

TECHNOLOGY

SCIENCE

Revisiting Differential-Linear Attacks via a Boomerang Perspective

Applications to AES, Ascon, CLEFIA, SKINNY, PRESENT, KNOT, TWINE, WARP,

LBlock, Simeck, and SERPENT

Hosein Hadipour Patrick Derbez Maria Eichlseder CRYPTO 2024 - California, USA

> hsn.hadipour@gmail.com

Research Gap and Our Contributions

💾 Research Gap

How to analytically estimate the correlation of DL distinguishers?
How to (efficiently) find good DL distinguishers?

Contributions

- $oldsymbol{\bigcirc}$ Generalizing the DLCT framework [Bar+19] for analytical correlation estimation.
- Introducing an efficient method to search for DL distinguishers applicable to:
 - Strongly aligned SPN primitives: AES, SKINNY
 - Weakly aligned SPN primitives: Ascon, SERPENT, KNOT, PRESENT
 - Feistel structures: CLEFIA, TWINE, LBlock, LBlock-s, WARP
 - AndRX designs: Simeck

Research Gap and Our Contributions

💾 Research Gap

 $\boldsymbol{\Theta}$ How to analytically estimate the correlation of DL distinguishers?

 $\boldsymbol{\Theta}$ How to (efficiently) find good DL distinguishers?

Contributions

- \bigcirc Generalizing the DLCT framework [Bar+19] for analytical correlation estimation.
- Solution Introducing an efficient method to search for DL distinguishers applicable to:
 - Strongly aligned SPN primitives: AES, SKINNY
 - Weakly aligned SPN primitives: Ascon, SERPENT, KNOT, PRESENT
 - Feistel structures: CLEFIA, TWINE, LBlock, LBlock-s, WARP
 - AndRX designs: Simeck

1 Background

- 2 Generalized DLCT Framework
- 3 Differential-Linear Switches and Deterministic Trails
- 4 Automatic Tools to Search for DL Distinguishers
- 5 Contributions and Future Works

Background

Differential-Linear (DL) Attack [LH94]

•
$$p = \mathbb{P}(\Delta_{i} \xrightarrow{E_{u}} \Delta_{m})$$

$$q = \mathbb{C}(\lambda_m \xrightarrow{E_{\ell}} \lambda_o) = 2 \cdot \mathbb{P}(\lambda_m \cdot X \oplus \lambda_o \cdot E_{\ell}(X) = 0) - 1$$

- Assumptions $(\Delta X = X_1 \oplus X_2)$:
 - 1. E_u , and E_ℓ are statistically independent 2. $\mathbb{P}(\lambda_m \cdot \Delta X = 0) = 1/2$ when $\Delta X \neq \Delta_m$
- $\mathcal{C} = \mathbb{C} \left(\lambda_{\mathrm{o}} \cdot \Delta \mathcal{C} \right) pprox (-1)^{\lambda_m \cdot \Delta_m} \cdot pq^2 = \pm pq^2$
- Time/Data complexity: $O(C^{-2})$

Sandwich Framework for DL Attack [BLN14; DKS14; Bar+19]

- $\mathbb{C}(\lambda_{o} \cdot \Delta C) = \sum_{\Delta X, \Lambda Y} \mathbb{P}(\Delta_{i}, \Delta X) \cdot \mathbb{R}(\Delta X, \Lambda Y) \cdot \mathbb{C}^{2}(\Lambda Y, \lambda_{o})$
- $\mathbb{P}(\Delta_{\mathrm{i}} \xrightarrow{E_u} \Delta_m) = p$
- $\blacksquare \quad \mathbb{R}(\Delta_m, \lambda_m) = r$
- $\mathbb{C}(\lambda_m \xrightarrow{E_\ell} \lambda_o) = q$
- $\mathbb{C}(\lambda_{\mathrm{o}}\cdot\Delta C)pprox prq^{2}$

Sandwich Framework for DL Attack [BLN14; DKS14; Bar+19]

- $\mathbb{C}(\lambda_{o} \cdot \Delta C) = \sum_{\Delta X, \Lambda Y} \mathbb{P}(\Delta_{i}, \Delta X) \cdot \mathbb{R}(\Delta X, \Lambda Y) \cdot \mathbb{C}^{2}(\Lambda Y, \lambda_{o})$
- $\mathbb{P}(\Delta_{\mathrm{i}} \xrightarrow{E_{u}} \Delta_{m}) = p$
- $\mathbb{R}(\Delta_m, \lambda_m) = r$
- $\mathbb{C}(\lambda_m \xrightarrow{E_{\ell}} \lambda_{\mathrm{o}}) = q$
- $\mathbb{C}(\lambda_{\mathrm{o}}\cdot\Delta C)pprox prq^{2}$

Differential-Linear Connectivity Table (DLCT) [Bar+19]

$$\begin{split} \mathsf{DLCT}_b(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}) &= \{x \in \mathbb{F}_2^n : \ \lambda_{\mathrm{o}} \cdot S(x) \oplus \lambda_{\mathrm{o}} \cdot S(x \oplus \Delta_{\mathrm{i}}) = b\} \\ \mathsf{DLCT}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}) &= |\mathsf{DLCT}_0(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})| - |\mathsf{DLCT}_1(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})| \\ \mathbb{C}_{\mathsf{DLCT}}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}) &= 2^{-n} \cdot \mathsf{DLCT}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}) \end{split}$$

Security of AES Against Differential/Linear Attacks

Hosein Hadipour, Patrick Derbez, Maria Eichlseder

CRYPTO 2024 - California, USA

A 4-round DL Distinguisher for AES

$$r_u = 1, r_m = 3, r_\ell = 0, \ p = 2^{-24.00}, \ r = 2^{-7.66}, q^2 = 1, \ \mathbb{C} = prq^2 = 2^{-31.66}$$

Generalized DLCT Framework

Upper Differential-Linear Connectivity Table (UDLCT)

$$\begin{split} \text{UDLCT}_b(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}}) &= \{ x \in \mathbb{F}_2^n : \ S(x) \oplus S(x \oplus \Delta_{\mathrm{i}}) = \Delta_{\mathrm{o}} \text{ and } \lambda_{\mathrm{o}} \cdot \Delta_{\mathrm{o}} = b \} \\ \\ \text{UDLCT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}}) &= |\text{UDLCT}_0(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}})| - |\text{UDLCT}_1(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}})| \\ \\ \\ \mathbb{C}_{\text{UDLCT}}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}}) &= 2^{-n} \cdot \text{UDLCT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}}) \end{split}$$

Lower Differential-Linear Connectivity Table (LDLCT)

$$\begin{split} \text{LDLCT}_b(\Delta_{\text{i}},\lambda_{\text{i}},\lambda_{\text{o}}) &= \{x \in \mathbb{F}_2^n : \ \lambda_{\text{i}} \cdot \Delta_{\text{i}} \oplus \lambda_{\text{o}} \cdot S(x) \oplus \lambda_{\text{o}} \cdot S(x \oplus \Delta_{\text{i}}) = b\} \\ \text{LDLCT}(\Delta_{\text{i}},\lambda_{\text{i}},\lambda_{\text{o}}) &= |\text{LDLCT}_0(\Delta_{\text{i}},\lambda_{\text{i}},\lambda_{\text{o}})| - |\text{LDLCT}_1(\Delta_{\text{i}},\lambda_{\text{i}},\lambda_{\text{o}})| \\ \mathbb{C}_{\text{LDLCT}}(\Delta_{\text{i}},\lambda_{\text{i}},\lambda_{\text{o}}) &= 2^{-n} \cdot \text{LDLCT}(\Delta_{\text{i}},\lambda_{\text{i}},\lambda_{\text{o}}) \end{split}$$

Extended Differential-Linear Connectivity Table (EDLCT)

$$\begin{split} \text{EDLCT}_{b}(\Delta_{i}, \Delta_{o}, \lambda_{i}, \lambda_{o}) &= \{x \in \mathbb{F}_{2}^{n} : \ S(x) \oplus S(x \oplus \Delta_{i}) = \Delta_{o} \text{ and } \lambda_{i} \cdot \Delta_{i} \oplus \lambda_{o} \cdot \Delta_{o} = b\} \\ \\ \text{EDLCT}(\Delta_{i}, \Delta_{o}, \lambda_{i}, \lambda_{o}) &= |\text{EDLCT}_{0}(\Delta_{i}, \Delta_{o}, \lambda_{i}, \lambda_{o})| - |\text{EDLCT}_{1}(\Delta_{i}, \Delta_{o}, \lambda_{i}, \lambda_{o})| \\ \\ \\ \mathbb{C}_{\text{EDLCT}}(\Delta_{i}, \Delta_{o}, \lambda_{i}, \lambda_{o}) &= 2^{-n} \cdot \text{EDLCT}(\Delta_{i}, \Delta_{o}, \lambda_{i}, \lambda_{o}) \end{split}$$

Double Differential-Linear Connectivity Table (DDLCT)

Generalized DLCT Framework (GBCT)

How to formulate the correaltion for more than 1 round?

Application of the Generalized DLCT Tables - AES (- differential - linear)

Application of the Generalized DLCT Tables - TWINE (- differential - linear)

$$egin{aligned} \mathbb{C}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}) &= \sum_{\Delta_m} \mathbb{P}_{ ext{DDT}}(\Delta_{\mathrm{i}},\Delta_m) \cdot \mathbb{C}_{ ext{DDLCT}}\left(\Delta_m,\lambda_{\mathrm{o}}
ight) \ &= \sum_{\lambda_m} \mathbb{C}_{ ext{DDLCT}}\left(\Delta_{\mathrm{i}},\lambda_m
ight) \cdot \mathbb{C}_{ ext{LAT}}^2\left(\lambda_m,\lambda_{\mathrm{o}}
ight). \end{aligned}$$

nput/Output Differences/Linear-mask	Formula	Exp. Correlation
$(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=(\mathtt{0xb4},\mathtt{0x67})$	$-2^{-7.66}$	$-2^{-7.64}$
$(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=(0$ x02 $,0$ x02 $)$	$-2^{-7.92}$	$-2^{-7.93}$
$(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=(0\mathrm{x55},0\mathrm{x55})$	$-2^{-7.99}$	$-2^{-7.98}$
$(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=(\texttt{Oxbf},\texttt{Oxef})$	$-2^{-8.05}$	$-2^{-8.06}$
$(\Delta_{ m i},\lambda_{ m o})=({\tt 0xfe},{\tt 0x06})$	$-2^{-8.26}$	$-2^{-8.25}$
$(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=(\texttt{0x4b},\texttt{0x1a})$	$-2^{-8.43}$	$-2^{-8.44}$

Differential-Linear Switches and Deterministic Trails

Cell-Wise and Bit-Wise Switches

- x 0 1 2 3 4 5 6 7 8 9 a b c d e f
- S(x) 4 0 a 7 b e 1 d 9 f 6 8 5 2 c 3

• Cell-wise switches: $DLCT(\Delta_i, 0) = DLCT(0, \lambda_o) = 2^n$ for all Δ_i, λ_o

 $ext{DLCT}(\Delta_{ ext{i}},\lambda_{ ext{o}})=\pm2^n ext{ for } \Delta_{ ext{i}},\lambda_{ ext{o}}
eq 0$

• Example:
$$\mathbb{C}(9,4) = \frac{16}{16}$$

Bit-Wise Switches and Deterministic Trails

$\Delta \setminus \lambda$	0	1	2	3	4	5	6	7	8	9	a	b	с	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	0	0	-16	0	0	0	0	0	0	0	0	0	0	0
2	16	-8	-8	0	0	0	8	-8	0	-8	0	8	0	0	0	0
3	16	0	-8	-8	0	-8	8	0	0	0	0	0	0	-8	0	8
4	16	0	-8	0	0	0	-8	0	-16	0	8	0	0	0	8	0
5	16	0	-8	0	0	0	-8	0	0	0	8	0	-16	0	8	0
6	16	-8	8	-8	0	0	-8	0	0	-8	0	0	0	0	0	8
7	16	0	8	0	0	-8	-8	-8	0	0	0	8	0	-8	0	0
8	16	0	0	0	-16	0	0	0	-16	0	0	0	16	0	0	0
9	16	-8	0	-8	16	-8	0	-8	0	8	0	-8	0	8	0	-8
a	16	0	0	8	0	8	0	0	0	0	-8	0	0	-8	-8	-8
b	16	8	0	0	0	0	0	8	0	-8	-8	-8	0	0	-8	0
С	16	0	0	-8	0	0	0	-8	16	0	0	-8	0	0	0	-8
d	16	-8	0	0	0	-8	0	0	0	8	0	0	-16	8	0	0
е	16	0	0	0	0	8	0	8	0	0	-8	-8	0	-8	-8	0
f	16	8	0	8	0	0	0	0	0	-8	-8	0	0	0	-8	-8

$$\begin{split} \Delta_{i} &= (0,0,0,1) \xrightarrow{S} \Delta_{o} = (?,1,?,?) \\ \Delta_{i} &= (0,1,0,0) \xrightarrow{S} \Delta_{o} = (1,?,?,?) \\ \Delta_{i} &= (1,0,0,0) \xrightarrow{S} \Delta_{o} = (1,1,?,?) \\ \Delta_{i} &= (1,0,0,1) \xrightarrow{S} \Delta_{o} = (?,0,?,?) \\ \Delta_{i} &= (1,1,0,0) \xrightarrow{S} \Delta_{o} = (0,?,?,?) \\ \lambda_{i} &= (1,?,?,1) \xleftarrow{S} \lambda_{o} = (0,1,0,0) \\ \lambda_{i} &= (1,1,?,?) \xleftarrow{S} \lambda_{o} = (1,0,0,0) \\ \lambda_{i} &= (0,?,?,?) \xleftarrow{S} \lambda_{o} = (1,1,0,0) \end{split}$$

Automatic Tools to Search for DL Distinguishers

Е	

differentially active S-box
 linearly active S-box
 common active S-box

differentially active S-box
 linearly active S-box
 common active S-box

Usage of Our Tool

python3 attack.py -RU 6 -RM 10 -RL 6

Results: A 5-round DL Distinguisher for AES

$$r_0 = 1, r_m = 3, r_1 = 1, \ p = 2^{-24.00}, r = 2^{-7.66}, \ q^2 = 2^{-24.00}, \ prq^2 = 2^{-55.66}$$

 $\Delta X_0 \ \texttt{001c0000000e20000000dfb3000000} \\ \Gamma X_4 \ \texttt{000000000000000000000000000000} \\ \Gamma X_5 \ \texttt{21d3814d93b1ef228e923507f67383fd}$

Results: Application to Ascon-p(active difference unknown difference active mask unknown mask)

Contributions and Future Works

Contributions and Future Works

Contributions

We generalized the DLCT framework from one S-box layer to multiple rounds
We proposed an automatic tool for finding optimum DL distinguishers
We applied our tool to almost any design paradigm

- Future works
 - A Extending the application of our tool to other primitives, e.g., ARX
 - A Extending our tool to a unified model for finding complete attack (key recovery)

https://github.com/hadipourh/DL
 : https://ia.cr/2024/255

Bibliography I

- [Bar+19] Achiya Bar-On et al. DLCT: A New Tool for Differential-Linear Cryptanalysis. EUROCRYPT 2019. Vol. 11476. LNCS. Springer, 2019, pp. 313–342. DOI: 10.1007/978-3-030-17653-2_11.
- [BLN14] Céline Blondeau, Gregor Leander, and Kaisa Nyberg. Differential-Linear Cryptanalysis Revisited. FSE 2014. Ed. by Carlos Cid and Christian Rechberger. Vol. 8540. LNCS. Springer, 2014, pp. 411–430. DOI: 10.1007/978-3-662-46706-0_21.
- [DIK08] Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller. A Differential-Linear Attack on 12-Round Serpent. INDOCRYPT 2008. Ed. by Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das. Vol. 5365. LNCS. Springer, 2008, pp. 308–321. DOI: 10.1007/978-3-540-89754-5_24.

Bibliography II

29

[DKS14] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony. J. Cryptol. 27.4 (2014), pp. 824–849. DOI: 10.1007/s00145-013-9154-9.

[HNE22] Hosein Hadipour, Marcel Nageler, and Maria Eichlseder. Throwing Boomerangs into Feistel Structures Application to CLEFIA, WARP, LBlock, LBlock-s and TWINE. IACR Trans. Symmetric Cryptol. 2022.3 (2022), pp. 271–302. DOI: 10.46586/T0SC.V2022.I3.271–302.

[LH94] Susan K. Langford and Martin E. Hellman. Differential-Linear Cryptanalysis. CRYPTO '94. Vol. 839. Springer, 1994, pp. 17–25. DOI: 10.1007/3-540-48658-5_3.

Bibliography III

[ZWH24] Yanyan Zhou, Senpeng Wang, and Bin Hu. MILP/MIQCP-Based Fully Automatic Method of Searching for Differential-Linear Distinguishers for SIMON-Like Ciphers. IET Information Security 2024 (2024). DOI: 10.1049/2024/8315115. Properties of Generalized DLCT Tables - I

•
$$\mathtt{DLCT}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=\sum_{\Delta_{\mathrm{o}}}\mathtt{UDLCT}(\Delta_{\mathrm{i}},\Delta_{\mathrm{o}},\lambda_{\mathrm{o}})$$

•
$$\texttt{UDLCT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}}) = (-1)^{\Delta_{\mathrm{o}} \cdot \lambda_{\mathrm{o}}} \texttt{DDT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}})$$

$$\quad \texttt{LDLCT}(\Delta_{\mathrm{i}},\lambda_{\mathrm{i}},\lambda_{\mathrm{o}}) = (-1)^{\Delta_{\mathrm{i}}\cdot\lambda_{\mathrm{i}}}\texttt{DLCT}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}) \\$$

• EDLCT
$$(\Delta_{i}, \Delta_{o}, \lambda_{i}, \lambda_{o}) = (-1)^{\lambda_{i} \cdot \Delta_{i} \oplus \lambda_{o} \cdot \Delta_{o}} DDT(\Delta_{i}, \Delta_{o})$$

•
$$LDLCT(\Delta_{i}, \lambda_{i}, \lambda_{o}) = \sum_{\Delta_{o}} EDLCT(\Delta_{i}, \Delta_{o}, \lambda_{i}, \lambda_{o})$$

•
$$\sum_{\Delta_i} \texttt{LDLCT}(\Delta_i, \lambda_i, \lambda_o) = \texttt{LAT}^2(\lambda_i, \lambda_o)$$

Properties of Generalized DLCT Tables - II

• DDLCT
$$(\Delta_{i}, \lambda_{o}) = 2^{-n} \cdot \sum_{\Delta_{m}} \sum_{\lambda_{m}} \text{UDLCT} (\Delta_{i}, \Delta_{m}, \lambda_{m}) \cdot \text{LDLCT} (\Delta_{m}, \lambda_{m}, \lambda_{o})$$

$$egin{aligned} extsf{DDLCT}(\Delta_{ extsf{i}},\lambda_{ extsf{o}}) &= \sum_{\Delta_m} extsf{DDT}(\Delta_{ extsf{i}},\Delta_m) \cdot extsf{DLCT}(\Delta_m,\lambda_{ extsf{o}}) \ &= 2^{-n} \sum_{\lambda_m} extsf{DLCT}(\Delta_{ extsf{i}},\lambda_m) \cdot extsf{LAT}^2(\lambda_m,\lambda_{ extsf{o}}). \end{aligned}$$

Results: Distinguishers for up to 17 Rounds of TWINE

Comparing the data complexity of best boomerang and DL distinguishers

# Rounds	Boomerang [HNE22]	Differential-Linear	Gain
5	1	1	1
7	2 ^{3.20}	1	2 ^{3.20}
13	2 ^{34.32}	$2^{27.16}$	2 ^{7.16}
14	2 ^{42.25}	2 ^{31.28}	$2^{10.97}$
15	2 ^{51.03}	2 ^{38.98}	$2^{12.05}$
16	2 ^{58.04}	2 ^{47.28}	2 ^{10.76}
17	-	2 ^{59.24}	-

Results: Distinguishers for up to 17 Rounds of LBlock

Comparing the data complexity of best boomerang and DL distinguishers

# Rounds	Boomerang [HNE22]	Differential-Linear	Gain
5	1	1	1
7	2 ^{2.97}	1	2 ^{2.97}
13	2 ^{30.28}	2 ^{23.78}	2 ^{6.50}
14	2 ^{38.86}	2 ^{30.34}	2 ^{8.52}
15	2 ^{46.90}	2 ^{38.26}	2 ^{8.64}
16	2 ^{57.16}	2 ^{46.26}	$2^{10.90}$
17	_	2 ^{58.30}	-

Results: Distinguishers for up to 8 Rounds of CLEFIA

Comparing the data complexity of best boomerang and DL distinguishers

# Rounds	Boomerang [HNE22]	Differential-Linear	Gain
3	1	1	1
4	2 ^{6.32}	1	2 ^{6.32}
5	$2^{12.26}$	2 ^{5.36}	2 ^{6.90}
6	2 ^{22.45}	$2^{14.14}$	2 ^{8.31}
7	2 ^{32.67}	2 ^{23.50}	2 ^{9.17}
8	2 ^{76.03}	2 ^{66.86}	2 ^{9.17}

Results: Application to SERPENT

• \square : Experimentally verified

Cipher	#R	\mathbb{C}		Ref.
	3	2 ^{-0.68}	\checkmark	This work
CEDDENT	4	$2^{-12.75}$		[DIK08]
	4	$2^{-5.54}$	\checkmark	This work
	5	$2^{-16.75}$		[DIK08]
SERPENT	5	$2^{-11.10}$	\checkmark	This work
	8	$2^{-39.18}$		This work
	9	$2^{-56.50}$		[DIK08]
	9	$2^{-50.95}$		This work

Results: Application to Simeck

• **D**: Experimentally verified

					Cipher	#R	\mathbb{C}		Ref.	Cipher	#R	C		Ref.
Cipher	#R	\mathbb{C}		Ref.		8 17	1 2 ^{-22.37}	\checkmark	This work [ZWH24]		10	1 2-38.13	~	This work
Simeck-32	7 14 14	1 2 ^{-16.63} 2^{-13.92}	✓ ✓	This work [ZWH24] This work	Simeck-48	17 18 18	2 ^{-13.89} 2 ^{-24.75} 2 ^{-15.89}	√	This work [ZWH24] This work	Simeck-64	24 24 25 25	$2^{-25.14}$ $2^{-41.04}$ $2^{-27.14}$		[ZWH24] This work [ZWH24] This work
						19 20	$2^{-17.89}$ $2^{-21.89}$		This work This work		26	2 ^{-30.35}		This work