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Interactive Oracle Proofs (IOPs) [BCS16,RRR17]

* Goal: provethatx € L
e x €L = verifier accepts whp
e« x &L = forany P, verifier rejects whp
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Interactive Oracle Proofs (IOPs) [BCS16,RRR17]

* Goal: provethatx € L
e x €L = verifier accepts whp
e« x &L = forany P, verifier rejects whp

* Probabilistically Checkable Proofs (PCPs) [ALMSSS2,AS592]:
no verifier messages, one oracle from P

* Motivation: hardness of approximation, succinct arguments
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Zero-Knowledge I0Ps

Verifier learns only that x € L

* Proof generation (necessarily) randomized

e Cannot get ZK against any PPT verifier (as in standard ZK proofs):
V" can read entire oracles

* Instead, i.t. ZK against query restricted V™ (t-restricted verifier)
-~ ¢ Motivation: succinct BB ZK arguments




Proof Length in PCPs and I0OPs

e Large body of works on reducing PCP/IOP length
— Proof length: total length of all prover messages

— n s instance length

* |OPs beat SotA PCP construction, overcome known limitations™
#queries
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*Omitting many other works



Proof Length in Zero-Knowledge PCPs and I0OPs

First ZK-PCPs in late 1990s [KPTS7]
After ~30 years of research, still no linear-length ZK-PCPs for NP

In particular, no “best of all worlds” ZK-PCPs
— (Large) polynomial proof length [KPT97,IW14,IWY16]
— Large query complexity of honest verifier [IKOSO7,HVW21]
— Inefficient honest prover [GOS24]
— Adaptive honest verification [KPTS7,IW14]
— Inefficient ZK simulation [IWY16]
— All constructions (except [GOS24]) eliminate algebraic structure of underlying
(non-ZK) PCP
ZK-10P constructions significantly better than SotA ZK-PCPs: for n€-ZK

— 2-round 0(n)-length for NTIME(n), honest verifier makes poly log n queries
[BCGV16,BCFGRS17,BBHR19,CHMMVW?20]

— 0(n)-length for R1CS over large IF [BCRSVW19] (even with O(n)-time P [BCL22])
— Constructions are algebraic in nature (similar to standard PCPs)

No ZK-10Ps approaching witness length (even with honest-verifier ZK)



This Work: ZK-IOPs approaching Witness Len

» ZK-1OPs approaching witness length:
for every constant & > 0 3SAT has ZK-IOP of length (1 + 6)m
— m is witness length (length of satisfying assignment)
— m¢&-ZK, constant € > 0 depends on &
— 0(1) queries and rounds, constant soundness error
— Sublinear-time verification (+ poly(m) local preprocessing), prover runs
in poly time
* Previously:
— Shortest IOPs: I0OPs approaching witness length [RR20], no ZK
* [RR20]’s 10Ps for large class of languages, we focus on 3SAT
— Shortest ZK-10Ps: O (n)-length ZK-10Ps [BCRSVW19,BCL22]
e (14+6)mvs.0(n)
* nisinstance length, in worst casen = m
* New constructions of main building blocks
— Strong ZK properties of general tensor codes
— Sublinear-CC ZK sumcheck protocol for general tensor codes
— Not just a means to an end!
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How to Construct (ZK) IOPs



|OPs for 3SAT: Blueprint

Goal: Prove that ¢ € 3SAT

Encoding (Arithmetization)

w = C(w)
Usually, C is Low- EEEW

w
Degree Extension (LDE) >
Checkw € C
Verification —e =
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— onw:verifyw |y
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o o

p e




|OPs for 3SAT

Approaching Witness Length [RR20]
Goal: Prove that ¢ € 3SAT

Encoding (Arithmetization)

c =C(w)
C
US%LOW- > EEEW

Degreegfxi®asion (LDE)
C is high-rate encoding Check ¢ € C
Verification —e Sublinear CC =
< y :l‘/ ___ “code switching”:

Emulate sumcheck

onw:verifyw |y on W using c

satisfies @ )
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Zero-Knowledge I0Ps for 3SAT: Blueprint

Goal: Prove that ¢ € 3SAT

Encoding (Arithmetization)

c = C(w)
C is high-rate ¢ Eﬂ;ﬁ

zero-knowledge code

Checkc € C

Verificati —r  zero-knowledge
eritication Sul:lﬁinearcg R e

< Y, e

on W using c: verify |y
w satisfies
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C is high-rate
zero-knowledge code



Tensors of Zero-Knowledge Codes



Tensor Codes 101

Base codes: C;: F*1 — F™, C,: F¥2 — F"2 with encoding
functions Ency, Enc,

(my, ...,my) — (cq,...,Cpn)

——t i t
m m; .. My € Cp .. Cp

Their tensor C; ® C,: Fk1k2 — Famz

— Columns € C4, rows € C,

— Naturally extends to higher dimensions
Very useful: tensor codes underly many PCP\IOP constructions

— Special case: Low-Degree Extension (LDE) - tensor of Reed-Solomon

Today: tensors of zero-knowledge codes « Ny —
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Zero-Knowledge Codes

C: F* — F™ with randomized encoding function Enc
t-ZK: t codeword symbols reveal nothing about msg

Tensors of ZK codes are very useful
— Bivariate Shamir (tensor of Reed-Solomon) used in MPC protocols

— 2-dim tensors used for verifiable secret sharing and MPC [CDMO00]
— Tensors of ZK codes underly ZK-10Ps [BCGV16,....,BCL22]

Main question: how does tensoring affect ZK?
— Our work: m-dimensional tensors of general codes
— This talk: 2-dimensional tensors C; @ C,



Does Tensoring Preserve ZK? L

Fori = 1,2, C;: F*i — F™ has t;-ZK
What ZK properties does C; @ C, have?
We focus on a (specific) natural randomized encoding function
— Encoding used in Shamir sharing, and by [BCL22]
[BCL22] show C; ® C, has min{t,, t,}-ZK
'BCL22] asked: can bound be improved?
— In particular, does C; @ C, have max{t, t,}-ZK?
We show: C; @ C, has ZK against:
— Adversaries reading t, full rows

— Adversaries reading t, full columns
— In particular, answer to [BCL22]‘s question is: YES!



Does Tensoring Preserve ZK?
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/Why rows\columns?
e  What we need for our short ZK-IOPs
e Secret shares in Bivariate Shamir

(m,f‘l, ...,/'"/\/,,1) —> (Cl,...,Cn)
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We show: C; @ C, has ZK against:
— Adversaries reading t; full rows
— Adversaries reading t, full columns

— In particular, answer to [BCL22]‘s question is: YES!

Our results are more general:
— Only one of the codes needs to have ZK

* E.g.,, C; has t;-ZK = C; @ C, has ZK against t; full rows

(even if C, has no ZK guarantees)

— Ask now, decide later: ZK against adversaries that make point queries, then
decide whether to query rows or columns (if Cy, C, have “uniform” ZK)



Does Tensoring Preserve ZK? (Cont.)

e Fori= 1,2, C;: F*i — F™ has t;-ZK
 We show: C; @ C, has ZK against:

— Adversaries reading t; full rows
— Adversaries reading t, full columns

t{ - t, codeword symbols <

* Question: can we get ZK against arbitrary t, - t, point queries?
* We show the answer is NO: 3 t-ZK C s.t. C @ C not w(t)-ZK

— See paper for details



We show: high-rate C with ZK
against row\column adversaries
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The Sumcheck Protocol [LFKN90,Meil3]

* The sumcheck protocol: IOP for checking Z; jcxym(i, j) = «
— Using encodingc € C ® C of m € Fk*¥
— Amazingly, requires only one query to c!

* Many ZK-IOPs use Zero-Knowledge sumchecks

— ZK: verifier’s view efficiently simulatable with few queries to ¢
* How few? One query\ same as verifier\ slightly more than verifier

— Prover’s messages reveal (almost) nothing on m!

* Existing ZK sumcheck IOPs: apply IOP on randomly shifted
codeword ¢’ (use standard sumcheck as BB)*
[BCGV16,BCF+17,BCG+17a,BCR+19, CHM+20]

> linear CC!

e ]

C

*Omitting sublinear-CC sumchecks for polynomial codes (with HVZK [X77+19]
or for sparse polynomials [BCL22])




/K Sumcheck with Sublinear CC?

Existing ZK sumchecks have = linear CC [BCGV16, BCFGRS17,
BCGRSSVW19, 7X7S520, CHMMVW20]

— Long masking hides (all but few) symbols of ¢

— BB in underlying sumcheck

Sublinear-CC ZK sumcheck requires shorter mask
High-level idea for reducing randomness:

— Exploit structure of specific sumcheck protocol (we use [RR20])
— Tailor randomness to hide type of information sumcheck reveals

Our ZK sumcheck reveals full columns of ¢

— More than fully-masked sumchecks...

— ... but combined with our new results on tensors of ZK codes, still suffices
for ZK-IOPs



The Sumcheck of [RR20] (Simplified)

* c€C Q Cencodingm € F¥*, a = 3; icrym(, j)
o

-

Check z € C and
Z has “correct” sum

)

P Based on slides by Ron Rothblum and Noga Ron-Zewi V O




Information Revealed in [RR20]‘s Sumcheck
* c€C Q Cencodingm € F¥*, a = 3; icrym(, j) /\
c’

a
=

-

One row + one column:
Codewords in base code!
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Check z € C and
Z has “correct” sum
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Masking |[RR20]‘s Sumcheck

 [RR20]’s sumcheck reveals row + column
— Codewords in base code!

e Our sublinear-CC ZK sumcheck: mask in base code
— Sending mask requires sublinear CC




Our ZK Sumcheck with Sublinear CC (Simplified)

« C:F¥>F"

e ¢ €C ® C encodingm € FF¥

e

Checkr € C

Check z’' € C with

>  “correct” sum




Wrapping Up: ZK-IOPs Approaching Witness Len

* Strong ZK properties for tensor codes
« ZK against max{t,, t,} queries
» ZK against rows\columns
* Limitations: can’t achieve t; - t,-ZK in
general case

We show: high-rate C with ZK
against row\column adversaries

We show:
Sublinear-CC ZK sumcheck
(reveals columns of c)

| How? Mask in base code |

U

First ZK-IOPs approaching witness length
For details: eprint.iacr.org/2024/816

Thank you!
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