

Exploring the Advantages and Challenges of Fermat NTT in FHE Acceleration

CRYPTO 2024

Andrey Kim^{*†}, Ahmet Can Mert, Anisha Mukherjee, <u>Aikata Aikata</u>, Maxim Deryabin^{*}, Sunmin Kwon^{*}, Hyung Chul Kang^{*}, Sujoy Sinha Roy

IAIK - Graz University of Technology, Austria

* Samsung Advanced Institute of Technology, Suwon, Republic of Korea; [†] Altbridge, Inc.

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

• Fully Homomorphic Encryption (FHE) allows computation on encrypted data.

- Fully Homomorphic Encryption (FHE) allows computation on encrypted data.
- Enables secure processing of sensitive data in untrusted environments.

• FHE schemes are computationally intensive.

• FHE schemes are computationally intensive. $10,000-100,000 \times$ plain comp.

• FHE schemes are computationally intensive. $10,000-100,000 \times$ plain comp.

Solution: Hardware Acceleration.

• FHE schemes are computationally intensive. $10,000-100,000 \times$ plain comp.

Solution: Hardware Acceleration.

• FHE schemes are computationally intensive. $10,000-100,000 \times$ plain comp.

Solution: Hardware Acceleration.

Acceleration Challenges

Many polynomial arithmetic operations

- Large degree polynomial arithmetic
- Long integer arithmetic

Challenges with practical realization of Homomorphic Encryption

Many polynomial arithmetic operations-Handled using NTT/INTT unit

- Large degree polynomial arithmetic
- Long integer arithmetic

NTT Transformation

$$a \rightarrow \mathbf{NTT}$$

$$NTT(a) \rightarrow \mathbf{INTT} \rightarrow a \cdot b$$

$$b \rightarrow \mathbf{NTT}$$

NTT Transformation

NTT Transformation

NTT transformation for 1600-bit Q is very expensive.

Residue Number System

Residue Number System

One NTT transformation is cheap, but it has to support multiple moduli.

$\mathbf{REED} - \mathrm{Arxiv'23}$				
Components	28nm (mm ²)		7nm (mm ²)	
	1024×64	512×128	1024×64	512×128
REED	74.9	115	24	43.9
REED-PU	58.0	81.0	7.01	9.9
NTT/INTT	38.2	56.8	5.61	7.9
2×MAS	3.1	6.6	0.42	0.76
PRNG	0.15	0.28	0.02	0.04
$\lfloor 2 \times AUT \rfloor$	0.14	0.32	0.02	0.04
[Memory	16.1	16.1	1.2	1.2

$\mathbf{ARK} - \mathbf{ISCA'22}$				
Component	Area (mm ²)	Peak power (W)		
4 BConvUs	9.3	18.9		
4 NTTUs	57.2	95.2		
4 AutoUs	20.6	4.6		
8 MADUs	8.9	24.7		

F1 - MICRO'21				
Component	Area [mm ²]	TDP [W]		
NTT FU	2.27	4.80		
Automorphism FU	0.58	0.99		
Multiply FU	0.25	0.60		
Add FU	0.03	0.05		
Vector RegFile (512 KB)	0.56	1.67		
Compute cluster	3.97	8.75		
(NTT, Aut, $2 \times$ Mul, $2 \times$ Add, RF)				
Total compute (16 clusters)	63.52	140.0		

$\mathbf{CraterLake} - \mathrm{ISCA'22}$		
Component	Area [mm ²]	
CRB FU	158.8	
NTT FU	28.1	
Automorphism FU	9.0	
KSHGen FU	3.3	
Multiply FU	2.2	
Add FU	0.8	
Total FUs (CRB, 2×NTT,	240.5	
Aut, KSHGen, 5×Mul, 5×Add)		

Can we make modular multiplications in the NTT/INTT units extremely **inexpensive** and ensure NTT **reusability**?

The Fermat-number based Technique

The FNTT method:

Use the Fermat number $(P = 2^{K} + 1)$ as an *auxiliary* modulus before NTT.

The FNTT method:

Use the Fermat number $(P = 2^{K} + 1)$ as an *auxiliary* modulus before NTT.

The FNTT method:

Use the Fermat number $(P = 2^{K} + 1)$ as an *auxiliary* modulus before NTT.

The Fermat-number based Technique

Advantages:

• All modular multiplications during NTT/INTT are transformed into simple shift operations. \rightarrow Multiplier-less NTT

The Fermat-number based Technique

Advantages:

- All modular multiplications during NTT/INTT are transformed into simple shift operations. \rightarrow Multiplier-less NTT
- ullet The roots of unity modulo P are powers-of-two. o No storage required

Challenge:

- $\blacksquare P = 2^{K} + 1 K \text{ has } K \text{ power-of-two twiddle factors.}$
- With K-th root of unity, we can perform $\frac{K}{2}$ -point negacyclic NTT.

Challenge:

- $\blacksquare P = 2^{K} + 1 K \text{ has } K \text{ power-of-two twiddle factors.}$
- With K-th root of unity, we can perform $\frac{K}{2}$ -point negacyclic NTT.

Example: For $N = 2^{16}$, required $K = 2^{16} \rightarrow P = 2^{2^{16}} + 1$. (65, 536-bit large modulus)

Challenge:

- $\blacksquare P = 2^{K} + 1 K \text{ has } K \text{ power-of-two twiddle factors.}$
- With K-th root of unity, we can perform $\frac{K}{2}$ -point negacyclic NTT.

Example: For $N = 2^{16}$, required $K = 2^{16} \rightarrow P = 2^{2^{16}} + 1$. (65, 536-bit large modulus) The auxiliary modulus is 1, 214× larger than actual moduli q_i (e.g., 54-bit).

Solution: We propose utilizing univariate polynomial to multivariate switch.

Solution: We propose utilizing univariate polynomial to multivariate switch.

$$\begin{array}{c} \mathbb{Z}_{q_i}[X] \xrightarrow{id} & \mathcal{R}_{q_i} \xrightarrow{\mathsf{emb}} \mathcal{R}_P \xrightarrow{\mathsf{NTT}_P} \{\mathbb{Z}_P\}_N \\ \downarrow^{\times} & \bigodot^{} & \downarrow^{\times} & \bigcirc^{} & \downarrow^{\times} & \bigcirc^{} \\ \mathbb{Z}_{q_i}[X] \xleftarrow{id} & \mathcal{R}_{q_i} \xleftarrow{}_{\mathsf{(mod } q_i)} \mathcal{R}_P \xleftarrow{}_{\mathsf{INTT}_P} \{\mathbb{Z}_P\}_N \end{array}$$

Solution: We propose utilizing univariate polynomial to multivariate switch.

$$\begin{array}{c|c} \mathbb{Z}_{q_{i}}[X] \xrightarrow{id} & \mathcal{R}_{q_{i}} \xrightarrow{\text{emb}} & \mathcal{R}_{P} \xrightarrow{\text{emb}} \mathcal{S}_{P} \xrightarrow{\text{NTT}_{P}} \left\{ \{\mathbb{Z}_{P}\}_{K_{i}} \right\}_{i=1}^{\ell} \\ \downarrow \times & \bigodot & \downarrow \times & \bigodot & \downarrow \times \\ \mathbb{Z}_{q_{i}}[X] \xleftarrow{id} & \mathcal{R}_{q_{i}} \xleftarrow{\text{mod } q_{i}} & \mathcal{R}_{P} \xleftarrow{\text{revert}} \mathcal{S}_{P} \xleftarrow{\text{NTT}_{P}} \left\{ \{\mathbb{Z}_{P}\}_{K_{i}} \right\}_{i=1}^{\ell} \end{array}$$

Our technique: For $N = 2^{16}$, we take required $K = 2^7 \rightarrow P = 2^{2^7} + 1$.

Our technique: For $N = 2^{16}$, we take required $K = 2^7 \rightarrow P = 2^{2^7} + 1$.

■ With K-th root of unity, we can perform $\frac{K}{2}$ -point negacyclic NTT.

Our technique: For $N = 2^{16}$, we take required $K = 2^7 \rightarrow P = 2^{2^7} + 1$.

■ With K-th root of unity, we can perform $\frac{K}{2}$ -point negacyclic NTT.

We break $\mathcal{R}_q = \mathbb{Z}_q/(X^{2^{16}}+1)$ as follows:

$$egin{aligned} &\Rightarrow (X^{2^{16}}+1) \ &\Rightarrow (X^{2^6}+1) imes (X^{2^{10}}+1) \ &\Rightarrow (X^{2^6}+1) imes (X^{2^6}+1) imes (X^{2^4}+1) \end{aligned}$$

Toy Example: For $N = 2^5$, and $K = 2^4 \to P = 2^{2^4} + 1$.

$$\mathcal{R}_q = \mathbb{Z}_q/(X^{2^5}+1) \quad \Rightarrow \quad (X^{2^2}+1) imes (X^{2^2}+1) imes (X^{2^1}+1)$$

Toy Example: For $N = 2^5$, and $K = 2^4 \rightarrow P = 2^{2^4} + 1$.

 $\mathcal{R}_q = \mathbb{Z}_q/(X^{2^5}+1) \quad \Rightarrow \quad (X^{2^2}+1) imes (X^{2^2}+1) imes (X^{2^1}+1)$

Implications:

- The auxiliary modulus is only $2 \times$ larger than actual moduli q_i (e.g., 54-bit).
- The number of coefficients increase by $4 \times$.

Implications:

- The auxiliary modulus is only $2 \times$ larger than actual moduli q_i (e.g., 54-bit).
- The number of coefficients increase by $4 \times$.

The multivariate has $8 \times$ more data overhead than the prior 1, 214× overhead.

The Implementation Methodology

Building Blocks of an FHE accelerator:

- NTT/INTT Unit
- Multiply-and-Accumulate Unit
- Automorphism/Conjugation Unit

To support increased MV-NTT/MV-INTT overhead, we instantiate multiple units.

The results are for the 28nm ASIC technology, and our design runs at 1.2GHz.

Building Block	Area (mm ²)	
MV-NTT/INTT	4×21.5 (vs. 38.2mm ² [REED])	
MV-NTT/INTT (mem.)	4×17.4	
MAC (for F_K and q_i)	2×2.8	
Automorphism	2×0.14	
On-chip memory	52	
HBM3 PHY+NoC	33.8	
Total	250.94	

We achieve 1, $200 \times$ speed-up compared to software implementation.

Future Scope

- **Communication Overhead:** Multiplierless NTTs are cheap, but having to instantiate multiple such units mitigates this advantage.
 - The proposed MV-NTT finds potential in the emerging PIM architectures.

- **Communication Overhead:** Multiplierless NTTs are cheap, but having to instantiate multiple such units mitigates this advantage.
 - The proposed MV-NTT finds potential in the emerging PIM architectures.
- **Computation Overhead:** The amount of arithmetic computation required grows proportional to the reduced multiplications.
 - Implementation of Schönhage-Strassen or Nussbaumer Approach should be explored as they theoretically reduce the operation count.

Exploring the Advantages and Challenges of Fermat NTT in FHE Acceleration

CRYPTO 2024

Andrey Kim^{*†}, Ahmet Can Mert, Anisha Mukherjee, <u>Aikata Aikata</u>, Maxim Deryabin^{*}, Sunmin Kwon^{*}, Hyung Chul Kang^{*}, Sujoy Sinha Roy

IAIK - Graz University of Technology, Austria

* Samsung Advanced Institute of Technology, Suwon, Republic of Korea; [†] Altbridge, Inc.

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

