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* We formalize the definition of a foldable code and
introduce a proof-of-proximity for any foldable code

* We construct a new family of linear codes, random
foldable codes, and prove tight bounds on their
minimum distance - Field Agnosticity

* We construct a new multilinear PCS by interleaving the
proof-of-proximity with the classic sum-check protocol ->
New Efficient PCS



SNARKs from Polynomial Interactive Oracle Proofs

Multivariate PIOP Multilinear PCS . SNARK
(Hyperplonk, Spartan, GKR)

Polynomial Interactive Oracle Proof: Multilinear Polynomial Commitment Scheme: A prover commits to

A prover and a verifier interact over a polynomial f € F[X, .., Xy] using a short commitment and later,
several rounds, in each round, the given «v, 3 € F, sends a proof that it knows the d-variate
prover sends a polynomial, and the multilinear polynomial satisfying 3 = f(«).
verifier responds with ranynness. J
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Hyperplonk and SuperSpartan (Multilinear PIOPs

- Multilinear PIOPs interpolate and evaluate polynomials over the boolean
hypercube, rather than a subgroup, as in univariate PIOPs, (e.g. Plonk)

- Multilinear PIOPs replace computing a quotient polynomial - which requires an FFT
with the more efficient sum-check protocol for multilinear evaluation

- In Summary: Multilinear PIOPs have lower prover overhead than univariate PIOPs,
particularly for high-degree gates

)[CBBZ23,GWC19]

Application Rrics | Ark-Spartan || Rpronk+ | Jellyfish« | HyperPlonk
3-to-1 Rescue Hash 288 [1] 422 ms 144 [71] 40 ms 88 ms
PoK of Exponent || 3315 [63] | 902 ms 783 [63] | 64ms | 105 ms
ZCash circuit 217 [55] 8.3 s 21° [42] 0.8 s 0.6 s
Zexe’s recursive circuit || 22? [81] 6 min 217 [81] 13.1s 5.1s
Rollup of 50 private tx 24 39 min® 220 [71] 110 s 38.2s
zkEVM circuit® N/A N/A el 1 hour®¢ | 25 min%¢

*Jellyfish is an implementation of Plonk




Problems with Existing Multilinear PCS Constructions

Options for Multilinear PCS are limited.

- High verifier costs/requires proof recursion with high
overhead

- Relies on univariate-multilinear transformation, which
requires a constant number of univariate commitments

- Limited field choices forces many applications to use non-
native field operations, which requires encoding the “modulo
p” operation for each multiplication (leading to an overhead
of up to 256 constraints)



Polynomial Commitment Schemes from
Error Correcting Codes

» A linear [n, k] error correcting code (n,k € F" . n > k) is a k
dimensional subspace of F"

» The Hamming distance between two vectors, v, w is

i€ [L,n]:v[i] # wli]}

» A proof of proximity enables a prover to convince a verifier
that is knows a vector that is "close” in Hamming distance to
a codeword



[BBHR18]
FRI IOPP

» The FRI (Interactive Oracle) Proof of Proximity (IOPP) uses
a "split and fold" approach

» In each round, the prover sends an oracle to a codeword that
is half the size of the oracle from the previous round

» Finally, after d = log(n) rounds, the verifier receives a
constant-sized vector, which it can read in full

Enc(P) e

EnC(PL - TPR) e

Enc(Py) g



FRI IOPP

How to do this in linear time?

r— Enc(P) == = ]- ————— V1 V2 V3 V4 ... Uy
’ B
[ o Enc(PL, + rPg) h L | lati
w-. i - agrange Interpolation
S f1(z)




Technical Roadmap

- Foldable Codes
- Random Foldable Codes

- Multilinear PCS Construction from Foldable
Codes




Foldable Codes

» Every linear code can be described in terms of a generator
matrix, G such that Enc(v) =v - G.

» Foldable codes have a generator matrix with the following
structure:

Gg-1 Gg-1
Ga-1-Ty Gi—1-Ty

(Ty,Ty), .., (Ty, Ty) are diagonal matrices
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Foldable Codes

Starting Point: Viewing RS Codes over FFT Friendly fields
as a Foldable Code

[ 1 1 1 1 ]

(~’1300)2 (9311)2 (3322)2 (wnn)2 Gd—l Gd—l

- =Gt Ty Gaa T
Euft @nF G« ool



7]
)
d
o
O
o
o
(0
=
o
Ll

NN NN NN

N N

AN AN AN AN NN

N N e N

N N N

T S e e N

— N N N

— N

P e T L N L

e N N N

N L e D2

— N

e e e e N

— N N N




Foldable Codes
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Foldable Codes
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Technical Roadmap

- Foldable Codes
- Random Foldable Codes

- Multilinear PCS Construction from Foldable
Codes
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Random Foldable Codes

A Random foldable code is a foldable code where the elements of the diagonal matrices
are uniformly sampled from F

Gd-1 Ga-1
Ga-1- Ty Gi1-Ty

19



Random Foldable Codes

Minimum Relative Distance of a random foldable code
ko kd C |IF| AC d
2° 220 16 231 5044
1 220 16 261 484
1 220 8 2128 557
1 225 8 9256 728

Table 1: The relative minimum distances of random foldable codes.

20



Technical Roadmap

- Foldable Codes
- Random Foldable Codes

- Multilinear PCS Construction from Foldable
Codes

21



Foldable Codes as Punctured Reed-Muller Codes

G Go
(][, @ -

Gi-1- Ty Gggo Ty

/

[m-Ga_y:me ¥ '} = {(P(#),.., P(F.)) : P € F[Xy,.., Xa_i]}
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Foldable Codes as Punctured Reed-Muller Codes
G G
(mu||m)-

Gi-1- Ty Gg Ty

‘{me )+ Ta—1[2|Pm,(U5) : 2 € [1,n]}

{P*(5, Turfi) : i € [1,m]}

23



Foldable Codes as Punctured Reed-Muller Codes

@ Gis ,} {P*(@;, Tylil,i € [1,n/2]}
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Foldable Codes as Punctured Reed-Muller Codes

@ Gis ,} {P*(@;, Tylil,i € [1,n/2]}
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Foldable Codes as Punctured Reed-Muller Codes

@ Gis ,} {P*(@;, Tylil,i € [1,n/2]}
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Foldable Codes -> Multilinear PCS

P(z1,91,21) P(z1,y1,25)
V1 | V3 VU3 U4 ?.75 Vg Uy g
Lagrange X1 (T2 1 T2 | X1 (T2 T1 X2

Interpolation Y1 Y2 Y3 U4 | Y1 Y2 Y3 Y4

= (P, + rPg)(x1,y1) 27



Foldable Codes -> Multilinear PCS

/ {P(v;) :i € [1,8]}

({i{m1y
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Foldable Codes -> Multilinear PCS

» Reduce evaluation check of a multilinear polynomial at a
generic point to a evaluation check at a random point using
sum-check protocol + multilinear extension

P(Xy,.,Xs)= Y P(b)-égy(Xi,.,Xa)
be{0,1}4

I d rounds

29



Foldable Codes -> Multilinear PCS

Basefold IOPP and sum-check are then interleaved, sharing the same
verifier randomness. The last oracle of the Basefold IOPP is the random
query to the polynomial oracle.

P(Xl,",Xd) = Z P(b)€Qb(X1,’Xd)
be{0,1}4




Knowledge Soundness

- Lemma: For any prover strategy that passes the verifier checks
with non-negligible probability, there exists a polynomial time
extractor with black-box access to the prover, that outputs the
underlying polynomial

Prover

Extractor
=]




Foldable Codes -> Multilinear PCS

- BasefoldPCS with a Reed-Solomon code: the knowledge extractor queries
sufficiently many locations from the Merkle tree and decodes
- BasefoldPCS with Random Foldable Code: extractor queries the prover for

enough random evaluations of the polynomial to interpolate the coefficients of the
underlying polynomial.

= {P(V;) :i€[1,n]}




Foldable Codes -> Multilinear PCS

- Basefold IOPP needs to prove that P(r) is the evaluation
of the polynomial underlying the prover’s commitment

- To do this, the verifier needs to check each oracle
within the unique decoding radius, rather than the list-

decoding radius, as in FRI



Performance

* Basefold prover is 2-3 faster than prior multilinear PCS
from FRI when defined over the same finite field

* The Basefold verifier is comparable to FRI's and ~10
times faster than Brakedown’s verifier

* Basefold works over any sufficiently large finite field- i.e.
proving ECDSA signature verification over secp256k1 is
more than 20 times faster than FRI-based SNARK

34



Performance

ECDSA Circuit

Protocol Prover Time Proof  Size Verifier Time
(ms) (KB) (ms)
Hyperplonk[Basefold] 122 6258 24
Hyperplonk|Brakedown] 168 32271 797
Hyperplonk[ZeromorphFri] 2888 7739 47
HyperPlonk[MKZG] 71027 7.74 107
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Performance

Hyperplonk[Basefold] (Rates .5, .25, .125) AN ®
Hyperplonk[ZeromorphFri] (Rates .5, .25, .125) ARO®
Hyperplonk[Brakedown] (Rates .704, .65, .58) ANO®
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Performance

256-Bit PCS
M Basefold M Brakedown M MultilinearKZG
M BasefoldFri ZeromorphFri
Verifier Time Prover Time
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Figure 5: Performance of different PCS over 256-bit fields. Recall that Brakedown and Basefold
are field-agnostic while Multilinear-KZG, ZeromorphFri, and BasefoldFri are not.
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Future Work

® Explore more practical applications of field-
agnosticity

® Prove that Basefold satisfies knowledge soundness
even when the verifier checks within the list-
decoding radius (on-going work)

® Prove better bounds on the distance of the Random
Foldable Code/ Find other foldable codes with
better distance

38



Thank you!

Paper: https://eprint.iacr.org/2023/1705.pdf,
Code: https://github.com/hadasz/plonkish_basefold

Contact:
email: hadas.zeilberger @yale.edu
X (twitter): @idocryptography
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