preserve ZK?
	Slide 18: Does Tensoring Preserve ZK? (Cont.)
	Slide 19: Zero-Knowledge IOPs for 3SAT: Blueprint
	Slide 20: Zero-Knowledge IOPs for 3SAT: Blueprint
	Slide 21: The Sumcheck Protocol [LFKN90,Mei13]
	Slide 22: ZK Sumcheck with Sublinear CC?
	Slide 23: The Sumcheck of [RR20] (Simplified)
	Slide 24: Information Revealed in [RR20]‘s Sumcheck
	Slide 25: Masking [RR20]‘s Sumcheck
	Slide 26: Our ZK Sumcheck with Sublinear CC (Simplified)
	Slide 27: Wrapping Up: ZK-IOPs Approaching Witness Len

