Amplification of Non-Interactive Zero Knowledge, Revisited

Nir Bitansky and Nathan Geier

New York University and Tel Aviv University

Security Amplification

- Weak primitives are often easier to construct.
- Famous examples: Yao's OWF amplification and XOR lemma [Yao 82].

Non-Interactive Zero Knowledge

[Blum-Feldman-Micali 88]

• Completeness:

$$\forall (x, w) \in R_L \Rightarrow V \text{ accepts.}$$

• Soundness:

 \forall malicious prover P^* $Pr[x \notin L \text{ and } V \text{ accepts}] = \text{negl.}$

• Zero Knowledge:

$$\exists \mathsf{PPT} \mathsf{SIM} \ \forall (x, w) \in R_L$$

 $(crs, \pi) \approx \mathsf{SIM}(x).$

Weak NIZK

• Completeness:

$$\forall (x, w) \in R_L \Rightarrow V \text{ accepts.}$$

• Soundness:

 \forall malicious prover P^* $Pr[x \notin L \text{ and } V \text{ accepts}] \leq \varepsilon_s$.

• Zero Knowledge:

 $\exists \mathsf{PPT} \mathsf{SIM} \ \forall (x, w) \in R_L$ $(crs, \pi) \approx_{\varepsilon_\tau} \mathsf{SIM}(x).$

Weak NIZK — The Non-Trivial Case

- (1,0)-weak NIZK: prover sends nothing, verifier accepts.
- (0,1)-weak NIZK: prover sends witness in the clear.
- (p,1-p)-weak NIZK: p-biased bit in the CRS, indicating which of the above to run.
- Interested in the non-trivial case where $\varepsilon_s + \varepsilon_z < 1$.

Previous Results

Goyal, Jain and Sahai suggest a way to amplify weak NIZK for any constants $\varepsilon_s + \varepsilon_z < 1$.

- Based on MPC-in-the-head paradigm [Ishai-Kushilevitz-Ostrovsky-Sahai 07].
- Assuming sub-exponential PKE.
- Authors discovered a gap in their proof.

Our Results

• Amplifying NIZK **arguments** for NP assuming only **polynomially-secure** public-key encryption, for any constants $\varepsilon_s + \varepsilon_z < 1$.

Our Results

- Amplifying NIZK **arguments** for NP assuming only **polynomially-secure** public-key encryption, for any constants $\varepsilon_s + \varepsilon_z < 1$.
- Amplifying NIZK **proofs** for NP assuming only **one-way functions**, for any constants $\varepsilon_s + \varepsilon_z < 1$.

Our Results

- Amplifying NIZK arguments for NP assuming only polynomially-secure public-key encryption, for any constants $\varepsilon_S + \varepsilon_Z < 1$.
- Amplifying NIZK **proofs** for NP assuming only **one-way functions**, for any constants $\varepsilon_s + \varepsilon_z < 1$.
- When the soundness error ε_s is negligible to begin with, we can also amplify NIZK arguments for NP assuming only one-way functions.

• Based on the hidden-bits paradigm [Feige-Lapidot-Shamir 99], reduction to pseudorandomness amplification.

Weak-NIZK Constructions?

- Currently unaware of weak NIZK from weaker assumptions, except weak NISZK from batch arguments [Bitansky-Kamath-Paneth-Rothblum-Vasudevan 24].
- Combiners: random choice is weak.
- We mostly view NIZK amplification as a foundational hardness amplification question.

Technical Overview

Outline

- Zero-Knowledge amplifier $(1-(1-\varepsilon_{\scriptscriptstyle S})^k,\varepsilon_{\scriptscriptstyle Z}^k)$.
- Soundness* amplifier $(\varepsilon_s^k, 1 (1 \varepsilon_z)^k)$.
- Combining the amplifiers.
- Proofs: soundness* for free.
- Arguments: soundness* from PKE.

Outline

- Soundness* amplifier $(\varepsilon_s^k, 1 (1 \varepsilon_z)^k)$.
- Combining the amplifiers.
- Proofs: soundness* for free.
- Arguments: soundness* from PKE.

Hidden-Bits Generator

[Quach-Rothblum-Wichs 19, Kitagawa-Matsuda-Yamakawa 20]

- PRG $G: \{0,1\}^n \to \{0,1\}^{t(n)}$, with subset-consistency proofs.
- $G_{\bar{I}}, G_I, \pi_I \approx U, G_I, \pi_I$.
- Sufficient for NIZK (hidden-bits model [Feige-Lapidot-Shamir 99]).

HBG From Weak NIZK

- Prover generates $G(s_1), ..., G(s_k)$ for PRG G and parameter k.
- Hidden bit-string is set to $\bigoplus_{i=1}^k G(s_i)$.
- Using weak NIZK, generate k independent consistency proofs $\pi_I(s_1), ..., \pi_I(s_k)$ for the revealed $G_I(s_1), ..., G_I(s_k)$.

HBG From Weak NIZK

- Prover generates $G(s_1), \dots, G(s_k)$ for PRG G and parameter k.
- Hidden bit-string is set to $\bigoplus_{i=1}^k G(s_i)$.
- Using weak NIZK, generate k independent consistency proofs $\pi_I(s_1), ..., \pi_I(s_k)$ for the revealed $G_I(s_1), ..., G_I(s_k)$.

• Limited to $\varepsilon_z < 0.5$. What if last bit always leaked?

Maurer and Tessaro amplify weak PRGs using the concatenate and extract approach with a strong extractor:

$$\text{Ext}(G(s_1), ..., G(s_k); r), r$$
.

Maurer and Tessaro amplify weak PRGs using the concatenate and extract approach with a strong extractor:

$$\text{Ext}(G(s_1), ..., G(s_k); r), r$$
.

• Issue: Ext_I may depend on all bits, not just G_I .

$E\left(F_{s_1}(1),\ldots,F_{s_k}(1)\right)$	$F\left(F_{s_1}(2),\ldots,F_{s_k}(2)\right)$		$E\left(F_{s_1}(t),\ldots,F_{s_k}(t)\right)$
$F_{s_1}(1)$	$F_{S_1}(2)$		$F_{S_1}(t)$
$F_{s_2}(1)$	$F_{s_2}(2)$		$F_{s_2}(t)$
***	***	•••	***
$F_{S_k}(1)$	$F_{s_k}(2)$		$F_{S_k}(t)$

- Use n-bit-output PRF F_s to generate t blocks, apply the extractor to each block separately.
- To reveal subset I, exhibit $F_{S_1}(I), ..., F_{S_k}(I)$, along with independent consistency proofs $\pi_I(s_1), ..., \pi_I(s_k)$.

	$E\left(F_{s_1}(1),\ldots,F_{s_k}(1)\right)$	$E\left(F_{s_1}(2),\ldots,F_{s_k}(2)\right)$		$E\left(F_{s_1}(t),\ldots,F_{s_k}(t)\right)$
$\pi_I(s_1)$	$F_{s_1}(1)$	$F_{s_1}(2)$		$F_{s_1}(t)$
$\pi_I(s_2)$	$F_{s_2}(1)$	$F_{s_2}(2)$	•••	$F_{s_2}(t)$
	•••	•••	•••	
$\pi_I(s_k)$	$F_{s_k}(1)$	$F_{s_k}(2)$		$F_{S_k}(t)$

- Use n-bit-output PRF F_s to generate t blocks, apply the extractor to each block separately.
- To reveal subset I, exhibit $F_{S_1}(I), \dots, F_{S_k}(I)$, along with independent consistency proofs $\pi_I(s_1), \dots, \pi_I(s_k)$.

Open Questions

- Polynomially small gap: how to amplify (0.5, 0.5 1/n)?
- Zero-knowledge amplifier for non-adaptive soundness.
- Amplification for arguments without PKE.

Open Questions

- Polynomially small gap: how to amplify (0.5, 0.5 1/n)?
- Zero-knowledge amplifier for non-adaptive soundness.
- Amplification for arguments without PKE.

Thank you!

