
Hadas Zeilberger

joint work with Binyi Chen(Stanford) and Ben Fisch(Yale)

Yale University
1

Basefold: Efficient Field-Agnostic Polynomial
Commitment Schemes From Foldable Codes

Basefold

• We formalize the definition of a foldable code and
introduce a proof-of-proximity for any foldable code

• We construct a new family of linear codes, random
foldable codes, and prove tight bounds on their
minimum distance - Field Agnosticity

• We construct a new multilinear PCS by interleaving the
proof-of-proximity with the classic sum-check protocol ->
New Efficient PCS

2

SNARKs from Polynomial Interactive Oracle Proofs

Multivariate PIOP
(Hyperplonk, Spartan, GKR) SNARK

Multilinear PCS

3

Polynomial Interactive Oracle Proof:
 A prover and a verifier interact over
several rounds, in each round, the
prover sends a polynomial, and the
verifier responds with randomness.

33

.

.

.
.
.
.

Hyperplonk and SuperSpartan (Multilinear PIOPs)

4

[CBBZ23,GWC19]

*

*Jellyfish is an implementation of Plonk

- Multilinear PIOPs interpolate and evaluate polynomials over the boolean
hypercube, rather than a subgroup, as in univariate PIOPs, (e.g. Plonk)

- Multilinear PIOPs replace computing a quotient polynomial - which requires an FFT
with the more efficient sum-check protocol for multilinear evaluation

- In Summary: Multilinear PIOPs have lower prover overhead than univariate PIOPs,
particularly for high-degree gates

Problems with Existing Multilinear PCS Constructions

Options for Multilinear PCS are limited.
- High verifier costs/requires proof recursion with high

overhead
- Relies on univariate-multilinear transformation, which

requires a constant number of univariate commitments
- Limited field choices forces many applications to use non-

native field operations, which requires encoding the “modulo
p” operation for each multiplication (leading to an overhead
of up to 256 constraints)

5

Polynomial Commitment Schemes from
Error Correcting Codess

FRI IOPP

.

.

.

.

.

.

[BBHR18]

FRI IOPP

8

How to do this in linear time?

Lagrange Interpolation

.

.

.

.

.

.

Technical Roadmap

9

- Foldable Codes
- Random Foldable Codes
- Multilinear PCS Construction from Foldable

Codes

Foldable Codes

10

Foldable Codes

Starting Point: Viewing RS Codes over FFT Friendly fields
as a Foldable Code

Foldable Codes

Foldable Codes

Foldable Codes

Foldable Codes

 Even Rows =

Odd Rows =

Foldable Codes

17

Foldable Codes

Technical Roadmap

18

- Foldable Codes
- Random Foldable Codes
- Multilinear PCS Construction from Foldable

Codes

Random Foldable Codes

19

Random Foldable Codes

20

Technical Roadmap

21

- Foldable Codes
- Random Foldable Codes
- Multilinear PCS Construction from Foldable

Codes

22

Foldable Codes as Punctured Reed-Muller Codes

23

Foldable Codes as Punctured Reed-Muller Codes

24

T0

T1

T2

Foldable Codes as Punctured Reed-Muller Codes

25

T0

T1

T2

Foldable Codes as Punctured Reed-Muller Codes

26

T0

T1

T2

Foldable Codes as Punctured Reed-Muller Codes

27

Lagrange
Interpolation

Foldable Codes -> Multilinear PCS

28

.

.

.

Foldable Codes -> Multilinear PCS

29

Foldable Codes -> Multilinear PCS

Foldable Codes -> Multilinear PCS

d rounds

30

Foldable Codes -> Multilinear PCS

.

.

.

Basefold IOPP and sum-check are then interleaved, sharing the same
verifier randomness. The last oracle of the Basefold IOPP is the random
query to the polynomial oracle.

Knowledge Soundness
- Lemma: For any prover strategy that passes the verifier checks

with non-negligible probability, there exists a polynomial time
extractor with black-box access to the prover, that outputs the
underlying polynomial

Extractor Prover

32

CS

Foldable Codes -> Multilinear PCS

.

.

.

- BasefoldPCS with a Reed-Solomon code: the knowledge extractor queries
sufficiently many locations from the Merkle tree and decodes
- BasefoldPCS with Random Foldable Code: extractor queries the prover for
enough random evaluations of the polynomial to interpolate the coefficients of the
underlying polynomial.

- Basefold IOPP needs to prove that P(r) is the evaluation
of the polynomial underlying the prover’s commitment

- To do this, the verifier needs to check each oracle
within the unique decoding radius, rather than the list-
decoding radius, as in FRI

Foldable Codes -> Multilinear PCS

Performance

34

 • Basefold prover is 2-3 faster than prior multilinear PCS
from FRI when defined over the same finite field

• The Basefold verifier is comparable to FRI’s and ~10
times faster than Brakedown’s verifier

• Basefold works over any sufficiently large finite field- i.e.
proving ECDSA signature verification over secp256k1 is
more than 20 times faster than FRI-based SNARK

Performance

35

Performance

36

37

Performance

Future Work

● Explore more practical applications of field-
agnosticity

● Prove that Basefold satisfies knowledge soundness
even when the verifier checks within the list-
decoding radius (on-going work)

● Prove better bounds on the distance of the Random
Foldable Code/ Find other foldable codes with
better distance

38

Thank you!

Paper: https://eprint.iacr.org/2023/1705.pdf,
Code: https://github.com/hadasz/plonkish_basefold

39

Contact:
email: hadas.zeilberger@yale.edu

X (twitter): @idocryptography

https://eprint.iacr.org/2023/1705.pdf
https://github.com/hadasz/plonkish_basefold
mailto:hadas.zeilberger@yale.edu

	Basefold: Efficient Field-Agnostic Polynomial Commitment Scheme
	Basefold
	SNARKs from PIOP
	Hyperplonk and SuperSpartan (Multilinear PIOPs)
	Problems with Existing Multilinear PCS Constructions
	Polynomial Commitment Schemes from Error Correcting Codess
	FRI IOPP
	FRI IOPP (2)
	Technical Roadmap
	Foldable Codes
	Foldable Codes (2)
	Foldable Codes (3)
	Slide 13
	Slide 14
	Slide 15
	Foldable Codes (4)
	Foldable Codes (5)
	Technical Roadmap (2)
	Random Foldable Codes
	Random Foldable Codes (2)
	Technical Roadmap (3)
	Foldable Codes as Punctured Reed-Muller Codes
	Foldable Codes as Punctured Reed-Muller Codes (2)
	Foldable Codes as Punctured Reed-Muller Codes (3)
	Slide 25
	Slide 26
	Foldable Codes -> Multilinear PCS
	Foldable Codes -> Multilinear PCS (2)
	Foldable Codes -> Multilinear PCS (4)
	Foldable Codes -> Multilinear PCS (4)
	Knowledge Soundness
	Foldable Codes -> Multilinear PCS (5)
	Foldable Codes -> Multilinear PCS (6)
	Performance
	Performance (2)
	Performance (3)
	Performance (4)
	Future Work
	Thank you!

