# Constant-Round Arguments for Batch-Verification and Bounded-Space Computations from OWF

CRYPTO, August 2024

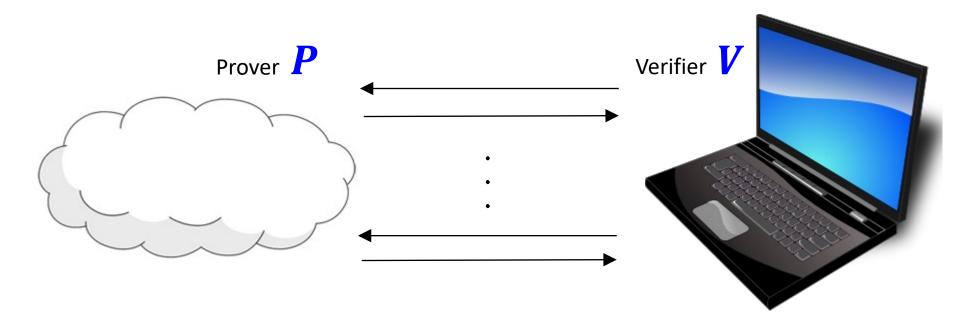
Noga Amit

**Guy Rothblum** 

UC Berkeley

Apple

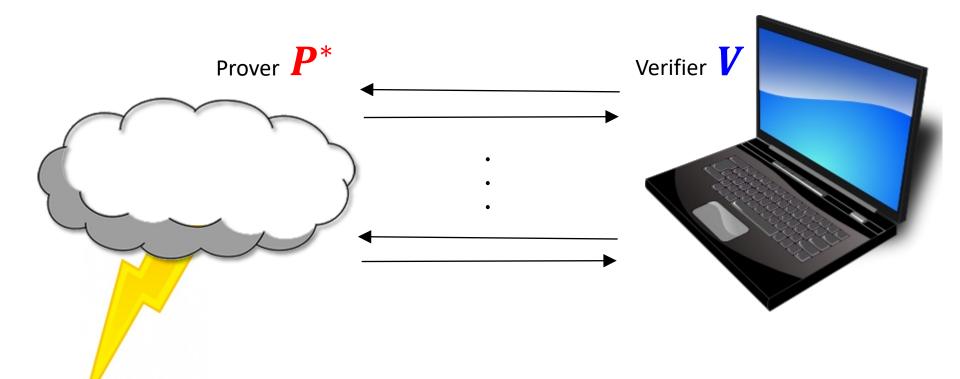
# **Interactive Proof / Argument**



#### Untrusted **P** claims $x \in L$

**Completeness**  $\forall x \in L$ ,  $\Pr[\langle P, V \rangle \text{ accepts}] = 1$ 

# **Interactive Proof / Argument**



Soundness  $\forall x \notin L$ , unbounded/poly-time  $P^*$ ,  $\Pr[\langle P^*, V \rangle \text{ accepts}] \leq 1/2$ 

# **Interactive Proof / Argument**

**Complexity** communication, rounds, V-time, P-time

**Double efficiency (DE)** for languages in **P**:

- 1. Verifier should be super efficient almost-linear V-time  $\ll$  deciding  $x \in L$ ?
- 2. Prover should be relatively efficient polynomial *P*-time  $\approx$  deciding  $x \in L$ ?

for languages in NP: given the NP-witness

# **Our Question**

What assumptions are needed for constructing

- constant-round,
- almost-linear communication and V-time, DE

arguments?

- [Kil92]  $CRH \implies$  2 rounds, sublinear communication, DE
  - For NP
- Can we replace **CRH** with **OWF**?
  - Equivalently [Rom90, KK08], with UOWHF? [NY89]
- [AR23] **OWF**  $\Rightarrow$  O(1) rounds, DE for Depth(**D**), Size(poly(**n**))

## **First Result: Flat-RRR**

#### **Theorem:**

Assume **OWF**s exist.  $\forall \sigma \in (0,1)$ , every language in Space(S), Time(poly(n)) has a **constant-round**, **DE** interactive argument with:

Communication $n^{\sigma} \cdot O(S^2)$ Rounds $1 / \sigma^4$ V-time $n^{\sigma} \cdot O(S^2 + n)$ P-timepoly(n)

## **First Result: Flat-RRR**

#### **Theorem:**

Assume **OWF**s exist.  $\forall \sigma \in (0,1)$ , every language in Space(S), Time(poly(n)) has a **constant-round**, **DE** interactive argument with:

|               | This                                                | [RRR16]                    |
|---------------|-----------------------------------------------------|----------------------------|
| Communication | $\boldsymbol{n^{\sigma}} \cdot O(\boldsymbol{S^2})$ | $n^{\sigma} \cdot poly(S)$ |
| Rounds        | 1 / <b>σ</b> <sup>4</sup>                           | $exp(\tilde{O}(1/\sigma))$ |
| V-time        | $n^{\sigma} \cdot O(S^2 + n)$                       |                            |
| P-time        | poly( <b>n</b> )                                    |                            |

# **UP Batch Verification**

### <u>UP</u>

• Given  $N \in \mathbb{Z}$ , is there a *unique witness*  $p, q \in \mathbb{Z}$  such that  $N = p \cdot q$ ?

### **UP** Batching

• Given  $N_1, ..., N_k \in \mathbb{Z}$ , are there  $(p_i, q_i)_{i \in [k]} \in \mathbb{Z}$  such that  $\forall i, N_i = p_i \cdot q_i$ ?

#### **UP** Batch Verification

• Given  $N_1, ..., N_k \in \mathbb{Z}$ , prover tries to convince a verifier that there are  $(p_i, q_i)_{i \in [k]} \in \mathbb{Z}$  such that  $\forall i, N_i = p_i \cdot q_i$ 

# **UP Batch Verification**

- UP Batch Verification
  - Given  $N_1, ..., N_k \in \mathbb{Z}$ , prover P tries to convince a verifier Vthat there are  $(p_i, q_i)_{i \in [k]} \in \mathbb{Z}$  s.t.  $\forall i, N_i = p_i \cdot q_i$

**P** gets the **k** witnesses

- <u>Naive solution</u>: **P** sends  $(p_i, q_i)_{i \in [k]}$
- <u>Goal</u>: Achieving  $cc \ll k \cdot |witness|$

## **Second Result: UP Batch Verification**

#### **Theorem:**

Assume **OWF**s exist.  $\forall \sigma \in (0,1)$ , every **UP** language with witness relation in Depth(D), Size(poly(n)) has a **constant-round**, DE interactive argument for batching k instances with:

Communication $\tilde{O}(M + k \cdot n^{\sigma} \cdot D)$ Rounds $O(1/\sigma^3)$ V-time $\tilde{O}(M + k \cdot n^{\sigma} \cdot (n + D))$ P-timepoly(n)<br/>given the k witnesses

## **Second Result: UP Batch Verification**

#### **Theorem:**

Assume **OWF**s exist.  $\forall \sigma \in (0,1)$ , every **UP** language with witness relation in Depth(D), Size(poly(n))has a constant-round, DE interactive argument The first O(1) rounds for batching k instances with:

with quasi-linear cc!

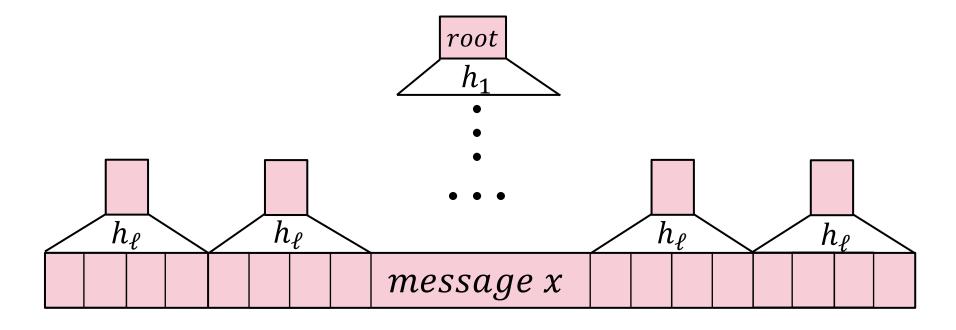
Communication  $\tilde{O}(M + k \cdot n^{\sigma} \cdot D)$  $O(1/\sigma^{3})$ Rounds  $\tilde{O}(\boldsymbol{M} + \boldsymbol{k} \cdot \boldsymbol{n}^{\boldsymbol{\sigma}} \cdot (\boldsymbol{n} + \boldsymbol{D}))$ V-time **P-time**  $poly(\mathbf{n})$ given the *k* witnesses

### **UOWHF tree**

### [AR23] UOWHFs-based Merkel tree is a

targeted collision-resistant hash with local opening

- $n^{\sigma}$ -ary tree with  $\ell + 1$  layers
- $h_i$  are UOWHFs  $\{0,1\}^{n^{2\sigma}} \rightarrow \{0,1\}^{n^{\sigma}}$



# **Targeted Collision-Resistance**

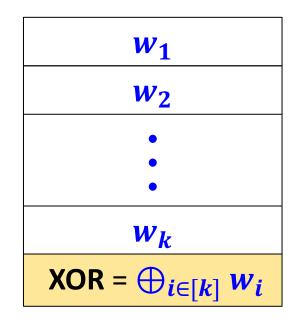
**Commit:** S chooses  $x \in \{0,1\}^M$ R sends hash functions  $h_1, ..., h_\ell \in H$ (the unique correct hash root y is defined) S sends a commitment  $\tilde{y}$ 

**Local-Opening:** S outputs a leaf index q and an opening for q

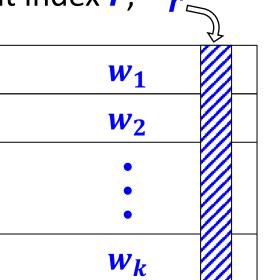
Security: If  $\tilde{y} = y$ , **Pr**[ the opening is *valid* and (the opening for q)  $\neq x[q]$ ] = negligible

- <u>Goal</u>: Given k inputs  $x_1, \dots, x_k$ ,
  - V accepts if  $x_1, \dots, x_k \in L$
  - Rejects otherwise w.h.p.
- Protocol begins with **P** sending hash roots to  $w_1, \dots, w_k$
- Suppose that
  - all but one  $x_{i^*}$  are in L
  - **P** sends correct roots  $\forall i \neq i^*$
- Targeted collision-resistance  $\implies P$  is committed to  $w_i$

• Then, **P** sends **XOR** of  $w_1, \dots, w_k$ 



- Then, **P** sends **XOR** of  $w_1, \dots, w_k$
- Whenever *P* is asked to locally-open *w<sub>i</sub>* at index *r*,
  it locally-opens all *k* witnesses at *r*



• **P** is effectively committed to  $w_{i^*}[r]$  as well!

[AR23] "flat-GKR"

- Running a protocol  $\forall i$  for checking  $x_i \in L$ 
  - sound as long as *w<sub>i</sub>* is fixed
  - makes a single query to (encoding) of w<sub>i</sub>

[RR19] "**code-switching**" to obtain quasi-linear cc

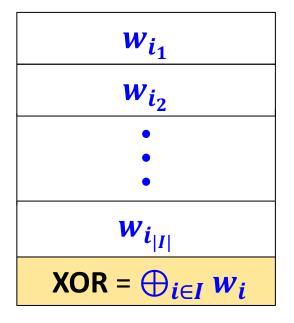
• <u>Recall</u>: **P** is effectively committed to  $w_{i^*}[r] \rightarrow caught!$ 

- Getting rid of the assumptions
  - all but one x<sub>i</sub>\* are in L
  - **P** sends correct roots  $\forall i \neq i^*$
- **V** guesses a subset of **[***k***]** where this holds w.h.p.

after **P** sends the commitment!

# **UP Batch Verification: The Protocol**

- **1.** *V* samples UOWHFs and sends them to *P*
- **2. P** sends hash roots  $y_1, \ldots, y_k$  for the **k** witnesses
- **3.** V samples a subset  $I \subseteq [k]$  and sends it to P
- **4. P** sends the **XOR** of  $w_{i_1}, \ldots, w_{i_{|I|}}$ :



# **UP Batch Verification: The Protocol**

- **1.** *V* samples UOWHFs and sends them to *P*
- **2. P** sends hash roots  $y_1, \ldots, y_k$  for the **k** witnesses
- **3.** V samples a subset  $I \subseteq [k]$  and sends it to P
- **4. P** sends the **XOR** of  $w_{i_1}, \ldots, w_{i_{|I|}}$
- **5.** *P* and *V* run a protocol  $\forall i \in I$  that verifies  $w_i$  and  $y_i$ 
  - V asks P to open y<sub>i</sub> at r
  - **V** checks that the openings are (a) valid w.r.t. the UOWHFs

(b) consistent with **XOR** 

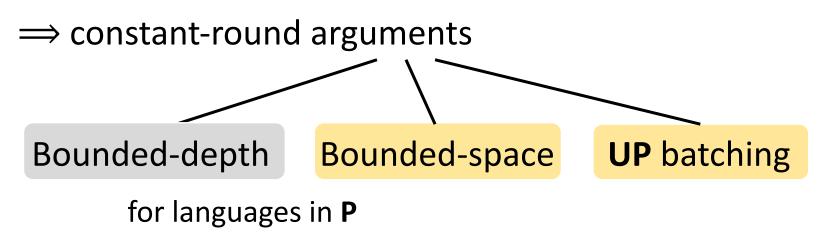
# **UP Batch Verification: The Protocol**

- **1.** *V* samples UOWHFs and sends them to *P*
- **2. P** sends hash roots  $y_1, \ldots, y_k$  for the **k** witnesses
- **3.** V samples a subset  $I \subseteq [k]$  and sends it to P
- **4.** *P* sends the **XOR** of  $w_{i_1}, \dots, w_{i_{|I|}} \bullet \bullet \bullet$  the only dependence on [witness]!
- **5.** *P* and *V* run a protocol  $\forall i \in I$  that verifies  $w_i$  and  $y_i$ 
  - V asks P to open y<sub>i</sub> at r
  - **V** checks that the openings are (a) valid w.r.t. the UOWHFs

(b) consistent with **XOR** 

# **Summary & Open Questions**

 $OWF \implies$  targeted collision-resistant hash with local opening



• Arguments for **P** based on **OWF**? For **NP**?

