
Constant-Round Arguments
for Batch-Verification

and Bounded-Space Computations
from OWF

CRYPTO, August 2024

Noga Amit Guy Rothblum
UC Berkeley Apple

Untrusted 𝑷	claims 𝒙 ∈ 𝑳
Completeness ∀𝒙 ∈ 𝑳, 	 Pr ⟨𝑷, 𝑽⟩	accepts = 1

𝑽𝑷Prover Verifier

Interactive Proof / Argument

Interactive Proof / Argument

Soundness ∀𝒙 ∉ 𝑳,	unbounded/poly-time 𝑷∗,
 Pr ⟨𝑷∗, 𝑽⟩	accepts ≤ 1/2

𝑷∗ 𝑽VerifierProver

Complexity communication, rounds, 𝑉-time, 𝑃-time

Double efficiency (DE) for languages in P:
1. Verifier should be super efficient

 almost-linear 𝑉-time ≪ deciding	𝑥 ∈ 𝐿?

2. Prover should be relatively efficient
 polynomial 𝑃-time ≈ deciding 𝑥 ∈ 𝐿?

Interactive Proof / Argument

for languages in NP: given the NP-witness

What assumptions are needed for constructing
• constant-round,
• almost-linear communication and 𝑉-time, DE

arguments?

• [Kil92] CRH ⟹ 2 rounds, sublinear communication, DE
• For NP

• Can we replace CRH with OWF?
• Equivalently [Rom90, KK08], with UOWHF? [NY89]

• [AR23] OWF ⟹ 𝑂(1) rounds, DE for Depth 𝑫 , Size(𝑝𝑜𝑙𝑦(𝒏))

Our Question

First Result: Flat-RRR
 Theorem:
Assume OWFs exist. ∀𝝈 ∈ (0,1), every language
in Space 𝑺 , Time(𝑝𝑜𝑙𝑦(𝒏)) has a
constant-round, DE interactive argument with:

 Communication 𝒏𝝈 ⋅ 𝑂(𝑺𝟐)	

 Rounds 1	/	𝝈#

𝑽-time 𝒏𝝈 ⋅ 𝑂 𝑺𝟐 + 𝒏

𝑷-time 𝑝𝑜𝑙𝑦(𝒏)

First Result: Flat-RRR

𝒏𝝈 ⋅ 𝑝𝑜𝑙𝑦 𝑺

𝑒𝑥𝑝(D𝑂(1/𝝈))

 Theorem:
Assume OWFs exist. ∀𝝈 ∈ (0,1), every language
in Space 𝑺 , Time(𝑝𝑜𝑙𝑦(𝒏)) has a
constant-round, DE interactive argument with:

 Communication 𝒏𝝈 ⋅ 𝑂(𝑺𝟐)	

 Rounds 1	/	𝝈#

𝑽-time 𝒏𝝈 ⋅ 𝑂 𝑺𝟐 + 𝒏

𝑷-time 𝑝𝑜𝑙𝑦(𝒏)

This [RRR16]

UP Batch Verification
UP
•Given 𝑵 ∈ ℤ, is there a unique witness
 𝒑, 𝒒 ∈ ℤ such that 𝑵 = 𝒑 ⋅ 𝒒?

 UP Batching
•Given 𝑵𝟏, … , 𝑵𝒌 ∈ ℤ, are there
𝒑𝒊, 𝒒𝒊 𝒊∈[𝒌] ∈ ℤ such that ∀𝑖, 𝑵𝒊 = 𝒑𝒊 ⋅ 𝒒𝒊?

 UP Batch Verification
•Given 𝑵𝟏, … , 𝑵𝒌 ∈ ℤ,
 prover tries to convince a verifier that there are
𝒑𝒊, 𝒒𝒊 𝒊∈[𝒌] ∈ ℤ such that ∀𝑖, 𝑵𝒊 = 𝒑𝒊 ⋅ 𝒒𝒊

• UP Batch Verification
• Given 𝑵𝟏, … ,𝑵𝒌 ∈ ℤ, prover 𝑷 tries to convince a verifier 𝑽	

that there are 𝒑𝒊, 𝒒𝒊 𝒊∈[𝒌] ∈ ℤ s.t. ∀𝑖,𝑵𝒊 = 𝒑𝒊 ⋅ 𝒒𝒊

• Naive solution: 𝑷 sends 𝒑𝒊, 𝒒𝒊 𝒊∈[𝒌]

• Goal: Achieving cc ≪ 𝒌 ⋅ |witness|	

UP Batch Verification

𝑷	gets the 𝒌	witnesses

 Theorem:
Assume OWFs exist. ∀𝝈 ∈ (0,1), every UP language
with witness relation in Depth 𝑫 , Size(𝑝𝑜𝑙𝑦(𝒏))
has a constant-round, DE interactive argument
for batching 𝒌	instances with:

 Communication D𝑂(𝑴 + 𝒌 ⋅ 𝒏𝝈 ⋅ 𝑫)
 Rounds 𝑂(1/𝝈))

𝑽-time D𝑂(𝑴 + 𝒌 ⋅ 𝒏𝝈 ⋅ (𝒏 + 𝑫))
𝑷-time 𝑝𝑜𝑙𝑦(𝒏)

 given the 𝒌 witnesses

Second Result: UP Batch Verification

 Theorem:
Assume OWFs exist. ∀𝝈 ∈ (0,1), every UP language
with witness relation in Depth 𝑫 , Size(𝑝𝑜𝑙𝑦(𝒏))
has a constant-round, DE interactive argument
for batching 𝒌	instances with:

 Communication D𝑂(𝑴 + 𝒌 ⋅ 𝒏𝝈 ⋅ 𝑫)
 Rounds 𝑂(1/𝝈))

𝑽-time D𝑂(𝑴 + 𝒌 ⋅ 𝒏𝝈 ⋅ (𝒏 + 𝑫))
𝑷-time 𝑝𝑜𝑙𝑦(𝒏)

 given the 𝒌 witnesses

Second Result: UP Batch Verification

The first 𝑂(1) rounds
with quasi-linear cc!

[AR23] UOWHFs-based Merkel tree is a

targeted collision-resistant hash with local opening

UOWHF tree

𝑚𝑒𝑠𝑠𝑎𝑔𝑒	𝑥

𝑟𝑜𝑜𝑡

ℎℓ

ℎ(

ℎℓ ℎℓℎℓ

• 𝒏𝝈-ary tree with ℓ + 1 layers
• 𝒉𝒊 are UOWHFs {0,1}𝒏𝟐𝝈→ {0,1}𝒏𝝈

Commit: 𝑆 chooses 𝒙 ∈ {0,1}𝑴

𝑅 sends hash functions 𝒉(, …, 𝒉ℓ ∈ 𝑯
(the unique correct hash root 𝒚	is defined)
𝑆 sends a commitment T𝒚

Local-Opening: 𝑆 outputs a leaf index 𝒒	and an opening for 𝒒

Security: If T𝒚 = 𝒚,
 𝐏𝐫[the opening is valid
 and (the opening for 𝒒) ≠ 𝒙[𝒒]] =	negligible

Targeted Collision-Resistance

• Goal: Given 𝒌 inputs 𝒙𝟏, … , 𝒙𝒌,
• 𝑽 accepts if 𝒙𝟏, … , 𝒙𝒌 ∈ 𝑳
• Rejects otherwise w.h.p.

• Protocol begins with 𝑷 sending hash roots to 𝒘𝟏, … ,𝒘𝒌

• Suppose that
• all but one 𝒙𝒊∗ are in 𝑳
• 𝑷	sends correct roots ∀𝒊 ≠ 𝒊∗

• Targeted collision-resistance ⟹𝑷 is committed to 𝒘𝒊

UP Batch Verification: Overview

• Then, 𝑷 sends XOR of 𝒘𝟏, … ,𝒘𝒌

UP Batch Verification: Overview

𝒘𝟏

𝒘𝟐

𝒘𝒌

XOR = ⊕𝒊∈[𝒌] 𝒘𝒊

• Then, 𝑷 sends XOR of 𝒘𝟏, … ,𝒘𝒌

• Whenever 𝑷 is asked to locally-open 𝒘𝒊 at index 𝒓,
it locally-opens all 𝒌	witnesses at 𝒓

• 𝑷 is effectively committed to ”𝒘𝒊∗[𝒓]” as well!

UP Batch Verification: Overview

𝒘𝟏

𝒘𝟐

𝒘𝒌

𝒓

• Running a protocol ∀𝒊	for checking 𝒙𝒊 ∈ 𝑳
• sound as long as 𝒘𝒊 is fixed
• makes a single query to (encoding) of 𝒘𝒊

• Recall: 𝑷 is effectively committed to ”𝒘𝒊∗[𝒓]” à caught!

UP Batch Verification: Overview
[AR23] “flat-GKR”

[RR19] “code-switching”
to obtain quasi-linear cc

UP Batch Verification: Overview
• Getting rid of the assumptions
• all but one 𝒙𝒊∗ are in 𝑳
• 𝑷	sends correct roots ∀𝒊 ≠ 𝒊∗

• 𝑽 guesses a subset of [𝒌] where this holds w.h.p.

after 𝑷 sends the commitment!

UP Batch Verification: The Protocol
1. 𝑽 samples UOWHFs and sends them to 𝑷

2. 𝑷 sends hash roots 𝒚𝟏, … , 𝒚𝒌 for the 𝒌 witnesses

3. 𝑽 samples a subset 𝑰 ⊆ [𝒌] and sends it to 𝑷

4. 𝑷 sends the XOR of 𝒘𝒊𝟏 , … ,𝒘𝒊|𝑰|:
𝒘𝒊𝟏

𝒘𝒊𝟐

𝒘𝒊|𝑰|

XOR = ⊕𝒊∈𝑰 𝒘𝒊

UP Batch Verification: The Protocol
1. 𝑽 samples UOWHFs and sends them to 𝑷

2. 𝑷 sends hash roots 𝒚𝟏, … , 𝒚𝒌 for the 𝒌 witnesses

3. 𝑽 samples a subset 𝑰 ⊆ [𝒌] and sends it to 𝑷

4. 𝑷 sends the XOR of 𝒘𝒊𝟏 , … ,𝒘𝒊|𝑰|

5. 𝑷	and 𝑽	run a protocol ∀𝒊 ∈ 𝑰	that verifies 𝒘𝒊 and 𝒚𝒊
• 𝑽	asks 𝑷	to open 𝒚𝒊 at 𝒓
• 𝑽	checks that the openings are (a) valid w.r.t. the UOWHFs
 (b) consistent with XOR

UP Batch Verification: The Protocol
1. 𝑽 samples UOWHFs and sends them to 𝑷

2. 𝑷 sends hash roots 𝒚𝟏, … , 𝒚𝒌 for the 𝒌 witnesses

3. 𝑽 samples a subset 𝑰 ⊆ [𝒌] and sends it to 𝑷

4. 𝑷 sends the XOR of 𝒘𝒊𝟏 , … ,𝒘𝒊|𝑰|

5. 𝑷	and 𝑽	run a protocol ∀𝒊 ∈ 𝑰	that verifies 𝒘𝒊 and 𝒚𝒊
• 𝑽	asks 𝑷	to open 𝒚𝒊 at 𝒓
• 𝑽	checks that the openings are (a) valid w.r.t. the UOWHFs
 (b) consistent with XOR

the only
dependence

on |witness|!

Summary & Open Questions
OWF ⟹	targeted collision-resistant hash with local opening

 ⟹	constant-round arguments

Bounded-depth Bounded-space UP batching
 for languages in P

• Arguments for P based on OWF? For NP?

Thank you!

