Basefold: Efficient Field-Agnostic Polynomial Commitment Schemes From Foldable Codes

Hadas Zeilberger

joint work with Binyi Chen(Stanford) and Ben Fisch(Yale)

Yale University

Basefold

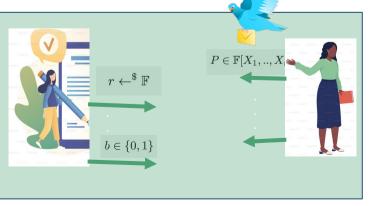
- We formalize the definition of a *foldable code* and introduce a proof-of-proximity for any foldable code
- We construct a new family of linear codes, *random foldable codes*, and prove tight bounds on their minimum distance **Field Agnosticity**
- We construct a new multilinear PCS by interleaving the proof-of-proximity with the classic sum-check protocol -> New Efficient PCS

SNARKs from Polynomial Interactive Oracle Proofs

Multivariate PIOP (Hyperplonk, Spartan, GKR)

Polynomial Interactive Oracle Proof:

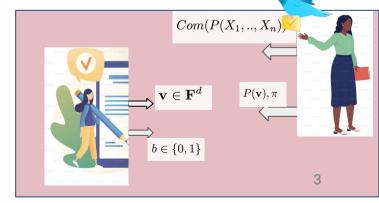
A prover and a verifier interact over several rounds, in each round, the prover sends a polynomial, and the verifier responds with randomness.



Multilinear PCS

SNARK

Multilinear Polynomial Commitment Scheme: A prover commits to a polynomial $f \in \mathbb{F}[X_1, ..., X_d]$ using a short commitment and later, given $\alpha, \beta \in \mathbb{F}$, sends a proof that it knows the d-variate multilinear polynomial satisfying $\beta = f(\alpha)$.



Hyperplonk and SuperSpartan (Multilinear PIOPs)^[CBBZ23,GWC19]

- Multilinear PIOPs interpolate and evaluate polynomials over the *boolean hypercube*, rather than a subgroup, as in univariate PIOPs, (e.g. Plonk)
- Multilinear PIOPs replace computing a quotient polynomial which requires an FFT with the more efficient sum-check protocol for multilinear evaluation
- **In Summary:** Multilinear PIOPs have lower prover overhead than univariate PIOPs, particularly for *high-degree gates*

Application	$\mathcal{R}_{\mathrm{R1}CS}$	Ark-Spartan	$\mathcal{R}_{ extsf{PLONK}+}$	Jellyfish*	Hyper <mark>Plonk</mark>
3-to-1 Rescue Hash	288 [1]	$422 \mathrm{\ ms}$	144 [71]	$40 \mathrm{ms}$	$88 \mathrm{ms}$
PoK of Exponent	$3315 \ [63]$	$902 \mathrm{\ ms}$	783 [63]	64 ms	$105 \mathrm{ms}$
ZCash circuit	2^{17} [55]	8.3 s	2^{15} [42]	0.8 s	0.6 s
Zexe's recursive circuit	2^{22} [81]	$6 \min$	2^{17} [81]	13.1 s	$5.1 \mathrm{~s}$
Rollup of 50 private tx	2^{25}	$39 \min^b$	2^{20} [71]	110 s	$38.2 \mathrm{s}$
zkEVM circuit ^a	N/A	N/A	2^{27}	$1 \text{ hour}^{b,c}$	$25 \min^{b,c}$

*Jellyfish is an implementation of Plonk

Problems with Existing Multilinear PCS Constructions

Options for Multilinear PCS are limited.

- **High verifier costs**/requires proof recursion with high overhead
- Relies on **univariate-multilinear transformation**, which requires a constant number of univariate commitments
- Limited field choices forces many applications to use nonnative field operations, which requires encoding the "modulo p" operation for *each multiplication* (leading to an overhead of up to 256 constraints)

Polynomial Commitment Schemes from Error Correcting Codes

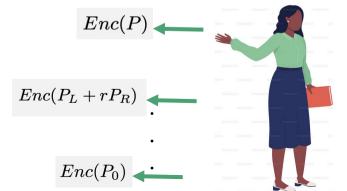
- A linear [n, k] error correcting code (n, k ∈ ℝⁿ, n > k) is a k dimensional subspace of ℝⁿ
- ► The Hamming distance between two vectors, **v**, **w** is

 $|\{i \in [1, n] : v[i] \neq w[i]\}$

A proof of proximity enables a prover to convince a verifier that is knows a vector that is "close" in Hamming distance to a codeword

FRI IOPP

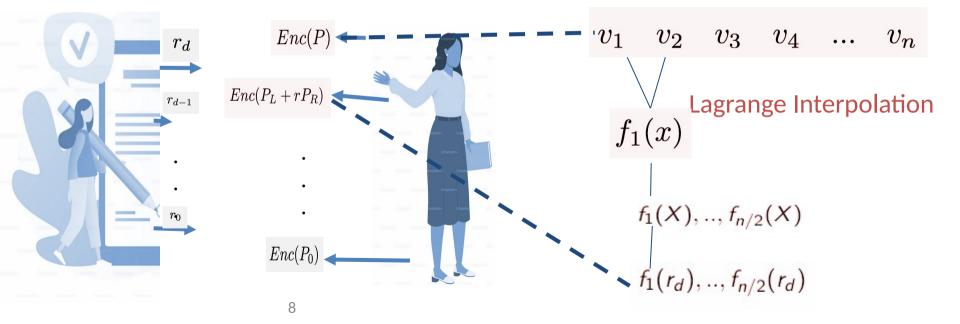
- The FRI (Interactive Oracle) Proof of Proximity (IOPP) uses a "split and fold" approach
- In each round, the prover sends an oracle to a codeword that is half the size of the oracle from the previous round
- Finally, after d = log(n) rounds, the verifier receives a constant-sized vector, which it can read in full



[BBHR18]

FRI IOPP

How to do this in linear time?



Technical Roadmap

- Foldable Codes
- Random Foldable Codes
- Multilinear PCS Construction from Foldable Codes

- Every linear code can be described in terms of a generator matrix, G such that Enc(v) = v · G.
- Foldable codes have a generator matrix with the following structure:

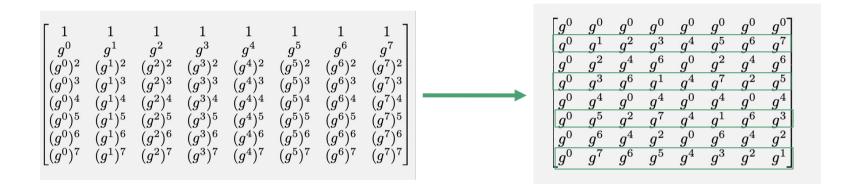
$$\begin{bmatrix} G_{d-1} & G_{d-1} \\ G_{d-1} \cdot T_d & G_{d-1} \cdot T'_d \end{bmatrix}$$

$$(T_d, T'_d), ..., (T_0, T'_0)$$
 are diagonal matrices

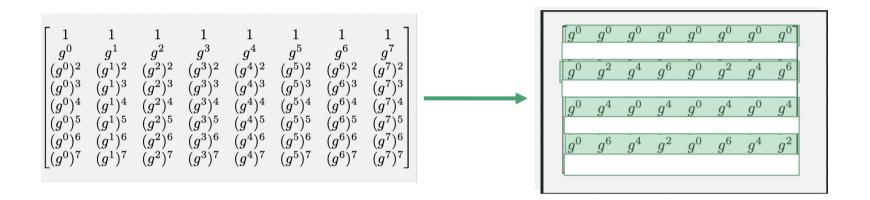
Starting Point: Viewing RS Codes over FFT Friendly fields as a *Foldable Code*

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ x_0 & x_1 & x_2 & \dots & x_n \\ (x_0)^2 & (x_1)^2 & (x_2)^2 & \dots & (x_n)^2 \\ \dots & & & & \\ \dots & & & & \\ (x_0)^d & (x_1)^d & (x_2)^d & \dots & (x_n)^d \end{bmatrix}$$

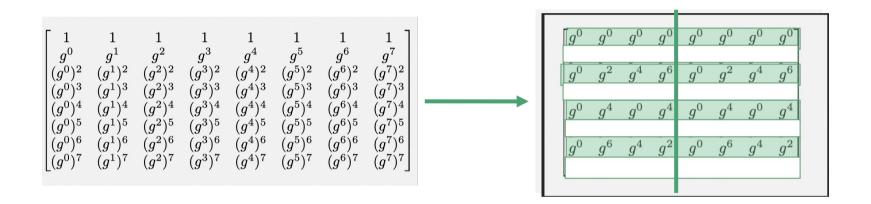
$$\begin{array}{c} & & \\ G_{d-1} & & G_{d-1} \\ G_{d-1} \cdot T_d & & G_{d-1} \cdot T_d' \end{array}$$



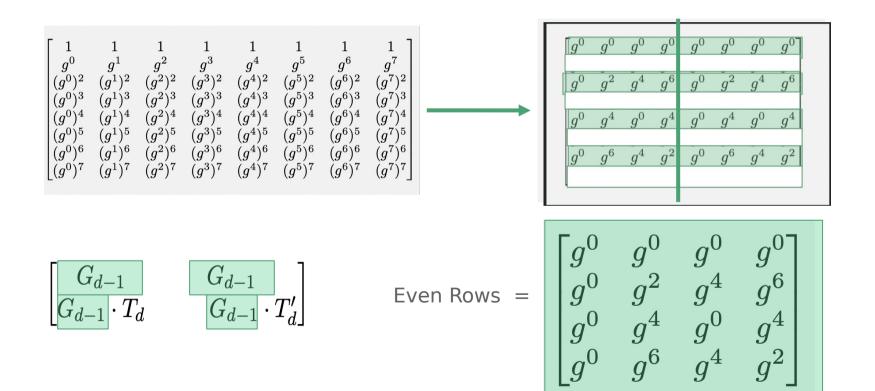
$$\begin{bmatrix} G_{d-1} & G_{d-1} \\ G_{d-1} \cdot T_d & G_{d-1} \cdot T'_d \end{bmatrix}$$

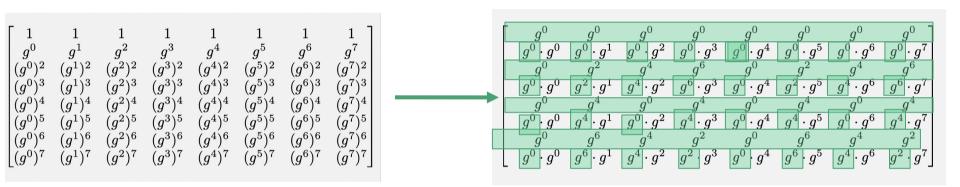


$$\begin{bmatrix} G_{d-1} & G_{d-1} \\ G_{d-1} \cdot T_d & G_{d-1} \cdot T'_d \end{bmatrix}$$

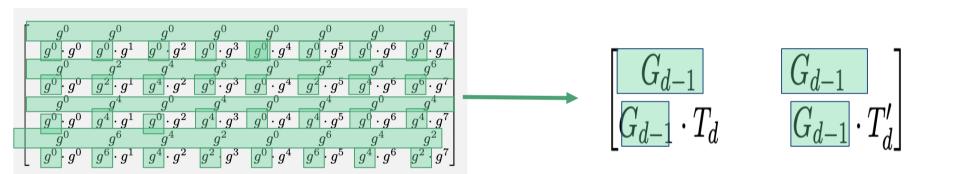


$$\begin{bmatrix} G_{d-1} & G_{d-1} \\ G_{d-1} \cdot T_d & G_{d-1} \cdot T'_d \end{bmatrix}$$





Odd Rows =
$$\begin{bmatrix} g^0 & g^0 & g^0 & g^0 \\ g^0 & g^2 & g^4 & g^6 \\ g^0 & g^4 & g^0 & g^4 \\ g^0 & g^6 & g^4 & g^2 \end{bmatrix} \Rightarrow \begin{bmatrix} g^0 & 0 & 0 & 0 \\ 0 & g^1 & 0 & 0 \\ 0 & 0 & g^2 & 0 \\ 0 & 0 & 0 & g^3 \end{bmatrix}$$

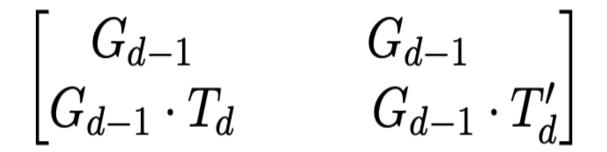


Technical Roadmap

- Foldable Codes
- Random Foldable Codes
- Multilinear PCS Construction from Foldable Codes

Random Foldable Codes

A Random foldable code is a foldable code where the elements of the diagonal matrices are uniformly sampled from $\mathbb F$



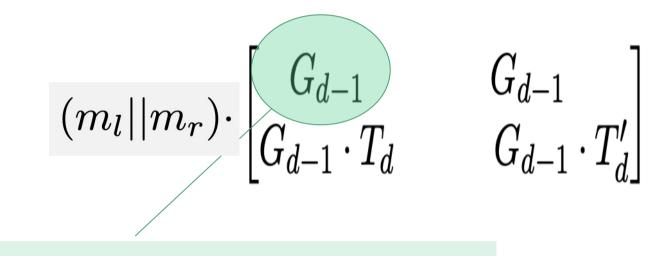
Random Foldable Codes

Minimum Relative Distance of a random foldable code									
k_0	k_d	С	$ \mathbb{F} $	Δ_{C_d}					
2^{5}	2^{20}	16	2^{31}	.5044					
1	2^{20}	16	2^{61}	.484					
1	2^{25}	8	2^{128}	.557					
1	2^{25}	8	2^{256}	.728					

Table 1: The relative minimum distances of random foldable codes.

Technical Roadmap

- Foldable Codes
- Random Foldable Codes
- <u>Multilinear PCS Construction from Foldable</u>
 <u>Codes</u>



$$\{m \cdot G_{d-1} : m \in \mathbb{F}^{2^{d-1}}\} = \{(P(\vec{v}_1), ..., P(\vec{v}_n)) : P \in \mathbb{F}[X_1, ..., X_{d-1}]\}$$

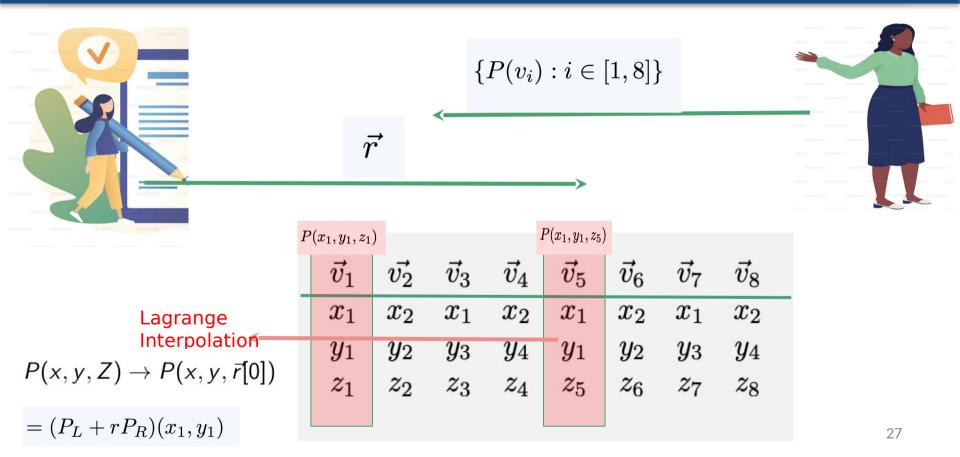
$$\{m \cdot G_{d-1} : m \in \mathbb{F}^{2^{d-1}}\} = \{(P(\vec{v}_1), \dots, P(\vec{v}_n)) : P \in \mathbb{F}[X_1, \dots, X_{d-1}]\} \\ (m_l | | m_r) \cdot \begin{bmatrix} G_{d-1} & G_{d-1} \\ G_{d-1} \cdot T_d \end{bmatrix} \\ G_{d-1} \cdot T_d \end{bmatrix}$$

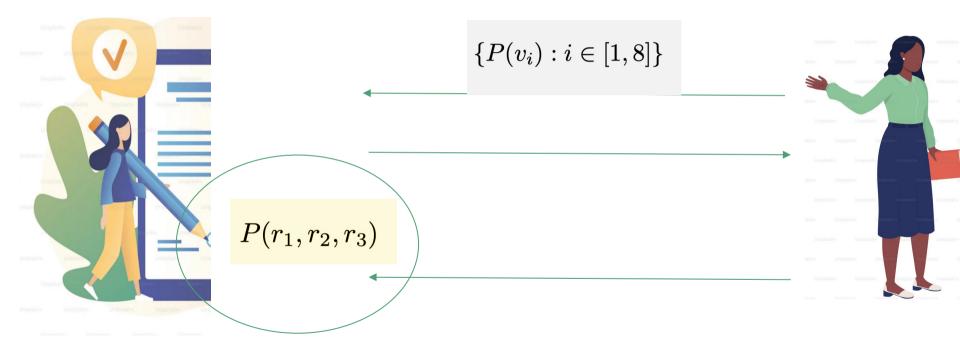
$$\{P_{m_{l}}(\vec{v}_{i}) + T_{d-1}[i]P_{m_{r}}(\vec{v}_{i}) : i \in [1, n]\}$$
$$= \{P^{*}(\vec{v}_{i}, T_{d-1}[i]) : i \in [1, n]\}$$

G_{d-1}	(\widetilde{G}_{d-1}					$\{P$	$*(ec{v}_i, ec{v}_i)$	$T_d[i],$	$i \in$	[1, n]	$/2]\}$
$G_{d-1} \cdot T_d$	l	J_{d-1} .	$\lfloor d \rfloor$				/					
	$ec{v}_1$	$\vec{v_2}$	$ec{v}_3$	$ec v_4$	$ec{v}_5$	$ec{v}_6$	$ec{v}_7$	$ec{v}_8$				
	x_1	x_2	x_1	x_2	x_1	x_2	x_1	x_2				
	y_1	y_2	y_3	y_4	y_1	y_2	y_3	y_4				
	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8				

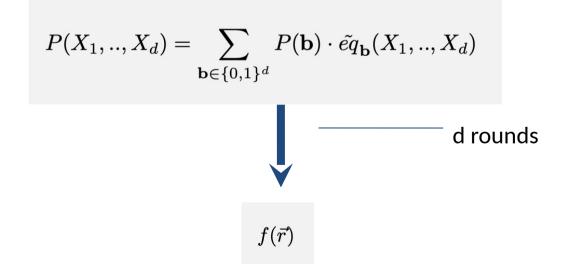
$\begin{matrix} G_{d-1} \\ G_{d-1} \cdot T_d \end{matrix}$	($\widetilde{\mathcal{G}}_{d-1}$	T_d'				$\{P$	$^{*}(ec{v_{i}},$	$T_d[i], i \in [1, n/2]\}$
	\vec{v}_1	$\vec{v_2}$	$ec{v}_3$	$ec{v}_4$	\vec{v}_5	$ec{v}_6$	$ec{v}_7$	$ec{v}_8$	
	x_1	x_2	$\overline{x_1}$	x_2	x_1	x_2	$\overline{x_1}$	$\overline{x_2}$	
	y_1	y_2	y_3	y_4	y_1	y_2	y_3	y_4	
	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8	
									25

$\begin{bmatrix} G_{d-1} \\ G_{d-1} \cdot T_d \end{bmatrix}$	G (\tilde{f}_{d-1}	T'_d				$\{P$	$T_d[i], i \in [1, n/2]$	2]}	
	$ec{v_1}{x_1} \ y_1 \ z_1$	$ec{v_2} \ x_2 \ y_2 \ z_2$	$ec{v_3}\ x_1\ y_3\ z_3$	$ec{v_4} \ x_2 \ y_4 \ z_4$	$ec{v_5} \ x_1 \ y_1 \ z_5$	$ec{v_6} \ x_2 \ y_2 \ z_6$	$ec{v_7} \ x_1 \ y_3 \ z_7$	$ec{v_8} \ x_2 \ y_4 \ z_8$	24	

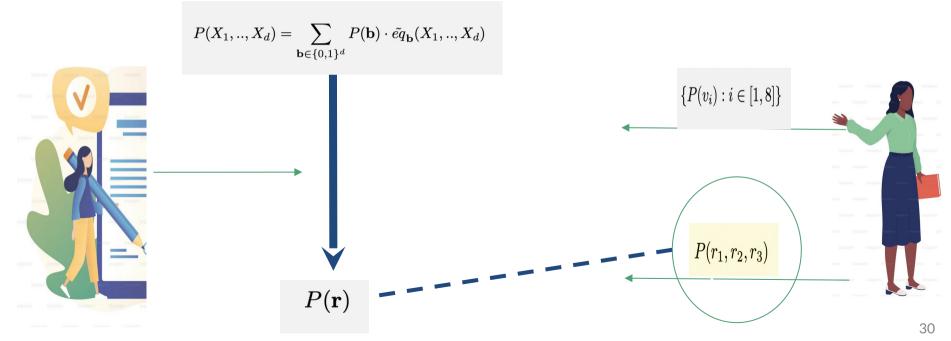




Reduce evaluation check of a multilinear polynomial at a generic point to a evaluation check at a *random* point using sum-check protocol + multilinear extension

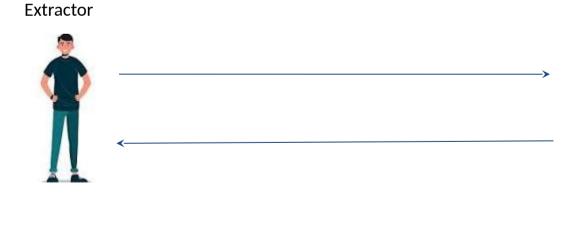


Basefold IOPP and sum-check are then interleaved, sharing the same verifier randomness. The last oracle of the Basefold IOPP is the random query to the polynomial oracle.

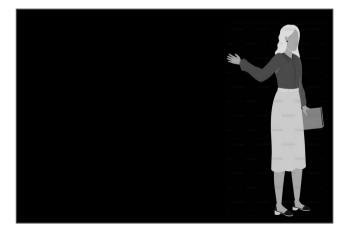


Knowledge Soundness

- Lemma: For any prover strategy that passes the verifier checks with non-negligible probability, there exists a polynomial time extractor with black-box access to the prover, that outputs the underlying polynomial

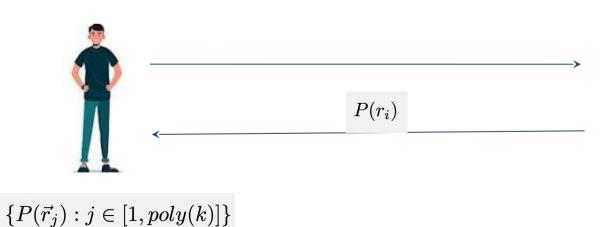


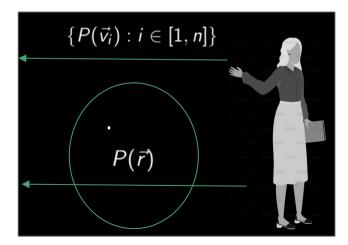
Prover



- **BasefoldPCS with a Reed-Solomon code:** the knowledge extractor queries sufficiently many locations from the Merkle tree and decodes

- **BasefoldPCS with Random Foldable Code:** extractor queries the prover for enough random evaluations of the polynomial to interpolate the coefficients of the underlying polynomial.

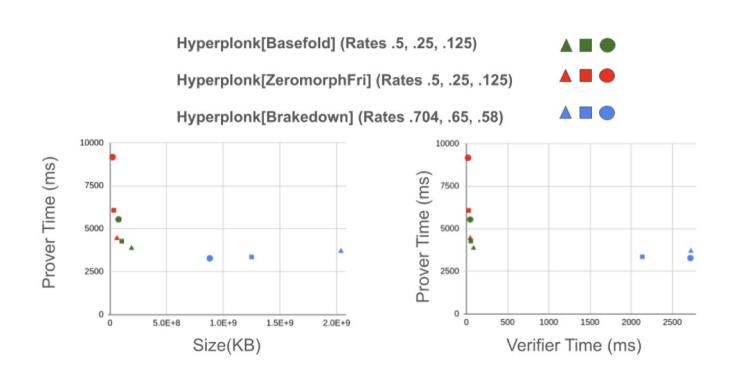




- Basefold IOPP needs to prove that *P*(*r*) is the evaluation of the polynomial underlying the prover's commitment
- To do this, the verifier needs to check each oracle within the *unique decoding radius*, rather than the *list-decoding radius*, as in FRI

- Basefold **prover is 2-3 faster** than prior multilinear PCS from FRI when defined over the same finite field
- The Basefold verifier is comparable to FRI's and ~10 times faster than Brakedown's verifier
- Basefold works over any sufficiently large finite field- i.e. proving ECDSA signature verification over secp256k1 is more than 20 times faster than FRI-based SNARK

ECDSA Circuit										
Protocol	Prover Time	Proof Size	Verifier Time							
1 10:0001	(ms)	(KB)	(ms)							
Hyperplonk[Basefold]	122	6258	24							
Hyperplonk[Brakedown]	168	32271	797							
Hyperplonk[ZeromorphFri]	2888	7739	47							
HyperPlonk[MKZG]	71027	7.74	107							



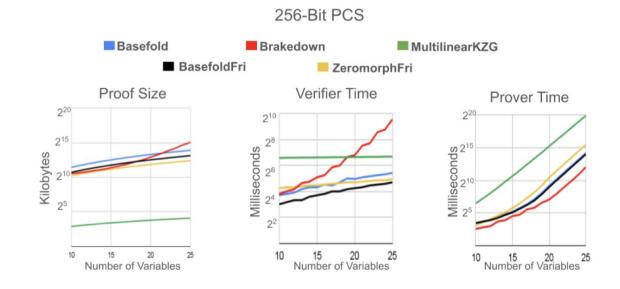


Figure 5: Performance of different PCS over 256-bit fields. Recall that Brakedown and Basefold are field-agnostic while Multilinear-KZG, ZeromorphFri, and BasefoldFri are not.

Future Work

- Explore more practical applications of fieldagnosticity
- Prove that Basefold satisfies knowledge soundness even when the verifier checks within the listdecoding radius (on-going work)
- Prove better bounds on the distance of the Random Foldable Code/ Find other foldable codes with better distance

Paper: <u>https://eprint.iacr.org/2023/1705.pdf</u>, Code: <u>https://github.com/hadasz/plonkish_basefold</u>

> <u>Contact:</u> email: <u>hadas.zeilberger@yale.edu</u> X (twitter): @idocryptography