Maliciously Secure SCALES Protocols

Anasuya Acharya¹, Carmit Hazay¹, Vladimir Kolesnikov², Manoj Prabhakaran³

$\bullet \bullet \bullet$

¹Bar-Ilan University ²Georgia Institute of Technology ³IIT Bombay

MPC

MPC-as-a-Service

Overview

SCALES Model

Rerandomizable Garbling Schemes

Semi-Honest SCALES Protocol

Lifting to Malicious Security

The SCALES Model

[TCC '22]

Small Clients And Large

0000000

Ephemeral Servers

Small Clients And Large

0000000

Ephemeral Servers

0 0 0

0000000

0000000

0000

0000000

0 0 0

0000000

Secretly elected

0000000

Secretly elected Silently compute

0000000

Secretly elected Silently compute Erase their state

0

0

0000000

Secretly elected Silently compute Erase their state Speak Once'

Bulletin-Board

0000000

Secretly elected Silently compute Erase their state Speak Once'

0000000

Secretly elected Silently compute Erase their state Speak Once'

0000000

Secretly elected Silently compute Erase their state 'Speak Once' ...

Secretly elected Silently compute Erase their state Speak Once'

0000000

0000000

Secretly elected Silently compute Erase their state Speak Once'

000

0000000

Secretly elected Silently compute Erase their state 'Speak Once' ...

0000000

Semi-Honest SCALES Protocol

Garbler	Evaluator

Garbled Circuits

Garbled Circuits

Garbled Circuits

Phase 1

Garble the circuit

Phase 2

Evaluate the garbling

Phase 1

igodol

0

 \bigcirc

Garble the circuit

Phase 2

Evaluate the garbling

Phase 1

Garble the circuit

Phase 2

Evaluate the garbling

Phase 1

Garble the circuit

Phase 2

Evaluate the garbling

Phase 1

Garble the circuit

Phase 2

Evaluate the garbling

Phase 1

Garble the circuit

Phase 2

Evaluate the garbling

Phase 1

Garble the circuit

Phase 2

Evaluate the garbling

Phase 1

Garble the circuit

Phase 2

Evaluate the garbling rerandomize previous garble f GC UOT 2 UOT 3 (GC labels) (new GC labels) UOT 4 UOT 1 (final GC (input) labels)

Phase 1

Phase 2

Phase 1

Garble the circuit

Phase 2

Evaluate the garbling

 \mathbf{O}

Security with Abort

Semi-honest secure UOT \rightarrow Maliciously secure UOT

Semi-honest secure UOT \rightarrow Maliciously secure UOT

2-round OT (with special structure) : CRS model

Semi-honest secure UOT \rightarrow Maliciously secure UOT

2-round OT (with special structure) : CRS model

Forcing Semi-honest behaviour

Semi-honest secure UOT \rightarrow Maliciously secure UOT

2-round OT (with special structure) : CRS model

Forcing Semi-honest behaviour

Approach 1: Generic SNARKs (CRS/RO model)

Semi-honest secure UOT \rightarrow Maliciously secure UOT

2-round OT (with special structure) : CRS model

Forcing Semi-honest behaviour

Approach 1: Generic SNARKs (CRS/RO model)

Expensive Prover Computation

Custom Made ZK Proofs

 $\bullet \bullet \bullet$

Black-Box in RGS

Correct Garbling

ZK Proof for

Prover

Verifier

Prover

Witness: randomness \mathbf{r}

Public: **f, GC**

Verifier

Prover

Witness: randomness \mathbf{r}

Public: **f, GC**

Verifier

compute **RGC** = Rerand(GC; r') **RGC**

Prover

Witness: randomness \mathbf{r}

Public: **f, GC**

Verifier

compute **RGC** = Rerand(GC; r') \longrightarrow **RGC**

 $\longleftarrow b \leftarrow \{0,1\}$

Prover

Witness: randomness \mathbf{r}

Public: **f, GC**

Verifier

compute **RGC** = Rerand(GC; r') **RGC**

Case 0: check if RGC correctly rerandomized from GC

Prover

Witness: randomness \mathbf{r}

Public: **f**, **GC**

Verifier

compute **RGC** = Rerand(GC; r') **RGC**

$$b \leftarrow \{0,1\}$$

Case 0: check if RGC correctly rerandomized from GC

Case 1: check if RGC correctly garbled from f

Prover

Witness: randomness \mathbf{r}

Public: **f**, **GC**

Verifier

compute **RGC** = Rerand(GC; r') **RGC**

$$b \leftarrow \{0,1\}$$

soundness ½ amplify by parallel repetition

Case 0: check if RGC correctly <u>rerandomized</u> from GC

Case 1: check if RGC correctly garbled from f
Option 1

RO Model – Fiat-Shamir transform

V

Ρ

V

Ρ

Option 1

RO Model – Fiat-Shamir transform

Option 2

CRS Model – Distributed Committed-Index OT

V

Ρ

V

Ρ

Option 1

RO Model – Fiat-Shamir transform

Option 2

CRS Model – Distributed Committed-Index OT

Option 1

RO Model – Fiat-Shamir transform

Option 2

CRS Model – Distributed Committed-Index OT

multi-receiver **OT Protocol**:

• choice bit is XOR of all receiver inputs

Option 1

RO Model – Fiat-Shamir transform

Option 2

CRS Model – Distributed Committed-Index OT

- choice bit is XOR of all receiver inputs
- choice bit committed before sender message

Option 1

RO Model – Fiat-Shamir transform

Option 2

CRS Model – Distributed Committed-Index OT

- choice bit is XOR of all receiver inputs
- choice bit committed before sender message

Option 1

RO Model – Fiat-Shamir transform

Option 2

CRS Model – Distributed Committed-Index OT

- choice bit is XOR of all receiver inputs
- choice bit committed before sender message
- server sends **first** proof message and OTs the **third** proof message

Ρ

V

Option 1

RO Model – Fiat-Shamir transform

Option 2

CRS Model – Distributed Committed-Index OT

multi-receiver **OT Protocol**:

- choice bit is XOR of all receiver inputs
- choice bit committed before sender message
- server sends **first** proof message and OTs the **third** proof message

Ρ

V

Ρ

V

S

 (s_0, s_1)

Ρ

Option 1

RO Model – Fiat-Shamir transform

Option 2

CRS Model – Distributed Committed-Index OT

multi-receiver **OT Protocol**:

- choice bit is XOR of all receiver inputs
- choice bit committed before sender message
- server sends **first** proof message and OTs the **third** proof message

Rs

V

Maliciously Secure SCALES Protocols –

Maliciously Secure SCALES Protocols –

• using Custom ZK proofs 2 phases – CRS + RO model

Maliciously Secure SCALES Protocols –

• using Custom ZK proofs

2 phases – CRS + RO model 3 phases – CRS model

Maliciously Secure SCALES Protocols –

• using Custom ZK proofs

2 phases – CRS + RO model 3 phases – CRS model

Assuming DDH

Maliciously Secure SCALES Protocols –

• using Custom ZK proofs

2 phases – CRS + RO model 3 phases – CRS model

Assuming DDH

Open Problems –

Maliciously Secure SCALES Protocols –

• using Custom ZK proofs

3 phases – CRS model

2 phases – CRS + RO model

Assuming DDH

Open Problems –

• SCALES protocols with Guaranteed Output Delivery

Maliciously Secure SCALES Protocols –

• using Custom ZK proofs

2 phases – CRS + RO model 3 phases – CRS model

Assuming DDH

Open Problems –

- SCALES protocols with Guaranteed Output Delivery
- SCALES protocols in the RO model only (or in the plain model)

Maliciously Secure SCALES Protocols –

• using Custom ZK proofs

2 phases – CRS + RO model 3 phases – CRS model

Assuming DDH

Open Problems –

- SCALES protocols with Guaranteed Output Delivery
- SCALES protocols in the RO model only (or in the plain model)
- SCALES from other hardness assumptions

Thank You!

https://eprint.iacr.org/2024/383