
Robust Quantum Public-Key
Encryption

(With Applications to Quantum Key Distribution)

Giulio Malavolta (Bocconi University & MPI-SP) 
Michael Walter (Ruhr University Bochum)

https://arxiv.org/pdf/2304.02999.pdf

https://arxiv.org/pdf/2304.02999.pdf

Classical Key Exchange Quantum Key Exchange

Classical Key Exchange Quantum Key Exchange

• Security against polynomial-
time attacker

Classical Key Exchange Quantum Key Exchange

• Security against polynomial-
time attacker

• Requires computational
assumptions (e.g., DDH,
LWE, LPN…)

Classical Key Exchange Quantum Key Exchange

• Security against polynomial-
time attacker

• Requires computational
assumptions (e.g., DDH,
LWE, LPN…)

• Two-message protocol
(minimal)

Classical Key Exchange Quantum Key Exchange

• Security against polynomial-
time attacker

• Requires computational
assumptions (e.g., DDH,
LWE, LPN…)

• Two-message protocol
(minimal)

• Unconditional (?) security

Classical Key Exchange Quantum Key Exchange

• Security against polynomial-
time attacker

• Requires computational
assumptions (e.g., DDH,
LWE, LPN…)

• Two-message protocol
(minimal)

• Unconditional (?) security

• Requires sending qubits

Classical Key Exchange Quantum Key Exchange

• Security against polynomial-
time attacker

• Requires computational
assumptions (e.g., DDH,
LWE, LPN…)

• Two-message protocol
(minimal)

• Unconditional (?) security

• Requires sending qubits

• Multiple rounds of interaction

Classical Key Exchange Quantum Key Exchange

• Security against polynomial-
time attacker

• Requires computational
assumptions (e.g., DDH,
LWE, LPN…)

• Two-message protocol
(minimal)

• Unconditional (?) security

• Requires sending qubits

• Multiple rounds of interaction

𝒜 ℬ

| − > |1 > | + > … | + >
θℬ

θ𝒜

…
Reconciliation

[BB84]

Classical Key Exchange Quantum Key Exchange

• Security against polynomial-
time attacker

• Requires computational
assumptions (e.g., DDH,
LWE, LPN…)

• Two-message protocol
(minimal)

• Unconditional (?) security

• Requires sending qubits

• Multiple rounds of interaction

𝒜 ℬ

???
???

Theorem I: If quantum-secure one-way functions exists,
there exists one-time QPKE with everlasting security.

Theorem I: If quantum-secure one-way functions exists,
there exists one-time QPKE with everlasting security.

• Implies 2-message key exchange with everlasting security

Theorem I: If quantum-secure one-way functions exists,
there exists one-time QPKE with everlasting security.

• Implies 2-message key exchange with everlasting security

• Classically, everlasting security is impossible

Theorem I: If quantum-secure one-way functions exists,
there exists one-time QPKE with everlasting security.

• Implies 2-message key exchange with everlasting security

• Classically, everlasting security is impossible

• Conceptually different from BB84 (simple analysis!)

Theorem I: If quantum-secure one-way functions exists,
there exists one-time QPKE with everlasting security.

• Implies 2-message key exchange with everlasting security

• Classically, everlasting security is impossible

• Conceptually different from BB84 (simple analysis!)

Theorem II: If quantum-secure one-way functions exists,
there exists standard QPKE with computational security.

Theorem I: If quantum-secure one-way functions exists,
there exists one-time QPKE with everlasting security.

• Implies 2-message key exchange with everlasting security

• Classically, everlasting security is impossible

• Conceptually different from BB84 (simple analysis!)

Theorem II: If quantum-secure one-way functions exists,
there exists standard QPKE with computational security.

• Classically, one-way functions are (widely believed to be)
insufficient to construct PKE

Everlasting Security Unconditional Security

Everlasting Security Unconditional Security

• Computational assumptions,
only during the protocol 

Everlasting Security Unconditional Security

• Computational assumptions,
only during the protocol 

• Authenticated classical
channels

Everlasting Security Unconditional Security

• Computational assumptions,
only during the protocol 

• Authenticated classical
channels

Everlasting Security Unconditional Security

• Computational assumptions,
only during the protocol 

• Authenticated classical
channels

• No computational
assumptions! 

Everlasting Security Unconditional Security

• Computational assumptions,
only during the protocol 

• Authenticated classical
channels

• No computational
assumptions! 

• Authenticated classical
channels

Everlasting Security Unconditional Security

• Computational assumptions,
only during the protocol 

• Authenticated classical
channels

• No computational
assumptions! 

• Authenticated classical
channels

• Computational
assumptions…

Everlasting Security Unconditional Security

• Computational assumptions,
only during the protocol 

• Authenticated classical
channels

• No computational
assumptions! 

• Authenticated classical
channels

• Computational
assumptions…

• … but only during the
protocol!

Everlasting Security Unconditional Security

• Computational assumptions,
only during the protocol 

• Authenticated classical
channels

• No computational
assumptions! 

• Authenticated classical
channels

• Computational
assumptions…

• … but only during the
protocol!

Roadmap

Roadmap

• Part I: Definitions 

Roadmap

• Part I: Definitions 

• Part II: The Protocol 

Roadmap

• Part I: Definitions 

• Part II: The Protocol 

• Part III: Conclusions

Part I: Definitions

Quantum PKE*

𝒜 ℬ

Quantum PKE*

𝒜 ℬ

pk𝒜

ρ

Quantum PKE*

𝒜 ℬ

pk𝒜

𝖤𝗇𝖼pk𝒜(ρ, 𝗆𝗌𝗀)

ρ

Quantum PKE*

𝒜 ℬ

pk𝒜

𝖤𝗇𝖼pk𝒜(ρ, 𝗆𝗌𝗀)

ρ

𝗆𝗌𝗀

Quantum PKE*

𝒜 ℬ

pk𝒜

𝖤𝗇𝖼pk𝒜(ρ, 𝗆𝗌𝗀)

ρ

𝗆𝗌𝗀

*Suffices for QKD (see paper)

Security Definition

𝒜 ℬ

ℰ

∀ QPT ℰ, ∀ (msg0, msg1) :

Security Definition

𝒜 ℬ

pk𝒜

ρ

ℰ

∀ QPT ℰ, ∀ (msg0, msg1) :

Security Definition

𝒜 ℬ

pk𝒜

ρ

ℰ

pk𝒜

ρ*

∀ QPT ℰ, ∀ (msg0, msg1) :

Security Definition

𝒜 ℬ
𝖤𝗇𝖼pk𝒜(ρ*, 𝗆𝗌𝗀b)

pk𝒜

ρ

ℰ

pk𝒜

ρ*

∀ QPT ℰ, ∀ (msg0, msg1) :

Security Definition

𝒜 ℬ
𝖤𝗇𝖼pk𝒜(ρ*, 𝗆𝗌𝗀b)

pk𝒜

ρ

ℰ

pk𝒜

ρ*

τb

∀ QPT ℰ, ∀ (msg0, msg1) :

Security Definition

𝒜 ℬ
𝖤𝗇𝖼pk𝒜(ρ*, 𝗆𝗌𝗀b)

pk𝒜

ρ

ℰ

pk𝒜

ρ*

τb

𝖳𝖣(τ0, τ1) ≈ 0

∀ QPT ℰ, ∀ (msg0, msg1) :

Part II: The Protocol*

*Everlasting variant (see paper for the computational one)

One-Time Digital Signatures

One-Time Digital Signatures
• Consist of three algorithms:

One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) → {0,1}

One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) → {0,1}

• Security (existential unforgeability):

One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) → {0,1}

• Security (existential unforgeability):

• Given a single query to a signing oracle 𝖲𝗂𝗀𝗇(𝗌𝗄, ⋅)

One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) → {0,1}

• Security (existential unforgeability):

• Given a single query to a signing oracle 𝖲𝗂𝗀𝗇(𝗌𝗄, ⋅)

• It is (computationally) hard to forge a new valid signature

One-Time Digital Signatures
• Consist of three algorithms:

• 𝖦𝖾𝗇 → (𝗌𝗄, 𝗏𝗄)

• 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → σ

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) → {0,1}

• Security (existential unforgeability):

• Given a single query to a signing oracle 𝖲𝗂𝗀𝗇(𝗌𝗄, ⋅)

• It is (computationally) hard to forge a new valid signature

• Exists iff one-way functions exist [Lam79]

Key Generation (Alice)

Key Generation (Alice)
• Sample a key pair (𝗌𝗄, 𝗏𝗄)

Key Generation (Alice)
• Sample a key pair (𝗌𝗄, 𝗏𝗄)

• Compute the state 
 

 |Ψ > =
|0, 0, σ0 > + |1, 1, σ1 >

2

Key Generation (Alice)
• Sample a key pair (𝗌𝗄, 𝗏𝗄)

• Compute the state 
 

 |Ψ > =
|0, 0, σ0 > + |1, 1, σ1 >

2

• Define a projective measurement where  
 

{Π𝗏𝗄, 𝖨 − Π𝗏𝗄}

Π𝗏𝗄 = ∑
σ:𝖵𝖾𝗋𝗂𝖿𝗒(vk,0,σ)=1

|0, σ > < 0, σ | + ∑
σ:𝖵𝖾𝗋𝗂𝖿𝗒(vk,1,σ)=1

|1, σ > < 1, σ |

Key Generation (Alice)
• Sample a key pair (𝗌𝗄, 𝗏𝗄)

• Compute the state 
 

 |Ψ > =
|0, 0, σ0 > + |1, 1, σ1 >

2

• Define a projective measurement where  
 

{Π𝗏𝗄, 𝖨 − Π𝗏𝗄}

Π𝗏𝗄 = ∑
σ:𝖵𝖾𝗋𝗂𝖿𝗒(vk,0,σ)=1

|0, σ > < 0, σ | + ∑
σ:𝖵𝖾𝗋𝗂𝖿𝗒(vk,1,σ)=1

|1, σ > < 1, σ |

• Measure the first register in the Hadamard basis to obtain s ∈ {0,1}

Key Generation (Alice)
• Sample a key pair (𝗌𝗄, 𝗏𝗄)

• Compute the state 
 

 |Ψ > =
|0, 0, σ0 > + |1, 1, σ1 >

2

• Define a projective measurement where  
 

{Π𝗏𝗄, 𝖨 − Π𝗏𝗄}

Π𝗏𝗄 = ∑
σ:𝖵𝖾𝗋𝗂𝖿𝗒(vk,0,σ)=1

|0, σ > < 0, σ | + ∑
σ:𝖵𝖾𝗋𝗂𝖿𝗒(vk,1,σ)=1

|1, σ > < 1, σ |

• Measure the first register in the Hadamard basis to obtain s ∈ {0,1}

• Let be the residual quantum state; return ρ (ρ, 𝗏𝗄)

Encryption (Bob)

Encryption (Bob)
• Project the state onto the image of ρ Π𝗏𝗄

Encryption (Bob)
• Project the state onto the image of ρ Π𝗏𝗄

• Abort if the above projection fails

Encryption (Bob)
• Project the state onto the image of ρ Π𝗏𝗄

• Abort if the above projection fails

• This guarantees that  
 
ρ ∈ 𝖨𝗆𝗀(Π𝗏𝗄) = 𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

Encryption (Bob)
• Project the state onto the image of ρ Π𝗏𝗄

• Abort if the above projection fails

• This guarantees that  
 
ρ ∈ 𝖨𝗆𝗀(Π𝗏𝗄) = 𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

• Measure the residual state in the Hadamard basis to obtain  
 
 (d1, d2) ∈ {0,1} × {0,1}n

Encryption (Bob)
• Project the state onto the image of ρ Π𝗏𝗄

• Abort if the above projection fails

• This guarantees that  
 
ρ ∈ 𝖨𝗆𝗀(Π𝗏𝗄) = 𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

• Measure the residual state in the Hadamard basis to obtain  
 
 (d1, d2) ∈ {0,1} × {0,1}n

• Return 𝗆𝗌𝗀 ⊕ d1, d2

Decryption (Alice)

Decryption (Alice)

• We pretend to delay the measurement of Alice (does not affect correctness)

Decryption (Alice)

• We pretend to delay the measurement of Alice (does not affect correctness)

• The rotated state corresponds to 
 
H |Ψ > = ∑

d

(−1)d⋅(0,0,σ0) |d > + (−1)d⋅(1,1,σ1) |d > = ∑
d:d⋅(1,1,σ0⊕σ1)=0

|d >

Decryption (Alice)

• We pretend to delay the measurement of Alice (does not affect correctness)

• The rotated state corresponds to 
 
H |Ψ > = ∑

d

(−1)d⋅(0,0,σ0) |d > + (−1)d⋅(1,1,σ1) |d > = ∑
d:d⋅(1,1,σ0⊕σ1)=0

|d >

• Thus measuring the rotated state returns 
 
 d = (s, d0, d1) s.t. d1 ⊕ d2 ⋅ (σ0, σ1) = s

Decryption (Alice)

• We pretend to delay the measurement of Alice (does not affect correctness)

• The rotated state corresponds to 
 
H |Ψ > = ∑

d

(−1)d⋅(0,0,σ0) |d > + (−1)d⋅(1,1,σ1) |d > = ∑
d:d⋅(1,1,σ0⊕σ1)=0

|d >

• Thus measuring the rotated state returns 
 
 d = (s, d0, d1) s.t. d1 ⊕ d2 ⋅ (σ0, σ1) = s

• Recall that Bob sends 𝗆𝗌𝗀 ⊕ d1, d2

Decryption (Alice)

• We pretend to delay the measurement of Alice (does not affect correctness)

• The rotated state corresponds to 
 
H |Ψ > = ∑

d

(−1)d⋅(0,0,σ0) |d > + (−1)d⋅(1,1,σ1) |d > = ∑
d:d⋅(1,1,σ0⊕σ1)=0

|d >

• Thus measuring the rotated state returns 
 
 d = (s, d0, d1) s.t. d1 ⊕ d2 ⋅ (σ0, σ1) = s

• Recall that Bob sends 𝗆𝗌𝗀 ⊕ d1, d2

• Alice can recover , and consequently , since she knows and d1 𝗆𝗌𝗀 s (σ0, σ1)

Proof Sketch

Proof Sketch
• From the point of view of the attacker, the residual state is a classical mixture 

 

ρ

|0, σ0 > with prob. 1/2 |1, σ1 > with prob. 1/2

Proof Sketch
• From the point of view of the attacker, the residual state is a classical mixture 

 

ρ

|0, σ0 > with prob. 1/2 |1, σ1 > with prob. 1/2

• Since Bob projects the state onto ,
the attacker must have either:

𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

Proof Sketch
• From the point of view of the attacker, the residual state is a classical mixture 

 

ρ

|0, σ0 > with prob. 1/2 |1, σ1 > with prob. 1/2

• Since Bob projects the state onto ,
the attacker must have either:

𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

• Passed along the state

Proof Sketch
• From the point of view of the attacker, the residual state is a classical mixture 

 

ρ

|0, σ0 > with prob. 1/2 |1, σ1 > with prob. 1/2

• Since Bob projects the state onto ,
the attacker must have either:

𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

• Passed along the state

• Put a non-trivial amplitude on another signature (breaks unforgeability!)

Proof Sketch
• From the point of view of the attacker, the residual state is a classical mixture 

 

ρ

|0, σ0 > with prob. 1/2 |1, σ1 > with prob. 1/2

• Since Bob projects the state onto ,
the attacker must have either:

𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

• Passed along the state

• Put a non-trivial amplitude on another signature (breaks unforgeability!)

Proof Sketch
• From the point of view of the attacker, the residual state is a classical mixture 

 

ρ

|0, σ0 > with prob. 1/2 |1, σ1 > with prob. 1/2

• Since Bob projects the state onto ,
the attacker must have either:

𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

• Passed along the state

• Put a non-trivial amplitude on another signature (breaks unforgeability!)

• Measuring the basis state in the Hadamard basis, gives 
 
 d ∼ 𝖴𝗇𝗂𝖿𝗈𝗋𝗆 : {0,1}n+1

Proof Sketch
• From the point of view of the attacker, the residual state is a classical mixture 

 

ρ

|0, σ0 > with prob. 1/2 |1, σ1 > with prob. 1/2

• Since Bob projects the state onto ,
the attacker must have either:

𝖲𝗉𝖺𝗇({ |b, σb >: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, b, σb) = 1})

• Passed along the state

• Put a non-trivial amplitude on another signature (breaks unforgeability!)

• Measuring the basis state in the Hadamard basis, gives 
 
 d ∼ 𝖴𝗇𝗂𝖿𝗈𝗋𝗆 : {0,1}n+1

Part III: Conclusions

Concurrent & Follow-up Open Problems

Concurrent & Follow-up Open Problems
• Concurrent work by [KMNY23]

Concurrent & Follow-up Open Problems
• Concurrent work by [KMNY23]

• Computationally secure construction

Concurrent & Follow-up Open Problems
• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

Concurrent & Follow-up Open Problems
• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

Concurrent & Follow-up Open Problems
• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

Concurrent & Follow-up Open Problems
• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

• Revocable digital signatures

Concurrent & Follow-up Open Problems
• Key-rate?• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

• Revocable digital signatures

Concurrent & Follow-up Open Problems
• Key-rate?

• Noise tolerance?

• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

• Revocable digital signatures

Concurrent & Follow-up Open Problems
• Key-rate?

• Noise tolerance?

• Qubit-by-qubit?

• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

• Revocable digital signatures

Concurrent & Follow-up Open Problems
• Key-rate?

• Noise tolerance?

• Qubit-by-qubit?

• Assumptions?

• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

• Revocable digital signatures

Concurrent & Follow-up Open Problems
• Key-rate?

• Noise tolerance?

• Qubit-by-qubit?

• Assumptions?

• OWFs are not minimal for
quantum crypto

• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

• Revocable digital signatures

Concurrent & Follow-up Open Problems
• Key-rate?

• Noise tolerance?

• Qubit-by-qubit?

• Assumptions?

• OWFs are not minimal for
quantum crypto

• Experiments?

• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

• Revocable digital signatures

Concurrent & Follow-up Open Problems
• Key-rate?

• Noise tolerance?

• Qubit-by-qubit?

• Assumptions?

• OWFs are not minimal for
quantum crypto

• Experiments?

• Reach out if interested!

• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

• Revocable digital signatures

giulio.malavolta@hotmail.it

http://giulio.malavolta@hotmail.it

Concurrent & Follow-up Open Problems
• Key-rate?

• Noise tolerance?

• Qubit-by-qubit?

• Assumptions?

• OWFs are not minimal for
quantum crypto

• Experiments?

• Reach out if interested!

• Concurrent work by [KMNY23]

• Computationally secure construction

• CCA-secure! 

• Follow-up works:

• Cryptography with certified deletion
from minimal assumptions

• Revocable digital signatures

THANK YOU! giulio.malavolta@hotmail.it

http://giulio.malavolta@hotmail.it

