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Interactive Oracle Proofs (IOPs) [BCS16,RRR17]
• Goal: prove that 𝑥 ∈ 𝐿

• 𝑥 ∈ 𝐿 ⇒ verifier accepts whp

• 𝑥 ∉ 𝐿 ⇒ for any 𝑃∗, verifier rejects whp
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Interactive Oracle Proofs (IOPs) [BCS16,RRR17]
• Goal: prove that 𝑥 ∈ 𝐿

• 𝑥 ∈ 𝐿 ⇒ verifier accepts whp

• 𝑥 ∉ 𝐿 ⇒ for any 𝑃∗, verifier rejects whp

• Probabilistically Checkable Proofs (PCPs) [ALMSS92,AS92]: 
no verifier messages, one oracle from 𝑃

• Motivation: hardness of approximation, succinct arguments
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𝑽

Zero-Knowledge IOPs
Verifier learns only that 𝒙 ∈ 𝑳

𝑥 𝑥

𝑽∗
𝑺𝒊𝒎

𝑥

𝑽𝑽∗

• Proof generation (necessarily) randomized
• Cannot get ZK against any PPT verifier (as in standard ZK proofs): 

𝑉∗ can read entire oracles
• Instead, i.t. ZK against query restricted 𝑉∗ (𝑡-restricted verifier)
• Motivation: succinct BB ZK arguments
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PCPs
IOPs

Proof Length in PCPs and IOPs
• Large body of works on reducing PCP/IOP length

– Proof length: total length of all prover messages

– 𝑛 is instance length

• IOPs beat SotA PCP construction, overcome known limitations*

𝑝𝑜𝑙𝑦 𝑛෨𝑂 𝑛𝑂 𝑛

PCP Thm
[ALMSS92,

AS92]
𝑂 1

𝑂 𝑛𝜖

NTIME 𝑛
[BGHSV05, Din07]

cktSAT
[BKKMS16]

#queries

Proof len

1 + 𝛿 𝑛

cktSAT
[BCGRS17]

cktSAT
(and more)

[RR20]

*Omitting many other works



Proof Length in Zero-Knowledge PCPs and IOPs
• First ZK-PCPs in late 1990s [KPT97]

• After ~30 years of research, still no linear-length ZK-PCPs for NP

• In particular, no “best of all worlds” ZK-PCPs

– (Large) polynomial proof length [KPT97,IW14,IWY16]

– Large query complexity of honest verifier [IKOS07,HVW21]

– Inefficient honest prover [GOS24]

– Adaptive honest verification [KPT97,IW14]

– Inefficient ZK simulation [IWY16]

– All constructions (except [GOS24]) eliminate algebraic structure of underlying 
(non-ZK) PCP

• ZK-IOP constructions significantly better than SotA ZK-PCPs: for 𝑛𝜖-ZK

– 2-round ෨𝑂 𝑛 -length for NTIME 𝑛 , honest verifier makes 𝑝𝑜𝑙𝑦 log 𝑛 queries 
[BCGV16,BCFGRS17,BBHR19,CHMMVW20]

– 𝑶 𝒏 -length for R1CS over large 𝔽 [BCRSVW19] (even with 𝑂 𝑛 -time 𝑃 [BCL22])

– Constructions are algebraic in nature (similar to standard PCPs)

• No ZK-IOPs approaching witness length (even with honest-verifier ZK)



This Work: ZK-IOPs approaching Witness Len
• ZK-IOPs approaching witness length: 

for every constant 𝛿 > 0 3SAT has ZK-IOP of length 1 + 𝛿 𝑚
– 𝑚 is witness length (length of satisfying assignment)

– 𝑚𝜖-ZK, constant 𝜖 > 0 depends on 𝛿

– 𝑂 1 queries and rounds, constant soundness error

– Sublinear-time verification (+ 𝑝𝑜𝑙𝑦 𝑚 local preprocessing), prover runs 
in poly time 

• Previously:
– Shortest IOPs: IOPs approaching witness length [RR20], no ZK

• [RR20]’s IOPs for large class of languages, we focus on 3SAT

– Shortest ZK-IOPs: 𝑂 𝑛 -length ZK-IOPs [BCRSVW19,BCL22]

• 1 + 𝛿 𝑚 vs. 𝑂 𝑛

• 𝑛 is instance length, in worst case 𝑛 = 𝑚3

• New constructions of main building blocks
– Strong ZK properties of general tensor codes

– Sublinear-CC ZK sumcheck protocol for general tensor codes

– Not just a means to an end!



How to Construct (ZK) IOPs



Encoding (Arithmetization)

IOPs for 3SAT: Blueprint
Goal: Prove that 𝜑 ∈ 3𝑆𝐴𝑇
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Encoding (Arithmetization)

IOPs for 3SAT 
Approaching Witness Length [RR20]

Goal: Prove that 𝜑 ∈ 3𝑆𝐴𝑇
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Encoding (Arithmetization)

Zero-Knowledge IOPs for 3SAT: Blueprint
Goal: Prove that 𝜑 ∈ 3𝑆𝐴𝑇
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Tensors of Zero-Knowledge Codes



Tensor Codes 101
• Base codes: 𝐶1: 𝔽

𝑘1 → 𝔽𝑛1, 𝐶2: 𝔽
𝑘2 → 𝔽𝑛2 with encoding 

functions 𝐸𝑛𝑐1, 𝐸𝑛𝑐2

• Their tensor 𝑪𝟏 ⊗𝑪𝟐: 𝔽
𝑘1⋅𝑘2 → 𝔽𝑛1⋅𝑛2

– Columns ∈ 𝐶1, rows ∈ 𝐶2
– Naturally extends to higher dimensions

• Very useful: tensor codes underly many PCP\IOP constructions
– Special case: Low-Degree Extension (LDE) - tensor of Reed-Solomon

• Today: tensors of zero-knowledge codes

𝑘1

𝑘2
𝑛1

𝑛2

⇓

𝐸𝑛𝑐1

⇓
𝐸𝑛𝑐2



• 𝐶: 𝔽𝑘 → 𝔽𝑛 with randomized encoding function 𝐸𝑛𝑐

• 𝒕-ZK: 𝑡 codeword symbols reveal nothing about msg

• Tensors of ZK codes are very useful
– Bivariate Shamir (tensor of Reed-Solomon) used in MPC protocols

– 2-dim tensors used for verifiable secret sharing and MPC [CDM00]

– Tensors of ZK codes underly ZK-IOPs [BCGV16,….,BCL22] 

• Main question: how does tensoring affect ZK?
– Our work: 𝑚-dimensional tensors of general codes

– This talk: 2-dimensional tensors 𝐶1 ⊗𝐶2

Zero-Knowledge Codes



Does Tensoring Preserve ZK?
• For 𝑖 = 1,2, 𝐶𝑖: 𝔽

𝑘𝑖 → 𝔽𝑛𝑖 has 𝑡𝑖-ZK

• What ZK properties does 𝐶1 ⊗𝐶2 have?

• We focus on a (specific) natural randomized encoding function

– Encoding used in Shamir sharing, and by [BCL22]

• [BCL22] show 𝐶1 ⊗𝐶2 has min 𝑡1, 𝑡2 -ZK

• [BCL22] asked: can bound be improved?

– In particular, does 𝐶1 ⊗𝐶2 have max 𝑡1, 𝑡2 -ZK?

• We show: 𝐶1 ⊗𝐶2 has ZK against:

– Adversaries reading 𝑡1 full rows

– Adversaries reading 𝑡2 full columns

– In particular, answer to [BCL22]‘s question is: YES!



Does Tensoring Preserve ZK?
• For 𝑖 = 1,2, 𝐶𝑖: 𝔽

𝑘𝑖 → 𝔽𝑛𝑖 has 𝑡𝑖-ZK

• What ZK properties does 𝐶1 ⊗𝐶2 have?

• We focus on a (specific) natural randomized encoding function
– Encoding used in Shamir sharing, and by [BCL22]

• [BCL22] show 𝐶1 ⊗𝐶2 has min 𝑡1, 𝑡2 -ZK

• [BCL22] asked: can bound be improved?
– In particular, does 𝐶1 ⊗𝐶2 have max 𝑡1, 𝑡2 -ZK?

• We show: 𝐶1 ⊗𝐶2 has ZK against:
– Adversaries reading 𝑡1 full rows

– Adversaries reading 𝑡2 full columns

– In particular, answer to [BCL22]‘s question is: YES!

• Our results are more general: 
– Only one of the codes needs to have ZK

• E.g., 𝐶1 has 𝑡1-ZK ⇒ 𝐶1 ⊗𝐶2 has ZK against 𝑡1 full rows 
(even if 𝐶2 has no ZK guarantees)

– Ask now, decide later: ZK against adversaries that make point queries, then 
decide whether to query rows or columns (if 𝐶1, 𝐶2 have “uniform” ZK)

Why rows\columns? 
• What we need for our short ZK-IOPs
• Secret shares in Bivariate Shamir



Does Tensoring Preserve ZK? (Cont.)
• For 𝑖 = 1,2, 𝐶𝑖: 𝔽

𝑘𝑖 → 𝔽𝑛𝑖 has 𝑡𝑖-ZK

• We show: 𝐶1 ⊗𝐶2 has ZK against:
– Adversaries reading 𝑡1 full rows

– Adversaries reading 𝑡2 full columns

• Question: can we get ZK against arbitrary 𝑡1 ⋅ 𝑡2 point queries?

• We show the answer is NO: ∃ 𝑡-ZK 𝐶 s.t. 𝐶 ⊗ 𝐶 not 𝜔 𝑡 -ZK
– See paper for details
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ℓ

𝒕𝟏 ⋅ 𝒕𝟐 codeword symbols ≤
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We show: high-rate 𝐶 with ZK 
against row\column adversaries



Encoding (Arithmetization)

Zero-Knowledge IOPs for 3SAT: Blueprint
Goal: Prove that 𝜑 ∈ 3𝑆𝐴𝑇

𝑷

𝜑,𝑤

𝑽

𝜑

𝑐
𝑐 ≔ 𝐶 𝑤

Check 𝑐 ∈ 𝐶

Verification

𝐶 is high-rate 
zero-knowledge code
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The Sumcheck Protocol [LFKN90,Mei13]
• The sumcheck protocol: IOP for checking Σ𝑖,𝑗∈ 𝑘 𝑚 𝑖, 𝑗 = 𝛼

– Using encoding 𝑐 ∈ 𝐶 ⊗ 𝐶 of 𝑚 ∈ 𝔽𝑘⋅𝑘

– Amazingly, requires only one query to 𝑐!

• Many ZK-IOPs use Zero-Knowledge sumchecks
– ZK: verifier’s view efficiently simulatable with few queries to 𝑐

• How few? One query\ same as verifier\ slightly more than verifier

– Prover’s messages reveal (almost) nothing on 𝑚!

• Existing ZK sumcheck IOPs: apply IOP on randomly shifted 
codeword 𝑐′ (use standard sumcheck as BB)* 
[BCGV16,BCF+17,BCG+17a,BCR+19, CHM+20]

𝒄

+

𝑹 = 𝑪⊗ 𝑪 𝒓 𝒄′

=𝜸

≥ linear CC!

*Omitting sublinear-CC sumchecks for polynomial codes (with HVZK [XZZ+19] 
or for sparse polynomials [BCL22])



ZK Sumcheck with Sublinear CC?
• Existing ZK sumchecks have ≥ linear CC [BCGV16, BCFGRS17,

BCGRSSVW19, ZXZS20, CHMMVW20]
– Long masking hides (all but few) symbols of 𝑐

– BB in underlying sumcheck

• Sublinear-CC ZK sumcheck requires shorter mask

• High-level idea for reducing randomness: 
– Exploit structure of specific sumcheck protocol (we use [RR20])

– Tailor randomness to hide type of information sumcheck reveals

• Our ZK sumcheck reveals full columns of 𝑐
– More than fully-masked sumchecks…

– … but combined with our new results on tensors of ZK codes, still suffices 
for ZK-IOPs



The Sumcheck of [RR20] (Simplified)

𝑷

𝑚, 𝑐, 𝛼

𝑽

𝛼

• 𝑐 ∈ 𝐶 ⊗ 𝐶 encoding 𝑚 ∈ 𝔽𝑘⋅𝑘, 𝛼 = Σ𝑖,𝑗∈ 𝑘 𝑚 𝑖, 𝑗

+

𝒛 𝒛

Check 𝑧 ∈ 𝐶 and 
𝑧 has “correct” sum

𝒄𝒋

Based on slides by Ron Rothblum and Noga Ron-Zewi



Information Revealed in [RR20]‘s Sumcheck

𝑷

𝑚, 𝑐, 𝛼

𝑽

𝛼

+

𝒛 𝒛

𝒄𝒋

One row + one column:
Codewords in base code!

Check 𝑧 ∈ 𝐶 and 
𝑧 has “correct” sum

• 𝑐 ∈ 𝐶 ⊗ 𝐶 encoding 𝑚 ∈ 𝔽𝑘⋅𝑘, 𝛼 = Σ𝑖,𝑗∈ 𝑘 𝑚 𝑖, 𝑗



Masking [RR20]‘s Sumcheck
• [RR20]’s sumcheck reveals row + column

– Codewords in base code!

• Our sublinear-CC ZK sumcheck: mask in base code
– Sending mask requires sublinear CC

sum

sum

𝒓
+



Our ZK Sumcheck with Sublinear CC (Simplified)
• 𝐶: 𝔽𝑘 → 𝔽𝑛

• 𝑐 ∈ 𝐶 ⊗ 𝐶 encoding 𝑚 ∈ 𝔽𝑘⋅𝑘

𝑷

𝑚, 𝑐, 𝛼

𝛾

𝑟

+

𝒛

𝑧′ ≔ 𝛾𝑧 + 𝑟
Check 𝑧′ ∈ 𝐶 with 

“correct” sum

Check 𝑟 ∈ 𝐶

𝑽

𝛼



Check 𝑐 ∈ 𝐶

Wrapping Up: ZK-IOPs Approaching Witness Len

𝐶 is high-rate ZK codeWe show: high-rate 𝐶 with ZK 
against row\column adversaries

• Strong ZK properties for tensor codes
• ZK against max 𝑡1, 𝑡2 queries
• ZK against rows\columns

• Limitations: can’t achieve 𝑡1 ⋅ 𝑡2-ZK in 
general case

For details: eprint.iacr.org/2024/816

Thank you!

First ZK-IOPs approaching witness length
⇓

We show: 
Sublinear-CC ZK sumcheck

(reveals columns of 𝑐)

How? Mask in base code
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