Robust Quantum Public-Key Encryption (With Applications to Quantum Key Distribution)

European Research Council Established by the European Commission

Giulio Malavolta (Bocconi University & MPI-SP) Michael Walter (Ruhr University Bochum)

https://arxiv.org/pdf/2304.02999.pdf

• Security against polynomialtime attacker

- Security against polynomialtime attacker
- Requires computational assumptions (e.g., DDH, LWE, LPN...)

- Security against polynomialtime attacker
- Requires computational assumptions (e.g., DDH, LWE, LPN...)
- Two-message protocol (minimal)

- Security against polynomialtime attacker
- Requires computational assumptions (e.g., DDH, LWE, LPN...)
- Two-message protocol (minimal)

Quantum Key Exchange

Unconditional (?) security

- Security against polynomialtime attacker
- Requires computational assumptions (e.g., DDH, LWE, LPN...)
- Two-message protocol (minimal)

- Unconditional (?) security
- Requires sending qubits

- Security against polynomialtime attacker
- Requires computational assumptions (e.g., DDH, LWE, LPN...)
- Two-message protocol (minimal)

- Unconditional (?) security
- Requires sending qubits
- Multiple rounds of interaction

- Security against polynomialtime attacker
- Requires computational assumptions (e.g., DDH, LWE, LPN...)
- Two-message protocol (minimal)

Quantum Key Exchange

- Unconditional (?) security
- Requires sending qubits
- Multiple rounds of interaction

[BB84]

- Security against polynomialtime attacker
- Requires computational assumptions (e.g., DDH, LWE, LPN...)
- Two-message protocol (minimal)

- Unconditional (?) security
- Requires sending qubits
- Multiple rounds of interaction

Theorem I: If quantum-secure *one-way functions* exists, there exists one-time QPKE with *everlasting* security.

Theorem I: If quantum-secure one-way functions exists, there exists one-time QPKE with everlasting security.

Implies 2-message key exchange with everlasting security

Theorem I: If quantum-secure *one-way functions* exists, there exists one-time QPKE with *everlasting* security.

- Implies 2-message key exchange with everlasting security
- Classically, everlasting security is impossible

Theorem I: If quantum-secure *one-way functions* exists, there exists one-time QPKE with *everlasting* security.

- Implies 2-message key exchange with everlasting security
- Classically, everlasting security is impossible
- Conceptually different from BB84 (simple analysis!)

Theorem I: If quantum-secure one-way functions exists, there exists one-time QPKE with everlasting security.

- Implies 2-message key exchange with everlasting security
- Classically, everlasting security is impossible
- Conceptually different from BB84 (simple analysis!)

Theorem II: If quantum-secure one-way functions exists, there exists standard QPKE with *computational* security.

Theorem I: If quantum-secure one-way functions exists, there exists one-time QPKE with everlasting security.

- Implies 2-message key exchange with everlasting security
- Classically, everlasting security is impossible
- Conceptually different from BB84 (simple analysis!)

 Classically, one-way functions are (widely believed to be) insufficient to construct PKE

Theorem II: If quantum-secure one-way functions exists, there exists standard QPKE with *computational* security.

 Computational assumptions, only during the protocol

- Computational assumptions, only during the protocol
- Authenticated classical channels

- Computational assumptions, only during the protocol
- rhanna

- Computational assumptions, only during the protocol
- phonnolo

Unconditional Security

 No computational assumptions!

- Computational assumptions, only during the protocol
- phonnolo

- No computational assumptions!
- Authenticated classical channels

- Computational assumptions, only during the protocol
- hannolo

- No computational assumptions!
- Authenticated classical channels
 - Computational assumptions...

- Computational assumptions, only during the protocol
- hannole

- No computational assumptions!
- Authenticated classical channels
 - Computational assumptions...
 - ... but only during the protocol!

- Computational assumptions, only during the protocol
- channole

- No computational assumptions!
- Authenticated classical channels
 - Computational assumptions...
 - ... but only during the protocol!

• Part I: Definitions

- Part I: Definitions
- Part II: The Protocol

- Part I: Definitions
- Part II: The Protocol
- Part III: Conclusions

Part I: Definitions

 $pk_{\mathcal{A}}$

*Suffices for QKD (see paper)

Security Definition

 $\forall \text{ QPT } \mathscr{C}, \forall (\text{msg}_0, \text{msg}_1) :$

 $\forall \text{ QPT } \mathscr{E}, \forall (\text{msg}_0, \text{msg}_1) :$

 $\mathsf{TD}(\tau_0,\tau_1)\approx 0$

Part II: The Protocol*

*Everlasting variant (see paper for the computational one)

Consist of three <u>algorithms</u>:

- Consist of three <u>algorithms</u>:
 - Gen \rightarrow (sk, vk)

- Consist of three <u>algorithms</u>:
 - Gen \rightarrow (sk, vk)
 - Sign(sk, msg) $\rightarrow \sigma$

- Consist of three <u>algorithms</u>:
 - Gen \rightarrow (sk, vk)
 - Sign(sk, msg) $\rightarrow \sigma$
 - Verify(vk, msg, σ) \rightarrow {0,1}

- Consist of three <u>algorithms</u>:
 - Gen \rightarrow (sk, vk)
 - Sign(sk, msg) $\rightarrow \sigma$
 - Verify(vk, msg, σ) \rightarrow {0,1}
- <u>Security</u> (existential unforgeability):

- Consist of three <u>algorithms</u>:
 - Gen \rightarrow (sk, vk)
 - Sign(sk, msg) $\rightarrow \sigma$
 - Verify(vk, msg, σ) \rightarrow {0,1}
- <u>Security</u> (existential unforgeability):
 - Given a single query to a signing oracle $Sign(sk, \cdot)$

- Consist of three <u>algorithms</u>:
 - Gen \rightarrow (sk, vk)
 - Sign(sk, msg) $\rightarrow \sigma$
 - Verify(vk, msg, σ) \rightarrow {0,1}
- <u>Security</u> (existential unforgeability):
 - Given a single query to a signing oracle Sign(sk, \cdot)
 - It is (computationally) hard to forge a new valid signature

- Consist of three <u>algorithms</u>:
 - Gen \rightarrow (sk, vk)
 - Sign(sk, msg) $\rightarrow \sigma$
 - Verify(vk, msg, σ) \rightarrow {0,1}
- <u>Security</u> (existential unforgeability):
 - Given a single query to a signing oracle $Sign(sk, \cdot)$
 - It is (computationally) hard to forge a new valid signature
- Exists iff <u>one-way functions</u> exist [Lam79]

• Sample a key pair (sk, vk)

- Sample a key pair (sk, vk)
- Compute the state

$|\Psi > = \frac{|0, 0, \sigma_0 > + |1, 1, \sigma_1 >}{\sqrt{2}}$

- Sample a key pair (sk, vk)
- Compute the state

• Define a projective measurement $\{\Pi_{vk}, I - \Pi_{vk}\}$ where

$$\Pi_{vk} = \sum_{\sigma: Verify(vk,0,\sigma)=1} |0, \sigma\rangle$$

$|\Psi\rangle = \frac{|0, 0, \sigma_0\rangle + |1, 1, \sigma_1\rangle}{\sqrt{2}}$ $> < 0, \sigma | + \qquad \sum | 1, \sigma > < 1, \sigma |$ σ :Verify(vk,1, σ)=1

- Sample a key pair (sk, vk)
- Compute the state

• Define a projective measurement $\{\Pi_{vk}, I - \Pi_{vk}\}$ where

$$\Pi_{vk} = \sum_{\sigma: Verify(vk,0,\sigma)=1} |0, \sigma\rangle$$

Measure the first register in the Hadamard basis to obtain $s \in \{0,1\}$

$|\Psi > = \frac{|0, 0, \sigma_0 > + |1, 1, \sigma_1 >}{\sqrt{2}}$ $> < 0, \sigma | + \qquad \sum | 1, \sigma > < 1, \sigma |$ σ :Verify(vk,1, σ)=1

- Sample a key pair (sk, vk)
- Compute the state

• Define a projective measurement $\{\Pi_{vk}, I - \Pi_{vk}\}$ where

$$\Pi_{vk} = \sum_{\sigma: Verify(vk,0,\sigma)=1} |0, \sigma \rangle$$

- Measure the first register in the Hadamard basis to obtain $s \in \{0,1\}$
- Let ρ be the residual quantum state; return (ρ , vk)

$|\Psi\rangle = \frac{|0, 0, \sigma_0\rangle + |1, 1, \sigma_1\rangle}{\sqrt{2}}$ $> < 0, \sigma | + \qquad \sum | 1, \sigma > < 1, \sigma |$ σ :Verify(vk,1, σ)=1

• Project the state ρ onto the image of Π_{vk}

- Project the state ρ onto the image of Π_{vk}
- Abort if the above projection fails

- Project the state ρ onto the image of Π_{vk}
- Abort if the above projection fails
 - This guarantees that

$$\rho \in \operatorname{Img}(\Pi_{vk}) = \operatorname{Span}(\{ | b, \sigma_b \})$$

>: Verify(vk, b, σ_h) = 1})

- Project the state ρ onto the image of Π_{vk}
- Abort if the above projection fails
 - This guarantees that

 $\rho \in \text{Img}(\Pi_{vk}) = \text{Span}(\{|b, \sigma_h >: \text{Verify}(vk, b, \sigma_h) = 1\})$

Measure the residual state in the Hadamard basis to obtain

$$(d_1, d_2)$$

 $\in \{0,1\} \times \{0,1\}^n$

- Project the state ρ onto the image of $\Pi_{\nu\nu}$
- Abort if the above projection fails
 - This guarantees that

 $\rho \in \text{Img}(\Pi_{vk}) = \text{Span}(\{|b, \sigma_h >: \text{Verify}(vk, b, \sigma_h) = 1\})$

Measure the residual state in the Hadamard basis to obtain

• Return msg $\oplus d_1, d_2$

 $(d_1, d_2) \in \{0, 1\} \times \{0, 1\}^n$

- The rotated state corresponds to

$$H|\Psi > = \sum_{d} (-1)^{d \cdot (0,0,\sigma_0)} |d > +$$

 $+ (-1)^{d \cdot (1,1,\sigma_1)} | d > =$ $|d\rangle$ $d:d\cdot(1,1,\sigma_0\oplus\sigma_1)=0$

- The rotated state corresponds to

$$H|\Psi > = \sum_{d} (-1)^{d \cdot (0,0,\sigma_0)} |d > + (-1)^{d \cdot (1,1,\sigma_1)} |d > = \sum_{d:d \cdot (1,1,\sigma_0 \oplus \sigma_1) = 0} |d > d$$

Thus measuring the rotated state returns

$$d = (s, d_0, d_1)$$

s.t.
$$d_1 \oplus d_2 \cdot (\sigma_0, \sigma_1) = s$$

- The rotated state corresponds to

$$H|\Psi > = \sum_{d} (-1)^{d \cdot (0,0,\sigma_0)} |d| > + (-1)^{d \cdot (1,1,\sigma_1)} |d| > = \sum_{d:d \cdot (1,1,\sigma_0 \oplus \sigma_1) = 0} |d| >$$

Thus measuring the rotated state returns

$$d = (s, d_0, d_1)$$

Recall that Bob sends msg $\bigoplus d_1, d_2$

s.t.
$$d_1 \oplus d_2 \cdot (\sigma_0, \sigma_1) = s$$

- The rotated state corresponds to

$$H|\Psi > = \sum_{d} (-1)^{d \cdot (0,0,\sigma_0)} |d| > + (-1)^{d \cdot (1,1,\sigma_1)} |d| > = \sum_{d:d \cdot (1,1,\sigma_0 \oplus \sigma_1) = 0} |d| >$$

Thus measuring the rotated state returns

$$d = (s, d_0, d_1)$$

- Recall that Bob sends msg $\oplus d_1, d_2$

• We pretend to delay the measurement of Alice (does not affect correctness)

s.t.
$$d_1 \oplus d_2 \cdot (\sigma_0, \sigma_1) = s$$

• Alice can recover d_1 , and consequently msg, since she knows s and (σ_0, σ_1)

Proof Sketch

Proof Sketch

 $|0, \sigma_0 > \text{ with prob. } 1/2$

• From the point of view of the attacker, the residual state ρ is a classical mixture $|1, \sigma_1 > \text{ with prob. } 1/2$

Proof Sketch

 $|0, \sigma_0 >$ with prob. 1/2

the attacker must have either:

• From the point of view of the attacker, the residual state ρ is a classical mixture

 $|1, \sigma_1 > \text{ with prob. } 1/2$ • Since Bob projects the state onto Span({ $|b, \sigma_h >$: Verify(vk, $b, \sigma_h = 1$ }),

$|0, \sigma_0 > \text{ with prob. } 1/2$

- the attacker must have either:
 - Passed along the state

• From the point of view of the attacker, the residual state ρ is a classical mixture

 $|1, \sigma_1 > \text{ with prob. } 1/2$ • Since Bob projects the state onto Span({ $|b, \sigma_h >$: Verify(vk, $b, \sigma_h = 1$ }),

 $|0, \sigma_0 > \text{ with prob. } 1/2$

- the attacker must have either:
 - Passed along the state

• From the point of view of the attacker, the residual state ρ is a classical mixture

 $|1, \sigma_1 > \text{ with prob. } 1/2$ • Since Bob projects the state onto Span({ $|b, \sigma_h >$: Verify(vk, $b, \sigma_h = 1$ }),

• Put a non-trivial amplitude on another signature (breaks unforgeability!)

 $|0, \sigma_0 > \text{ with prob. } 1/2$

- the attacker must have either:
 - Passed along the state

• From the point of view of the attacker, the residual state ρ is a classical mixture

 $|1, \sigma_1 > \text{ with prob. } 1/2$ • Since Bob projects the state onto Span({ $|b, \sigma_h >$: Verify(vk, $b, \sigma_h = 1$ }),

Put a non trivial amplitude on another signature (breaks unforgeability!)

 $|0, \sigma_0 > \text{ with prob. } 1/2$

- the attacker must have either:
 - Passed along the state
- Measuring the basis state in the Hadamard basis, gives

• From the point of view of the attacker, the residual state ρ is a classical mixture

 $|1, \sigma_1 > \text{ with prob. } 1/2$ • Since Bob projects the state onto Span({ $|b, \sigma_h >: Verify(vk, b, \sigma_h) = 1$ }),

Put a non trivial amplitude on another signature (breaks unforgeability!)

 $d \sim \text{Uniform} : \{0,1\}^{n+1}$

 $|0, \sigma_0 > \text{ with prob. } 1/2$

- the attacker must have either:
 - Passed along the state
- Measuring the basis state in the Hadamard basis, gives

• From the point of view of the attacker, the residual state ρ is a classical mixture

 $|1, \sigma_1 > \text{ with prob. } 1/2$ • Since Bob projects the state onto Span({ $|b, \sigma_h >: Verify(vk, b, \sigma_h) = 1$ }),

Put a non trivial amplitude on another signature (breaks unforgeability!)

 $d \sim \text{Uniform} : \{0,1\}^{n+1}$

Part III: Conclusions

Concurrent work by [KMNY23]

- Concurrent work by [KMNY23]
 - Computationally secure construction

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions
 - Revocable digital signatures

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions
 - Revocable digital signatures

Open Problems

Key-rate?

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions
 - Revocable digital signatures

- Key-rate?
- Noise tolerance?

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions
 - Revocable digital signatures

- Key-rate?
- Noise tolerance?
- Qubit-by-qubit?

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions
 - Revocable digital signatures

- Key-rate?
- Noise tolerance?
- Qubit-by-qubit?
- Assumptions?

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions
 - Revocable digital signatures

- Key-rate?
- Noise tolerance?
- Qubit-by-qubit?
- Assumptions?
 - OWFs are not minimal for quantum crypto

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions
 - Revocable digital signatures

- Key-rate?
- Noise tolerance?
- Qubit-by-qubit?
- Assumptions?
 - OWFs are not minimal for quantum crypto
- **Experiments?**

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions
 - Revocable digital signatures

Open Problems

- Key-rate?
- Noise tolerance?
- Qubit-by-qubit?
- Assumptions?
 - OWFs are not minimal for quantum crypto
- **Experiments?**
 - Reach out if interested!

giulio.malavolta@hotmail.it

- Concurrent work by [KMNY23]
 - Computationally secure construction
 - CCA-secure!
- Follow-up works:
 - Cryptography with certified deletion from minimal assumptions
 - Revocable digital signatures

THANK YOU!

- Key-rate?
- Noise tolerance?
- Qubit-by-qubit?
- Assumptions?
 - OWFs are not minimal for quantum crypto
- **Experiments?**
 - Reach out if interested! giulio.malavolta@hotmail.it

