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Theorem ll: If guantum-secure one-way functions exists,

there exists standard QPKE with computational security.

» (Classically, one-way functions are (widely believed to be)
iInsufficient to construct PKE
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Security Definition
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TD(7y, 7)) = 0



Part Il: The Protocol®

*Everlasting variant (see paper for the computational one)
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One-Time Digital Signatures

» Consist of three algorithms:

« Gen — (sk, vk)

» Sign(sk,msg) — o
 Verify(vk, msg,o) — {0,1}

o Security (existential unforgeability):

» Given a single query to a signing oracle Sign(sk, - )
* |t is (computationally) hard to forge a new valid signature

» EXists iff one-way functions exist [Lam79]
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Key Generation (Alice)

» Sample a key pair (sk, vk)
 Compute the state
10,0,00>+ |1, 1, 0/ >
NG

» Define a projective measurement {11,,,I —I1,, } where

P> =

1, = Z 10, 6> <0, 6| + Z 1,6> <1, o
o:Verify(vk,0,0)=1 o.Verify(vk,1,0)=1

» Measure the first register in the Hadamard basis to obtain s € {0,1}

 Let p be the residual quantum state; return (p, vk)
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Encryption (Bob)

» Project the state p onto the image of 11,

* Abort if the above projection fails

* [his guarantees that

p € Img(1l,,) = Span({ | b, 6, >: Verify(vk,b,0,) = 1})

e Measure the residual state in the Hadamard basis to obtain
(d),d,) € {0,1} x {0,1}"

« Return MSE @ dl’ d2
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Decryption (Alice)

* We pretend to delay the measurement of Alice (does not affect correctness)

 The rotated state corresponds to

H|Y > = Z (-0 | g > + (=)L) | g > = Z |d >
d d:d-(1,1,6,®0,)=0

* [hus measuring the rotated state returns
d — (S, d(), dl) S.1. dl @ dz y (0(), 01) == 93
» Recall that Bob sends msg @ d,, d,

» Alice can recover d;, and consequently msg, since she knows s and (o, ;)
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