
Michael Rosenberg, PhD(!)
University of Maryland

Jonathan Katz
University of Maryland, Google

ia.cr/2023/324

LATKE: A Framework for
Constructing Identity-Binding PAKEs

1

What is a PAKE

2

What is a PAKE
Two parties use a password to
establish a secure shared secret

2

What is a PAKE
Two parties use a password to
establish a secure shared secret

pw

PAKE
pw

K K

2

What is a PAKE
Two parties use a password to
establish a secure shared secret

A passive adversary cannot derive K

pw

PAKE
pw

K K

2

What is a PAKE
Two parties use a password to
establish a secure shared secret

A passive adversary cannot derive K

An active adversary has only 1 pw
guess per session

pw

PAKE
pw

K K

2

What is a PAKE
Two parties use a password to
establish a secure shared secret

A passive adversary cannot derive K

An active adversary has only 1 pw
guess per session

pw

PAKE
pw

K K

2

What is a PAKE
Two parties use a password to
establish a secure shared secret

A passive adversary cannot derive K

An active adversary has only 1 pw
guess per session

pw

PAKE
pw

K K

TestPwd(pw’)

2

What is a PAKE
Two parties use a password to
establish a secure shared secret

A passive adversary cannot derive K

An active adversary has only 1 pw
guess per session

pw

PAKE
pw

K K

Weird! Cryptographic statements where
nothing is high entropy! TestPwd(pw’)

2

PAKEs in IoT

3

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

3

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

pw

3

pw

pw

pw

pw

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

pw

3

pw

pw

pw

pw

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

pw

3

pw

pw

pw

pw

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

pw

3

pw

pw

pw

pw

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

pw

pw

3

pw

pw

pw

pw

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

pw

pw

3

pw

pw

pw

pw

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

pw

“I’m a thermometer” pw

3

pw

pw

pw

pw

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:

pw

“I’m a thermometer” pw

3

pw

pw

pw

pw

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:

pw

“I’m a thermometer” pw

3

pw

pw

pw

pw

X.509

 bind the password to the
device identity and delete the password.
Now every device has a unique pwfile

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:

pw

3

pw

pw

pw

pw

 bind the password to the
device identity and delete the password.
Now every device has a unique pwfile

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:

pw

pwfileid = f(pw, ID)

3

pw

pw

pw

pw

 bind the password to the
device identity and delete the password.
Now every device has a unique pwfile

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:
pwfileid = f(pw, ID)

3

pwfilerouter1

pwfilelight

pwfilephone

pwfilerouter2

pwfiletherm

 bind the password to the
device identity and delete the password.
Now every device has a unique pwfile

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:
pwfileid = f(pw, ID)

3

pwfilerouter1

pwfilelight

pwfilephone

pwfilerouter2

pwfiletherm

 bind the password to the
device identity and delete the password.
Now every device has a unique pwfile

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:
pwfileid = f(pw, ID)

3

pwfilerouter1

pwfilelight

pwfilephone

pwfilerouter2

pwfiletherm

pwfilelight

 bind the password to the
device identity and delete the password.
Now every device has a unique pwfile

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:
pwfileid = f(pw, ID)

3

pwfilerouter1

pwfilelight

pwfilephone

pwfilerouter2

pwfiletherm

pwfilelight

 bind the password to the
device identity and delete the password.
Now every device has a unique pwfile

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:
pwfileid = f(pw, ID)

“I’m a lightbulb”

3

pwfilerouter1

pwfilelight

pwfilephone

pwfilerouter2

pwfiletherm

pwfilelight

 bind the password to the
device identity and delete the password.
Now every device has a unique pwfile

This is called an identity-binding PAKE
(iPAKE) [CNPR22]

PAKEs in IoT
Some IoT protocols do authentication/
key exchange using using just a
password

Problem: catastrophic impersonation

Solution:
pwfileid = f(pw, ID)

“I’m a lightbulb”

3

pwfilerouter1

pwfilelight

pwfilephone

pwfilerouter2

pwfiletherm

pwfilelight

Existing iPAKEs

4

Existing iPAKEs

[CNPR22] presents CHIP and CRISP

4

Existing iPAKEs

[CNPR22] presents CHIP and CRISP

4

Existing iPAKEs

[CNPR22] presents CHIP and CRISP IBKE
f(pw, “Bob”) f(pw, “Alice”)

4

Existing iPAKEs

[CNPR22] presents CHIP and CRISP IBKE

PAKE

f(pw, “Bob”) f(pw, “Alice”)

4

K K

Existing iPAKEs

[CNPR22] presents CHIP and CRISP

Both rely on Diffie-Hellman-type
assumptions

IBKE

PAKE

f(pw, “Bob”) f(pw, “Alice”)

4

K K

Existing iPAKEs

[CNPR22] presents CHIP and CRISP

Both rely on Diffie-Hellman-type
assumptions

Cannot be made PQ!

IBKE

PAKE

f(pw, “Bob”) f(pw, “Alice”)

4

K K

Our contribution

5

IBKE

PAKE

Our contribution
LATKE is the first PQ iPAKE

5

IBKE

PAKE

Our contribution
LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

5

IBKE

PAKE

Our contribution
LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

6

IBKE

PAKE

Our contribution
LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

7

IBKE PAKE

Our contribution
LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

8

IBKE

PAKE

Our contribution
LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

9

IBKE

PAKE

Our contribution
LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

9

Can be pre- or (plausibly) post-
quantum

IBKE

PAKE

Our contribution
LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

9

Can be pre- or (plausibly) post-
quantum
Works in pre-specified and post-
specified peer model IBKE

PAKE

Our contribution
LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

9

Can be pre- or (plausibly) post-
quantum
Works in pre-specified and post-
specified peer model
Works with any reasonable key
exchange security def (CK, CKHMQV,
CK+, eCK)

IBKE

PAKE

Our contribution
LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

9

Can be pre- or (plausibly) post-
quantum
Works in pre-specified and post-
specified peer model
Works with any reasonable key
exchange security def (CK, CKHMQV,
CK+, eCK)

Post-quantum LATKE is only 3% slower
than pre-quantum CHIP (ignoring
comms costs)

IBKE

PAKE

The CHIP iPAKE

10

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

10

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

Key
Generation
Center

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

“Bob”

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

“Bob”

skB := Extractmsk(“Bob”)

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

“Bob”

skB := Extractmsk(“Bob”)

skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

“Bob”

skB := Extractmsk(“Bob”)

skB
“Alice”

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

“Bob”

skB := Extractmsk(“Bob”)

skB

skA := Extractmsk(“Alice”)

“Alice”

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

“Bob”

skB := Extractmsk(“Bob”)

skB

skA := Extractmsk(“Alice”)

“Alice” skA

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

“Bob”

skB := Extractmsk(“Bob”)

skB

skA := Extractmsk(“Alice”)

“Alice” skA

IBKE

“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

“Bob”

skB := Extractmsk(“Bob”)

skB

skA := Extractmsk(“Alice”)

“Alice” skA

IBKE

“Bob” skA

“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

10

(msk, mpk) := KeyGen(1λ)

Key
Generation
Center

“Bob”

skB := Extractmsk(“Bob”)

skB

skA := Extractmsk(“Alice”)

“Alice” skA

IBKE

“Bob” skA

K K

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

K KIBKE

Knowing pw ⇒ can communicate
“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

K KIBKE

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

K KIBKE

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

K KIBKE

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

K KIBKE

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

(msk, mpk) := KeyGen(1λ; H(pw))

K KIBKE

Generating pwfile

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

(msk, mpk) := KeyGen(1λ; H(pw))

K KIBKE

Generating pwfile

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

(msk, mpk) := KeyGen(1λ; H(pw))
skB := Extractmsk(“Bob”)

K KIBKE

Generating pwfile

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

(msk, mpk) := KeyGen(1λ; H(pw))
skB := Extractmsk(“Bob”)

K KIBKE

Generating pwfile

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

(msk, mpk) := KeyGen(1λ; H(pw))
skB := Extractmsk(“Bob”)

K K

delete msk and pw

IBKE

Generating pwfile

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

(msk, mpk) := KeyGen(1λ; H(pw))
skB := Extractmsk(“Bob”)

K K

delete msk and pw

IBKE

Generating pwfile

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

K K

(msk, mpk) := KeyGen(1λ; H(pw))
skA := Extractmsk(“Alice”)
delete msk and pw

IBKE

Generating pwfile

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

K K

(msk, mpk) := KeyGen(1λ; H(pw))
skA := Extractmsk(“Alice”)
delete msk and pw

Weird! Identity-based cryptography with no
trusted third party (KGC)!

IBKE

Generating pwfile

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

(msk, mpk) := KeyGen(1λ; H(pw))
skA := Extractmsk(“Alice”)
delete msk and pw

Weird! Identity-based cryptography with no
trusted third party (KGC)!

PAKEK K

forward
secrecy

IBKE

Generating pwfile

Knowing pw ⇒ can communicate

Every ID gets a unique pwfile

Compromise only reveals the
pwfile

“Bob” skA“Alice” skB

The CHIP iPAKE
Need to bind an ID to a key (pw) in
an irreversible way.

This sounds like identity-based
cryptography!

For the password context, need:

11

(msk, mpk) := KeyGen(1λ; H(pw))
skA := Extractmsk(“Alice”)
delete msk and pw

Weird! Identity-based cryptography with no
trusted third party (KGC)!

PAKEK K

forward
secrecy

IBKE

Generating pwfile

Bonus points: why can’t you use
key conf. for forward secrecy?

The CHIP iPAKE

12

The CHIP iPAKE
Problem: This isn’t secure for all
IBKE

12

The CHIP iPAKE
Problem: This isn’t secure for all
IBKE

12

The CHIP iPAKE
Problem: This isn’t secure for all
IBKE

12

mpk ...

...

The CHIP iPAKE
Problem: This isn’t secure for all
IBKE

12

mpk ...

(msk, mpk) := KeyGen(1λ; H(pw))
...

...

The CHIP iPAKE
Problem: This isn’t secure for all
IBKE

mpk leaks data about H(pw)

12

mpk ...

(msk, mpk) := KeyGen(1λ; H(pw))
...

...

The CHIP iPAKE
Problem: This isn’t secure for all
IBKE

mpk leaks data about H(pw)

12

mpk ...

(msk, mpk) := KeyGen(1λ; H(pw))
...

Passive adversary can
brute-force!

...

The CHIP iPAKE
Problem: This isn’t secure for all
IBKE

mpk leaks data about H(pw)

In general: IBKE transcript must be
independent of keygen coins

12

mpk ...

(msk, mpk) := KeyGen(1λ; H(pw))
...

Passive adversary can
brute-force!

...

The CHIP iPAKE
Problem: This isn’t secure for all
IBKE

mpk leaks data about H(pw)

In general: IBKE transcript must be
independent of keygen coins

No PQ IBKE has this property!

12

mpk ...

(msk, mpk) := KeyGen(1λ; H(pw))
...

Passive adversary can
brute-force!

...

The CHIP iPAKE
Problem: This isn’t secure for all
IBKE

mpk leaks data about H(pw)

In general: IBKE transcript must be
independent of keygen coins

No PQ IBKE has this property!

⇒ No route to make CHIP (or
CRISP) post-quantum

12

mpk ...

(msk, mpk) := KeyGen(1λ; H(pw))
...

Passive adversary can
brute-force!

...

Inspo: The Ω Method aPAKE [GMR06]

13

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

13

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

13

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

13

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

Ω.Setup(pw) exec’d by Alice

pw

prove knowledge of pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

σ := Signsk(transcript)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

σ := Signsk(transcript)

Verifypk(σ, tr)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about
H2(pw)

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

σ := Signsk(transcript)

Verifypk(σ, tr)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about
H2(pw)

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

σ := Signsk(transcript)

Verifypk(σ, tr)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about
H2(pw)

Encrypting it with K is sufficient, though

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

σ := Signsk(transcript)

Verifypk(σ, tr)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about
H2(pw)

Encrypting it with K is sufficient, though

If an adversary compromised the PAKE,
it knows H1(pw). So knowing H2(pw)
doesn’t help!

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

σ := Signsk(transcript)

Verifypk(σ, tr)

Ω.Setup(pw) exec’d by Alice

pw

Inspo: The Ω Method aPAKE [GMR06]
Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about
H2(pw)

Encrypting it with K is sufficient, though

If an adversary compromised the PAKE,
it knows H1(pw). So knowing H2(pw)
doesn’t help!

13

(h1, h2) := (H1(pw), H2(pw))

(sk, pk) := Sig.KeyGen(1λ)

esk := AE.Ench2(sk)

delete sk, pw, h2

PAKE
H1(pw) h1

K K

AE.EncK(esk)

σ := Signsk(transcript)

Verifypk(σ, tr)Takeaway: use a PAKE to make a secure channel.
Then put leaky protocols in that channel

Ω.Setup(pw) exec’d by Alice

pw

LATKE Construction

14

LATKE Construction
Use self-KGC trick of CHIP

14

LATKE Construction
Use self-KGC trick of CHIP

14

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

LATKE.Setup(pw, id) same as CHIP

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

14

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

LATKE.Setup(pw, id) same as CHIP

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

14

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

LATKE.Setup(pw, id) same as CHIP

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

14

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

K

LATKE.Setup(pw, id) same as CHIP

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

14

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

K

LATKE.Setup(pw, id) same as CHIP

function of H(pw)

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

Run any IBKE in the secure channel

14

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

K

LATKE.Setup(pw, id) same as CHIP

function of H(pw)

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

Run any IBKE in the secure channel

14

IBKE

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

K’
K

“Alice” skB “Bob” skA

K’

LATKE.Setup(pw, id) same as CHIP

function of H(pw)

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

Run any IBKE in the secure channel

Important details:

14

IBKE

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

K’
K

“Alice” skB “Bob” skA

K’

LATKE.Setup(pw, id) same as CHIP

function of H(pw)

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

Run any IBKE in the secure channel

Important details:

“Secure channel” (EUE transform)

14

IBKE

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

K’
K

“Alice” skB “Bob” skA

K’

LATKE.Setup(pw, id) same as CHIP

function of H(pw)

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

Run any IBKE in the secure channel

Important details:

“Secure channel” (EUE transform)

How to make a PQ IBKE

14

IBKE

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

K’
K

“Alice” skB “Bob” skA

K’

LATKE.Setup(pw, id) same as CHIP

function of H(pw)

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

Run any IBKE in the secure channel

Important details:

“Secure channel” (EUE transform)

How to make a PQ IBKE

Security notion of IBKE (need
KCIR+FS)

14

IBKE

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

K’
K

“Alice” skB “Bob” skA

K’

LATKE.Setup(pw, id) same as CHIP

function of H(pw)

LATKE Construction
Use self-KGC trick of CHIP

Establish a secure channel like Ω
method

Run any IBKE in the secure channel

Important details:

“Secure channel” (EUE transform)

How to make a PQ IBKE

Security notion of IBKE (need
KCIR+FS)

14

IBKE

PAKE

mpk mpk

K K

(msk, mpk) := KeyGen(1λ; H(pw))

skid := Extractmsk(id)

delete msk and pw

K’
K

“Alice” skB “Bob” skA

K’

LATKE.Setup(pw, id) same as CHIP

function of H(pw)

Bonus! Encrypted IBKE ⇒ identity concealment

LATKE Benchmarks

15

LATKE Benchmarks

Wrote LATKE and CHIP in Rust

15

LATKE Benchmarks

Wrote LATKE and CHIP in Rust

PAKEs: CPace, CAKE[Saber]

15

LATKE Benchmarks

Wrote LATKE and CHIP in Rust

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH,
(ID)SIGMA[Ed25519, Saber],
(ID)SIGMA[Dilithium, Saber]

15

LATKE Benchmarks

Wrote LATKE and CHIP in Rust

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH,
(ID)SIGMA[Ed25519, Saber],
(ID)SIGMA[Dilithium, Saber]

15

LATKE Benchmarks

Wrote LATKE and CHIP in Rust

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH,
(ID)SIGMA[Ed25519, Saber],
(ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home
router

15

LATKE Benchmarks

Wrote LATKE and CHIP in Rust

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH,
(ID)SIGMA[Ed25519, Saber],
(ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home
router

15

LATKE Benchmarks

Wrote LATKE and CHIP in Rust

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH,
(ID)SIGMA[Ed25519, Saber],
(ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home
router

15

Pre-quantum LATKE is 4%
slower than CHIP

LATKE Benchmarks

Wrote LATKE and CHIP in Rust

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH,
(ID)SIGMA[Ed25519, Saber],
(ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home
router

15

Pre-quantum LATKE is 4%
slower than CHIP

Post-quantum is 3% slower

LATKE Benchmarks

Wrote LATKE and CHIP in Rust

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH,
(ID)SIGMA[Ed25519, Saber],
(ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home
router

15

Pre-quantum LATKE is 4%
slower than CHIP

Post-quantum is 3% slower

Tradeoff: rounds vs. speed

Future work

16

Future work

Strong iPAKE (siPAKE). An siPAKE is an iPAKE
whose pwfiles cannot be precomputed.
CRISP is (kinda) an siPAKE. Can we make a
PQ one?

16

Future work

Strong iPAKE (siPAKE). An siPAKE is an iPAKE
whose pwfiles cannot be precomputed.
CRISP is (kinda) an siPAKE. Can we make a
PQ one?

Round optimality. CHIP and LATKE are both
at least 2 rounds. Can we do better?

16

Future work

Strong iPAKE (siPAKE). An siPAKE is an iPAKE
whose pwfiles cannot be precomputed.
CRISP is (kinda) an siPAKE. Can we make a
PQ one?

Round optimality. CHIP and LATKE are both
at least 2 rounds. Can we do better?

Hybrid iPAKE. LATKE is generic over PAKE
and IBKE. Hybrid IBKE exists. Does a hybrid
PAKE exist?

16

Future work

Strong iPAKE (siPAKE). An siPAKE is an iPAKE
whose pwfiles cannot be precomputed.
CRISP is (kinda) an siPAKE. Can we make a
PQ one?

Round optimality. CHIP and LATKE are both
at least 2 rounds. Can we do better?

Hybrid iPAKE. LATKE is generic over PAKE
and IBKE. Hybrid IBKE exists. Does a hybrid
PAKE exist?

16

Bonus points: why does the
obvious hybrid PAKE not work?

Future work

Strong iPAKE (siPAKE). An siPAKE is an iPAKE
whose pwfiles cannot be precomputed.
CRISP is (kinda) an siPAKE. Can we make a
PQ one?

Round optimality. CHIP and LATKE are both
at least 2 rounds. Can we do better?

Hybrid iPAKE. LATKE is generic over PAKE
and IBKE. Hybrid IBKE exists. Does a hybrid
PAKE exist?

17

Bonus points: why does the
obvious hybrid PAKE not work?

End notes

18

End notes

This paper is the result of >1yr of work

18

End notes

This paper is the result of >1yr of work

The first version was so broken that it had to be retracted

18

End notes

This paper is the result of >1yr of work

The first version was so broken that it had to be retracted

Fun tidbits not covered:

18

End notes

This paper is the result of >1yr of work

The first version was so broken that it had to be retracted

Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

18

End notes

This paper is the result of >1yr of work

The first version was so broken that it had to be retracted

Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

Can make a PAKE from just Saber + wide block cipher. Saber is naturally an “obfuscated
KEM” (see 2024/1086)

18

End notes

This paper is the result of >1yr of work

The first version was so broken that it had to be retracted

Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

Can make a PAKE from just Saber + wide block cipher. Saber is naturally an “obfuscated
KEM” (see 2024/1086)

Needed to (slightly) modify ideal functionality FiPAKE

18

End notes

This paper is the result of >1yr of work

The first version was so broken that it had to be retracted

Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

Can make a PAKE from just Saber + wide block cipher. Saber is naturally an “obfuscated
KEM” (see 2024/1086)

Needed to (slightly) modify ideal functionality FiPAKE

Fixed CHIP’s proof of security

18

End notes

This paper is the result of >1yr of work

The first version was so broken that it had to be retracted

Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

Can make a PAKE from just Saber + wide block cipher. Saber is naturally an “obfuscated
KEM” (see 2024/1086)

Needed to (slightly) modify ideal functionality FiPAKE

Fixed CHIP’s proof of security

18

Read the paper if you find this cool!

Conclusion

Constructed LATKE an identity-
binding PAKE

Generic: takes any PAKE and
(nearly) any IBKE. Hence, PQ
Fast: As low as 3% overhead
compared to CHIP

Icon credits: Flat Icons, SmashIcons,
Assia Benkerroum, Freepik, Those Iconsresearch@mrosenberg.pub

ia.cr/2023/324
github.com/rozbb/latke-ipake

19

