ZK-IOPs Approaching Witness Length

Noga Ron-Zewi **Mor Weiss**

Interactive Oracle Proofs (IOPs) [BCS16,RRR17]

- **Goal:** prove that $x \in L$
- $x \in L \Rightarrow$ verifier accepts whp
- $x \notin L \Rightarrow$ for any P^* , verifier rejects whp

 χ

Interactive Oracle Proofs (IOPs) [BCS16,RRR17]

- **Goal:** prove that $x \in L$
- $x \in L \Rightarrow$ verifier accepts whp
- $x \notin L \Rightarrow$ for any P^* , verifier rejects whp
- *Probabilistically Checkable Proofs (PCPs)* [ALMSS92,AS92]: no verifier messages, one oracle from P
- **Motivation:** hardness of approximation, succinct arguments R_1

 \mathcal{X}

Zero-Knowledge IOPs

Verifier learns only that $x \in L$

- Proof generation (necessarily) randomized
- Cannot get ZK against any PPT verifier (as in standard ZK proofs): ∗ can read entire oracles
- Instead, i.t. ZK against *query restricted V^{*} (t-restricted verifier)*
- **Motivation:** succinct BB ZK arguments

Proof Length in PCPs and IOPs

• **Large body of works on reducing PCP/IOP length**

- Proof length: total length of all prover messages
- $-$ *n* is instance length
- IOPs beat SotA PCP construction, overcome known limitations* **#queries**

*Omitting many other works

Proof Length in **Zero-Knowledge** PCPs and IOPs

- First **ZK-PCPs** in late 1990s [KPT97]
- After ~30 years of research, still **no linear-length ZK-PCPs for NP**
- In particular, no "best of all worlds" ZK-PCPs
	- (Large) polynomial proof length [KPT97,IW14,IWY16]
	- Large query complexity of honest verifier [IKOS07,HVW21]
	- Inefficient honest prover [GOS24]
	- Adaptive honest verification [KPT97,IW14]
	- Inefficient ZK simulation [IWY16]
	- All constructions (except [GOS24]) eliminate algebraic structure of underlying (non-ZK) PCP
- **ZK-IOP** constructions significantly better than SotA ZK-PCPs: for n^{ϵ} -ZK
	- 2-round $\tilde{O}(n)$ -length for NTIME (n) , honest verifier makes $poly \log n$ queries [BCGV16,BCFGRS17,BBHR19,CHMMVW20]
	- $-$ **O(n)-length** for R1CS over large \mathbb{F} [BCRSVW19] (even with $O(n)$ -time P [BCL22])
	- Constructions are algebraic in nature (similar to standard PCPs)
- *No ZK-IOPs approaching witness length* (even with *honest-verifier* ZK)

This Work: ZK-IOPs approaching Witness Len

- **ZK-IOPs approaching witness length:** for every constant $\delta > 0$ 3SAT has ZK-IOP of length $(1 + \delta)m$
	- $-$ m is witness length (length of satisfying assignment)
	- m^{ϵ} -ZK, constant $\epsilon > 0$ depends on δ
	- $O(1)$ queries and rounds, constant soundness error
	- Sublinear-time verification $(+\mathop{poly}(m))$ local preprocessing), prover runs in poly time
- Previously:
	- **Shortest IOPs:** IOPs approaching witness length [RR20], *no ZK*
		- [RR20]'s IOPs for large class of languages, we focus on 3SAT
	- $-$ **Shortest ZK-IOPs:** $O(n)$ -length ZK-IOPs [BCRSVW19,BCL22]
		- $(1 + \delta)m$ vs. $O(n)$
		- *n* is *instance length*, in worst case $n = m³$
- **New constructions of main building blocks**
	- Strong **ZK properties** of general **tensor codes**
	- Sublinear-CC **ZK sumcheck** protocol for general tensor codes
	- Not just a means to an end!

How to Construct (ZK) IOPs

IOPs for 3SAT: Blueprint

Goal: Prove that $\varphi \in 3SAT$

IOPs for 3SAT **Approaching Witness Length** [RR20]

Goal: Prove that $\varphi \in 3SAT$

Zero-Knowledge IOPs for 3SAT: Blueprint

Goal: Prove that $\varphi \in 3SAT$

 \boldsymbol{V}

Zero-Knowledge IOPs for 3SAT: Blueprint

Goal: Prove that $\varphi \in 3SAT$

Tensors of Zero-Knowledge Codes

Tensor Codes 101

• Base codes: $C_1: \mathbb{F}^{k_1} \to \mathbb{F}^{n_1}$, $C_2: \mathbb{F}^{k_2} \to \mathbb{F}^{n_2}$ with encoding functions Enc_1, Enc_2 $(m_1, ..., m_k) \mapsto (c_1, ..., c_n)$

- $-$ Columns ∈ C_1 , rows ∈ C_2
- Naturally extends to higher dimensions
- Very useful: tensor codes underly many PCP\IOP constructions
	- Special case: Low-Degree Extension (LDE) tensor of Reed-Solomon
- **Today:** tensors of *zero-knowledge* codes

 c_1 c_2

 m_k

 $m₁$

 $m₂$

 \dddotsc

Zero-Knowledge Codes

- $C \colon \mathbb{F}^k \to \mathbb{F}^n$ with *randomized* encoding function Enc
- **-ZK:** codeword symbols reveal nothing about msg
- Tensors of ZK codes are very useful
	- Bivariate Shamir (tensor of Reed-Solomon) used in MPC protocols
	- 2-dim tensors used for verifiable secret sharing and MPC [CDM00]
	- Tensors of ZK codes underly ZK-IOPs [BCGV16,….,BCL22]
- **Main question:** how does tensoring affect ZK?
	- $-$ Our work: *m-dimensional* tensors of general codes
	- $-$ This talk: 2-dimensional tensors C_1 ⊗ C_2

Does Tensoring Preserve ZK?

- For $i = 1,2$, $C_i: \mathbb{F}^{k_i} \to \mathbb{F}^{n_i}$ has t_i -ZK
- What ZK properties does $C_1 \otimes C_2$ have?
- We focus on a (specific) natural randomized encoding function – Encoding used in Shamir sharing, and by [BCL22]
- [BCL22] show $C_1 \otimes C_2$ has $\min\{t_1, t_2\}$ -ZK
- [BCL22] asked: can bound be improved?
	- In particular, does $C_1 \otimes C_2$ have max $\{t_1, t_2\}$ -ZK?
- **We show:** $C_1 \otimes C_2$ has ZK against:
	- $-$ Adversaries reading t_1 *full rows*
	- $-$ Adversaries reading t_2 *full columns*
	- In particular, answer to [BCL22]'s question is: YES!

- **We show:** $C_1 \otimes C_2$ has ZK against:
	- $-$ Adversaries reading t_1 *full rows*
	- $-$ Adversaries reading t_2 *full columns*
	- In particular, answer to [BCL22]'s question is: YES!

 $\overline{}$ 2K?

- **Our results are more general:**
	- *Only one* of the codes needs to have ZK
		- E.g., C_1 has t_1 -ZK \Rightarrow $C_1 \otimes C_2$ has ZK against t_1 full rows (even if C_2 has no ZK guarantees)
	- *Ask now, decide later:* ZK against adversaries that make point queries, then decide whether to query rows or columns (if C_1 , C_2 have "uniform" ZK)

Does Tensoring Preserve ZK? (Cont.)

- For $i = 1,2$, $C_i: \mathbb{F}^{k_i} \to \mathbb{F}^{n_i}$ has t_i -ZK
- **We show:** $C_1 \otimes C_2$ has ZK against:
	- $-$ Adversaries reading t_1 *full rows*
	- $-$ Adversaries reading t_2 *full columns*

 $t_1 \cdot t_2$ codeword symbols \leq

- **Question:** can we get ZK against *arbitrary* $t_1 \cdot t_2$ point queries?
- **We show the answer is NO:** \exists t-ZK C s.t. $C \otimes C$ not $\omega(t)$ -ZK
	- See paper for details

The Sumcheck Protocol [LFKN90,Mei13]

- **The sumcheck protocol:** IOP for checking $\Sigma_{i,j\in[k]}m(i,j) = \alpha$
	- $-$ Using encoding $c \in \mathcal{C} \otimes \mathcal{C}$ of $m \in \mathbb{F}^{k \cdot k}$
	- $-$ Amazingly, requires *only one* query to *c*!
- Many ZK-IOPs use *Zero-Knowledge* **sumchecks**
	- **ZK:** verifier's view efficiently simulatable with *few queries to*
		- How few? One query\ same as verifier\ slightly more than verifier
	- Prover's messages reveal (almost) nothing on $m!$
- Existing ZK sumcheck IOPs: apply IOP on randomly shifted codeword c' (use standard sumcheck as BB)* [BCGV16,BCF+17,BCG+17a,BCR+19, CHM+20]

*Omitting sublinear-CC sumchecks for *polynomial codes* (with HVZK [XZZ+19] or for sparse polynomials [BCL22])

ZK Sumcheck with Sublinear CC?

- Existing ZK sumchecks have \geq linear CC [BCGV16, BCFGRS17, BCGRSSVW19, ZXZS20, CHMMVW20]
	- $-$ Long masking hides (all but few) symbols of c
	- BB in underlying sumcheck

- Sublinear-CC ZK sumcheck requires shorter mask
- **High-level idea for reducing randomness:**
	- Exploit structure of *specific* sumcheck protocol (we use [RR20])
	- Tailor randomness to hide type of information sumcheck reveals
- Our ZK sumcheck reveals full *columns* of
	- More than fully-masked sumchecks…
	- … but combined with our new results on tensors of ZK codes, still suffices for ZK-IOPs

The Sumcheck of [RR20] (Simplified)

• $c \in C \otimes C$ encoding $m \in \mathbb{F}^{k \cdot k}$, $\alpha = \Sigma_{i,j \in [k]} m(i,j)$

Check $z \in C$ and z has "correct" sum

Based on slides by Ron Rothblum and Noga Ron-Zewi

Information Revealed in [RR20]'s Sumcheck

• $c \in C \otimes C$ encoding $m \in \mathbb{F}^{k \cdot k}$, $\alpha = \Sigma_{i,j \in [k]} m(i,j)$

Check $z \in C$ and z has "correct" sum

Masking [RR20]'s Sumcheck

- [RR20]'s sumcheck reveals row + column
	- Codewords in base code!
- Our sublinear-CC ZK sumcheck: mask in *base code*
	- Sending mask requires *sublinear* CC

Our ZK Sumcheck with Sublinear CC (Simplified)

- $C: \mathbb{F}^k \to \mathbb{F}^n$
- $c \in \mathcal{C} \otimes \mathcal{C}$ encoding $m \in \mathbb{F}^{k \cdot k}$

Wrapping Up: ZK-IOPs Approaching Witness Len

