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Theorem I: If quantum-secure one-way functions exists, 
there exists one-time QPKE with everlasting security.

• Implies 2-message key exchange with everlasting security

• Classically, everlasting security is impossible

• Conceptually different from BB84 (simple analysis!)

Theorem II: If quantum-secure one-way functions exists, 
there exists standard QPKE with computational security.

• Classically, one-way functions are (widely believed to be) 
insufficient to construct PKE
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*Suffices for QKD (see paper)
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𝖳𝖣(τ0, τ1) ≈ 0

∀ QPT ℰ, ∀ (msg0, msg1) :



Part II: The Protocol*

*Everlasting variant (see paper for the computational one)



One-Time Digital Signatures



One-Time Digital Signatures
• Consist of three algorithms:



One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)



One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ



One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) → {0,1}



One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) → {0,1}

• Security (existential unforgeability):



One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) → {0,1}

• Security (existential unforgeability):

• Given a single query to a signing oracle 𝖲𝗂𝗀𝗇(𝗌𝗄, ⋅ )



One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) → {0,1}

• Security (existential unforgeability):

• Given a single query to a signing oracle 𝖲𝗂𝗀𝗇(𝗌𝗄, ⋅ )

• It is (computationally) hard to forge a new valid signature



One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)
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• Security (existential unforgeability):

• Given a single query to a signing oracle 𝖲𝗂𝗀𝗇(𝗌𝗄, ⋅ )

• It is (computationally) hard to forge a new valid signature

• Exists iff one-way functions exist [Lam79]
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{Π𝗏𝗄, 𝖨 − Π𝗏𝗄}

Π𝗏𝗄 = ∑
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• Measure the first register in the Hadamard basis to obtain s ∈ {0,1}

• Let  be the residual quantum state; return ρ (ρ, 𝗏𝗄)
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• Project the state  onto the image of ρ Π𝗏𝗄

• Abort if the above projection fails

• This guarantees that  
 
ρ ∈ 𝖨𝗆𝗀(Π𝗏𝗄) = 𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

• Measure the residual state in the Hadamard basis to obtain  
 
                                            (d1, d2) ∈ {0,1} × {0,1}n

• Return 𝗆𝗌𝗀 ⊕ d1, d2
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H |Ψ > = ∑
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(−1)d⋅(0,0,σ0) |d > + (−1)d⋅(1,1,σ1) |d > = ∑
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• Thus measuring the rotated state returns 
 
                          d = (s, d0, d1)  s.t.  d1 ⊕ d2 ⋅ (σ0, σ1) = s

• Recall that Bob sends 𝗆𝗌𝗀 ⊕ d1, d2

• Alice can recover , and consequently , since she knows  and d1 𝗆𝗌𝗀 s (σ0, σ1)
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