Basefold: Efficient Field-Agnostic Polynomial

Commitment Schemes From Foldable Codes

Hadas Zeilberger
joint work with Binyi Chen(Stanford) and Ben Fisch(Yale)

Yale University

* We formalize the definition of a foldable code and
introduce a proof-of-proximity for any foldable code

* We construct a new family of linear codes, random
foldable codes, and prove tight bounds on their
minimum distance - Field Agnosticity

* We construct a new multilinear PCS by interleaving the
proof-of-proximity with the classic sum-check protocol ->
New Efficient PCS

SNARKs from Polynomial Interactive Oracle Proofs

Multivariate PIOP Multilinear PCS . SNARK
(Hyperplonk, Spartan, GKR)

Polynomial Interactive Oracle Proof: Multilinear Polynomial Commitment Scheme: A prover commits to

A prover and a verifier interact over a polynomial f € F[X, .., Xy] using a short commitment and later,
several rounds, in each round, the given «v, 3 € F, sends a proof that it knows the d-variate
prover sends a polynomial, and the multilinear polynomial satisfying 3 = f(«).
verifier responds with ranynness. J
5 -
'«] ==
= Com(P(X1,.,X
D
=)
= PeF[X1,.., X ‘ <:
— r3F G
— v E Fd P(v),m
<—
- 3 be{0,1}
3

Hyperplonk and SuperSpartan (Multilinear PIOPs

- Multilinear PIOPs interpolate and evaluate polynomials over the boolean
hypercube, rather than a subgroup, as in univariate PIOPs, (e.g. Plonk)

- Multilinear PIOPs replace computing a quotient polynomial - which requires an FFT
with the more efficient sum-check protocol for multilinear evaluation

- In Summary: Multilinear PIOPs have lower prover overhead than univariate PIOPs,
particularly for high-degree gates

)[CBBZ23,GWC19]

Application Rrics | Ark-Spartan || Rpronk+ | Jellyfish« | HyperPlonk
3-to-1 Rescue Hash 288 [1] 422 ms 144 [71] 40 ms 88 ms
PoK of Exponent || 3315 [63] | 902 ms 783 [63] | 64ms | 105 ms
ZCash circuit 217 [55] 8.3 s 21° [42] 0.8 s 0.6 s
Zexe’s recursive circuit || 22? [81] 6 min 217 [81] 13.1s 5.1s
Rollup of 50 private tx 24 39 min® 220 [71] 110 s 38.2s
zkEVM circuit® N/A N/A el 1 hour®¢ | 25 min%¢

*Jellyfish is an implementation of Plonk

Problems with Existing Multilinear PCS Constructions

Options for Multilinear PCS are limited.

- High verifier costs/requires proof recursion with high
overhead

- Relies on univariate-multilinear transformation, which
requires a constant number of univariate commitments

- Limited field choices forces many applications to use non-
native field operations, which requires encoding the “modulo
p” operation for each multiplication (leading to an overhead
of up to 256 constraints)

Polynomial Commitment Schemes from
Error Correcting Codes

» A linear [n, k] error correcting code (n,k € F" . n > k) is a k
dimensional subspace of F"

» The Hamming distance between two vectors, v, w is

i€ [L,n]:v[i] # wli]}

» A proof of proximity enables a prover to convince a verifier
that is knows a vector that is "close” in Hamming distance to
a codeword

[BBHR18]
FRI IOPP

» The FRI (Interactive Oracle) Proof of Proximity (IOPP) uses
a "split and fold" approach

» In each round, the prover sends an oracle to a codeword that
is half the size of the oracle from the previous round

» Finally, after d = log(n) rounds, the verifier receives a
constant-sized vector, which it can read in full

Enc(P) e

EnC(PL - TPR) e

Enc(Py) g

FRI IOPP

How to do this in linear time?

r— Enc(P) == =]- ————— V1 V2 V3 V4 ... Uy
’ B
[o Enc(PL, + rPg) h L | lati
w-. i - agrange Interpolation
S f1(z)

Technical Roadmap

- Foldable Codes
- Random Foldable Codes

- Multilinear PCS Construction from Foldable
Codes

Foldable Codes

» Every linear code can be described in terms of a generator
matrix, G such that Enc(v) =v - G.

» Foldable codes have a generator matrix with the following
structure:

Gg-1 Gg-1
Ga-1-Ty Gi—1-Ty

(Ty,Ty), .., (Ty, Ty) are diagonal matrices

10

Foldable Codes

Starting Point: Viewing RS Codes over FFT Friendly fields
as a Foldable Code

[1 1 1 1]

(~’1300)2 (9311)2 (3322)2 (wnn)2 Gd—l Gd—l

- =Gt Ty Gaa T
Euft @nF G« ool

7]
)
d
o
O
o
o
(0
=
o
Ll

NN NN NN

N N

AN AN AN AN NN

N N e N

N N N

T S e e N

— N N N

— N

P e T L N L

e N N N

N L e D2

— N

e e e e N

— N N N

Foldable Codes

1 1 1 1 1 1 1 1 [¢° ¢° ¢° g% 4° 4% 4° 4°]
RN oL SR o <L o B oS R o R |

Egg; Egigz ggzﬁ Egzgz ggigz Egigz 59%2 Eg%z lg® ¢* g g% ¢ ¢* ¢* ¢

g g g g g g g g

0\4 1\4 2\4 3\4 4\4 5\4 6\4 4 —

g e e G e

GEEGEG S s
Gd-1 Ga-1

Foldable Codes

1 1 1 1 1 1 1 1 [¢° ¢° q° g% 4° 4° 4° 4°]
RN oL SR o <L o B oS R o R |

Egg; Egigz ggzﬁ Egzgz ggigz Egigz 59%2 Eg%z lg® ¢* g* %l ¢ ¢* ¢* ¢

g g g g g g g g

0\4 1\4 2\4 3\4 4\4 5\4 6\4 4 —

g e e G e

GEEGEG S
Gd-1 Ga-1

B[] [[i _
© © < A
ol W] S | S S OO O
S S & [
=2 S @ s
Og Og Oﬂa Og g g g g
= © =]
> > > >
O AN < O
. g g g g
= ~ < ©
[~ > > >
S = = @ @
O =S S S R
@ !
O z
=
(@]
() o
— C
Q <
>
PN G RO =N L
a 1797 M~~~ K~
d SORSIAIRSRAS)
— S IT28 =
1696 © © © © ©
(@) BB OB
F N N F 0 © b~
)))))))

N N N

.Té

T S e e N

— N N N

3

)2

)3

)4

)5

)6

)7
Gg-1
Gg-1

— N

N Z S e e e

e N N N

N L e D2

— N

2
3
4
5
6
7t
Gg-1

Ga-1|- Ty

e e e e N

— N N N

|

2T g7

?’g-g‘
g

™
S O O "y

I-gb

g
g
—

ol [oh [t O OGO
AR =)) =
S SN g
o | Do B [y
WEE oo
Og < 4@ ug]

T= ¢

2
?g-gl
g

-° g*l-g' [g%-9° | g% 9 1 g% -g* [g%-g°| 9% 4% g% ¢

g
i Pl 40 Ig_6,'91 a4-g% [214% [°Fg* [6°Fg° |g%] ¢°

o © < o
SHES NSNS

g’ g°

18°F ¢° 19% g* 16°{g° [g% g% [g% o* [9%-9°| 99 g® |9° ¢
g

0

-
|

o <+ o
S o O O

S N ©
S O O O

' S (=) =) (=) (&
))))))
17g7g7g7g7g7g7g _ g g g g_

N N

7]
)
d
o
O
i
o
(0
=
o
Ll

AN AN AN AN AN

1
6
6
6
6
6
6
6

N N e N

1oBl e e N e o
555555

N N N

T S e e N

— N N N

Odd Rows

— N

N Z S e e e

e N N N

N L e D2

— N

e e e e N

— N N N

7]
)
d
o
O
i
o
(0
=
o
Ll

(g1

(g-1
Gi-1+ T

/
d.

T

(g1

_ 9 g

— 9 g

0792 199 ¢ g% g* [g% a° | g7 g° g% o7

_q

g4-g‘ gb.gd M'94 Iﬂ'gbl_‘ﬁ'gb gb_g(

2
?g-gl

g°rg° 19° g¢*

0
?g-g”

g
-¢° g% ¢
g

g
T
g

q® 1g4-¢® 1 g% g* 1 g%-¢° | g% 4% lg* "

g

q
T
g

2g7

| (9%} 9° [¢°% 9" |97 9% lg°1d° |9°19" [¢°9° |9°)¢°

17

Technical Roadmap

- Foldable Codes
- Random Foldable Codes

- Multilinear PCS Construction from Foldable
Codes

18

Random Foldable Codes

A Random foldable code is a foldable code where the elements of the diagonal matrices
are uniformly sampled from F

Gd-1 Ga-1
Ga-1- Ty Gi1-Ty

19

Random Foldable Codes

Minimum Relative Distance of a random foldable code
ko kd C |IF| AC d
2° 220 16 231 5044
1 220 16 261 484
1 220 8 2128 557
1 225 8 9256 728

Table 1: The relative minimum distances of random foldable codes.

20

Technical Roadmap

- Foldable Codes
- Random Foldable Codes

- Multilinear PCS Construction from Foldable
Codes

21

Foldable Codes as Punctured Reed-Muller Codes

G Go
(][, @ -

Gi-1- Ty Gggo Ty

/

[m-Ga_y:me ¥ '} = {(P(#),.., P(F.)) : P € F[Xy,.., Xa_i]}

22

Foldable Codes as Punctured Reed-Muller Codes
G G
(mu||m)-

Gi-1- Ty Gg Ty

‘{me)+ Ta—1[2|Pm,(U5) : 2 € [1,n]}

{P*(5, Turfi) : i € [1,m]}

23

Foldable Codes as Punctured Reed-Muller Codes

@ Gis ,} {P*(@;, Tylil,i € [1,n/2]}

24

Foldable Codes as Punctured Reed-Muller Codes

@ Gis ,} {P*(@;, Tylil,i € [1,n/2]}

25

Foldable Codes as Punctured Reed-Muller Codes

@ Gis ,} {P*(@;, Tylil,i € [1,n/2]}

26

Foldable Codes -> Multilinear PCS

P(z1,91,21) P(z1,y1,25)
V1 | V3 VU3 U4 ?.75 Vg Uy g
Lagrange X1 (T2 1 T2 | X1 (T2 T1 X2

Interpolation Y1 Y2 Y3 U4 | Y1 Y2 Y3 Y4

= (P, + rPg)(x1,y1) 27

Foldable Codes -> Multilinear PCS

/ {P(v;) :i € [1,8]}

({i{m1y

28

Foldable Codes -> Multilinear PCS

» Reduce evaluation check of a multilinear polynomial at a
generic point to a evaluation check at a random point using
sum-check protocol + multilinear extension

P(Xy,.,Xs)= Y P(b)-égy(Xi,.,Xa)
be{0,1}4

I d rounds

29

Foldable Codes -> Multilinear PCS

Basefold IOPP and sum-check are then interleaved, sharing the same
verifier randomness. The last oracle of the Basefold IOPP is the random
query to the polynomial oracle.

P(Xl,",Xd) = Z P(b)€Qb(X1,’Xd)
be{0,1}4

Knowledge Soundness

- Lemma: For any prover strategy that passes the verifier checks
with non-negligible probability, there exists a polynomial time
extractor with black-box access to the prover, that outputs the
underlying polynomial

Prover

Extractor
=]

Foldable Codes -> Multilinear PCS

- BasefoldPCS with a Reed-Solomon code: the knowledge extractor queries
sufficiently many locations from the Merkle tree and decodes
- BasefoldPCS with Random Foldable Code: extractor queries the prover for

enough random evaluations of the polynomial to interpolate the coefficients of the
underlying polynomial.

= {P(V;) :i€[1,n]}

Foldable Codes -> Multilinear PCS

- Basefold IOPP needs to prove that P(r) is the evaluation
of the polynomial underlying the prover’s commitment

- To do this, the verifier needs to check each oracle
within the unique decoding radius, rather than the list-

decoding radius, as in FRI

Performance

* Basefold prover is 2-3 faster than prior multilinear PCS
from FRI when defined over the same finite field

* The Basefold verifier is comparable to FRI's and ~10
times faster than Brakedown’s verifier

* Basefold works over any sufficiently large finite field- i.e.
proving ECDSA signature verification over secp256k1 is
more than 20 times faster than FRI-based SNARK

34

Performance

ECDSA Circuit

Protocol Prover Time Proof Size Verifier Time
(ms) (KB) (ms)
Hyperplonk[Basefold] 122 6258 24
Hyperplonk|Brakedown] 168 32271 797
Hyperplonk[ZeromorphFri] 2888 7739 47
HyperPlonk[MKZG] 71027 7.74 107

35

Performance

Hyperplonk[Basefold] (Rates .5, .25, .125) AN ®
Hyperplonk[ZeromorphFri] (Rates .5, .25, .125) ARO®
Hyperplonk[Brakedown] (Rates .704, .65, .58) ANO®

10000 10000

— L]

g —

o= 7500 D 7500

o £

[] (D |

= 5000 | E 5000 |

;‘;) b) @ " : }: .. " W

o 2500 ‘i’ 2500

o 2

(ol
. 0 5.0E+8 1.0E+9 1.5E+9 2.0E+9 ¥ 0 500 1000 1500 2000 2500
Size(KB) Verifier Time (ms)

36

Performance

256-Bit PCS
M Basefold M Brakedown M MultilinearKZG
M BasefoldFri ZeromorphFri
Verifier Time Prover Time

Proof Size

(8]
=

N N
- %
NN
o] et

) 7]
)
Ariglo 8 2 — Q510
2 @ / 02
= 17! @
X o5 =7 =
= = 2°
e 22
10 15 | -] 10 15 20 25 10 15 20 2%
Number of Variables Number of Variables

Number of Variables

Figure 5: Performance of different PCS over 256-bit fields. Recall that Brakedown and Basefold
are field-agnostic while Multilinear-KZG, ZeromorphFri, and BasefoldFri are not.
37

Future Work

® Explore more practical applications of field-
agnosticity

® Prove that Basefold satisfies knowledge soundness
even when the verifier checks within the list-
decoding radius (on-going work)

® Prove better bounds on the distance of the Random
Foldable Code/ Find other foldable codes with
better distance

38

Thank you!

Paper: https://eprint.iacr.org/2023/1705.pdf,
Code: https://github.com/hadasz/plonkish_basefold

Contact:
email: hadas.zeilberger @yale.edu
X (twitter): @idocryptography

https://eprint.iacr.org/2023/1705.pdf
https://github.com/hadasz/plonkish_basefold
mailto:hadas.zeilberger@yale.edu

	Basefold: Efficient Field-Agnostic Polynomial Commitment Scheme
	Basefold
	SNARKs from PIOP
	Hyperplonk and SuperSpartan (Multilinear PIOPs)
	Problems with Existing Multilinear PCS Constructions
	Polynomial Commitment Schemes from Error Correcting Codess
	FRI IOPP
	FRI IOPP (2)
	Technical Roadmap
	Foldable Codes
	Foldable Codes (2)
	Foldable Codes (3)
	Slide 13
	Slide 14
	Slide 15
	Foldable Codes (4)
	Foldable Codes (5)
	Technical Roadmap (2)
	Random Foldable Codes
	Random Foldable Codes (2)
	Technical Roadmap (3)
	Foldable Codes as Punctured Reed-Muller Codes
	Foldable Codes as Punctured Reed-Muller Codes (2)
	Foldable Codes as Punctured Reed-Muller Codes (3)
	Slide 25
	Slide 26
	Foldable Codes -> Multilinear PCS
	Foldable Codes -> Multilinear PCS (2)
	Foldable Codes -> Multilinear PCS (4)
	Foldable Codes -> Multilinear PCS (4)
	Knowledge Soundness
	Foldable Codes -> Multilinear PCS (5)
	Foldable Codes -> Multilinear PCS (6)
	Performance
	Performance (2)
	Performance (3)
	Performance (4)
	Future Work
	Thank you!

