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Basefold: Efficient Field-Agnostic Polynomial 
Commitment Schemes From Foldable Codes



Basefold

• We formalize the definition of a foldable code and 
introduce a proof-of-proximity for any foldable code

• We construct a new family of linear codes, random 
foldable codes, and prove tight bounds on their 
minimum distance - Field Agnosticity

• We construct a new multilinear PCS by interleaving the 
proof-of-proximity with the classic sum-check protocol -> 
New Efficient PCS
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SNARKs from Polynomial Interactive Oracle Proofs

Multivariate PIOP 
(Hyperplonk, Spartan, GKR) SNARK

Multilinear PCS

3

Polynomial Interactive Oracle Proof: 
 A prover and a verifier interact over 
several rounds, in each round, the 
prover sends a polynomial, and the 
verifier responds with randomness. 
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Hyperplonk and SuperSpartan (Multilinear PIOPs)
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[CBBZ23,GWC19]

*

*Jellyfish is an implementation of Plonk

- Multilinear PIOPs interpolate and evaluate polynomials over the boolean 
hypercube, rather than a subgroup, as in univariate PIOPs, (e.g. Plonk)

- Multilinear PIOPs replace computing a quotient polynomial - which requires an FFT 
with the more efficient sum-check protocol for multilinear evaluation

- In Summary: Multilinear PIOPs have lower prover overhead than univariate PIOPs, 
particularly for high-degree gates



Problems with Existing Multilinear PCS Constructions

Options for Multilinear PCS are limited.
- High verifier costs/requires proof recursion with high 

overhead
- Relies on univariate-multilinear transformation, which 

requires a constant number of univariate commitments
- Limited field choices forces many applications to use non-

native field operations, which requires encoding the “modulo 
p” operation for each multiplication (leading to an overhead 
of up to 256 constraints)
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Polynomial Commitment Schemes from 
Error Correcting Codess



FRI IOPP
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FRI IOPP

8

How to do this in linear time?

Lagrange Interpolation
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Technical Roadmap
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- Foldable Codes
- Random Foldable Codes
- Multilinear PCS Construction from Foldable 

Codes



Foldable Codes
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Foldable Codes

Starting Point: Viewing RS Codes over FFT Friendly fields 
as a Foldable Code



Foldable Codes



Foldable Codes



Foldable Codes



Foldable Codes

  Even Rows  = 



Odd Rows = 

Foldable Codes
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Foldable Codes



Technical Roadmap
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- Foldable Codes
- Random Foldable Codes
- Multilinear PCS Construction from Foldable 

Codes



Random Foldable Codes
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Random Foldable Codes
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Technical Roadmap
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- Foldable Codes
- Random Foldable Codes
- Multilinear PCS Construction from Foldable 

Codes
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Foldable Codes as Punctured Reed-Muller Codes
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Foldable Codes as Punctured Reed-Muller Codes



24

T0

T1

T2

Foldable Codes as Punctured Reed-Muller Codes
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Foldable Codes as Punctured Reed-Muller Codes
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T0

T1
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Foldable Codes as Punctured Reed-Muller Codes
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Lagrange 
Interpolation

Foldable Codes -> Multilinear PCS
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Foldable Codes -> Multilinear PCS
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Foldable Codes -> Multilinear PCS

Foldable Codes -> Multilinear PCS

d rounds



30

Foldable Codes -> Multilinear PCS
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Basefold IOPP and sum-check are then interleaved, sharing the same 
verifier randomness. The last oracle of the Basefold IOPP is the random 
query to the polynomial oracle.   



Knowledge Soundness
- Lemma: For any prover strategy that passes the verifier checks 

with non-negligible probability, there exists a polynomial time 
extractor with black-box access to the prover, that outputs the 
underlying polynomial 

Extractor Prover
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Foldable Codes -> Multilinear PCS
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- BasefoldPCS with a Reed-Solomon code: the knowledge extractor queries 
sufficiently many locations from the Merkle tree and decodes
- BasefoldPCS with Random Foldable Code: extractor queries the prover for 
enough random evaluations of the polynomial to interpolate the coefficients of the 
underlying polynomial. 



- Basefold IOPP needs to prove that P(r) is the evaluation 
of the polynomial underlying the prover’s commitment

- To do this, the verifier needs to check each oracle 
within the unique decoding radius, rather than the list-
decoding radius, as in FRI

Foldable Codes -> Multilinear PCS



Performance
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 • Basefold prover is 2-3 faster than prior multilinear PCS 
from FRI when defined over the same finite field

• The Basefold verifier is comparable to FRI’s and ~10 
times faster than Brakedown’s verifier

• Basefold works over any sufficiently large finite field- i.e. 
proving ECDSA signature verification over secp256k1 is 
more than 20 times faster than FRI-based SNARK



Performance
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Performance
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Performance



Future Work

● Explore more practical applications of field-
agnosticity

● Prove that Basefold satisfies knowledge soundness 
even when the verifier checks within the list-
decoding radius (on-going work)

● Prove better bounds on the distance of the Random 
Foldable Code/ Find other foldable codes with 
better distance
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Thank you!

Paper: https://eprint.iacr.org/2023/1705.pdf, 
Code: https://github.com/hadasz/plonkish_basefold
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Contact:
email: hadas.zeilberger@yale.edu

X (twitter): @idocryptography

https://eprint.iacr.org/2023/1705.pdf
https://github.com/hadasz/plonkish_basefold
mailto:hadas.zeilberger@yale.edu
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