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Security Amplification

Weak Strong
Primitive Primitive

* Weak primitives are often easier to construct.

* Famous examples: Yao’s OWF amplification and XOR lemma [Yao 82].



Non-Interactive Zero Knowledge
[Blum-Feldman-Micali 88]

e Completeness:
V(x,w) € R; = V accepts. CRS

* Soundness: /\

VYmalicious prover P* ]
Pr|x ¢ L and V accepts] = negl. {P(x, w) J n { V(x) }

* Zero Knowledge:
JPPT SIM V(x,w) € R;
(crs,m) = SIM(x).




Weak NIZK

e Completeness:
V(x,w) € R; = V accepts. CRS

 Soundness: /\

VYmalicious prover P*
{P(x, w) L { V(x) J

Pr[x ¢ L and V accepts] < «..

—

* Zero Knowledge:
JPPT SIM V(x,w) € R;
(crs,m) =, SIM(x).




Weak NIZK — The Non-Trivial Case

* (1,0)-weak NIZK: prover sends nothing, verifier accepts.
* (0,1)-weak NIZK: prover sends witness in the clear.

* (p,1-p)-weak NIZK: p-biased bit in the CRS, indicating which of the
above to run.

* Interested in the non-trivial case where ¢; + ¢, < 1.



Previous Results

Goyal, Jain and Sahai suggest a way to amplify weak NIZK for any
constants &, + &, < 1.

* Based on MPC-in-the-head paradigm [Ishai-Kushilevitz-Ostrovsky-Sahai 07].

* Assuming sub-exponential PKE.

e Authors discovered a gap in their proof.
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Our Results

 Amplifying NIZK arguments for NP assuming only polynomially-secure
public-key encryption, for any constants e, + ¢, < 1.

 Amplifying NIZK proofs for NP assuming only one-way functions, for any
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* When the soundness error & is negligible to begin with, we can also
amplify NIZK arguments for NP assuming only one-way functions.

* Based on the hidden-bits paradigm [Feige-Lapidot-Shamir 99], reduction to
pseudorandomness amplification.



Weak-NIZK Constructions?

e Currently unaware of weak NIZK from weaker assumptions, except

weak NISZK from batch arguments [Bitansky-Kamath-Paneth-Rothblum-
Vasudevan 24].

e Combiners: random choice is weak.

* We mostly view NIZK amplification as a foundational hardness
amplification question.



Technical Overview



Outline

» Zero-Knowledge amplifier (1 — (1 — g%, eé‘)
» Soundness* amplifier (eX, 1 — (1 — g,)%).
* Combining the amplifiers.

* Proofs: soundness™ for free.

e Arguments: soundness™ from PKE.
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» Soundness* amplifier (eX, 1 — (1 — g,)%).
* Combining the amplifiers.

* Proofs: soundness™ for free.

e Arguments: soundness™ from PKE.



Hidden-Bits Generator
[Quach-Rothblum-Wichs 19, Kitagawa-Matsuda-Yamakawa 20]

* PRG G:{0,1}" — {0,1}*(™) with subset-consistency proofs.
° GI_' GI,T[I ~ U, GI,T[I .

e Sufficient for NIZK (hidden-bits model [Feige-Lapidot-Shamir 99]).



HBG From Weak NIZK

* Prover generates G(sy), ..., G(s) for PRG G and parameter k.
» Hidden bit-string is set to ®%_, G(s;).

e Using weak NIZK, generate k independent consistency proofs
m,(S1), ..., m;(sy) for the revealed G;(s;), ..., G;(Sy).



HBG From Weak NIZK

* Prover generates G(sy), ..., G(s) for PRG G and parameter k.
» Hidden bit-string is set to ®%_, G(s;).

e Using weak NIZK, generate k independent consistency proofs
m,(S1), ..., m;(sy) for the revealed G;(s;), ..., G;(Sy).

* Limited to £, < 0.5. What if last bit always leaked?
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Tighter Amplification via Extraction

Maurer and Tessaro amplify weak PRGs using the concatenate and
extract approach with a strong extractor:

Ext(G(sy),...,G(sg); 1), 7.

* Issue: Ext; may depend on all bits, not just G;.



Tighter Amplification via Extraction

Fsl(l) sk(l) Fsl(Z) Fsk(Z) _ Fsl(t) Fsk(t)

F;, (1) F, (2) F;, (t)
F;, (1) K, (2) Fs, (6)
F;, (1) F;, (2) F, ()

* Use n-bit-output PRF F; to generate t blocks, apply the extractor to each
block separately.

* To reveal subset I, exhibit Fg_(I), ..., Fs, (1), along with independent
consistency proofs m;(sq), ..., m;(S%).



Tighter Amplification via Extraction

E (Fy,(1), ... Fs, (1) | E(Fs,(2), .. F5,(2)) _

7;(51) F (1) Fs, (2) Fs, (t)
1;(s2) F;, (1) F;,(2) Fs, (t)
nl(sk) P.‘S'k(l) F.‘S'k(z) P.‘S'k(t)

* Use n-bit-output PRF F; to generate t blocks, apply the extractor to each
block separately.

* To reveal subset I, exhibit Fg_(I), ..., Fs, (1), along with independent
consistency proofs m;(sq), ..., m;(S%).
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* Zero-knowledge amplifier for non-adaptive soundness.

* Amplification for arguments without PKE.
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