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What is a PAKE
Two parties use a password to 
establish a secure shared secret

A passive adversary cannot derive K

An active adversary has only 1 pw 
guess per session

pw

PAKE
pw

K K

Weird! Cryptographic statements where 
nothing is high entropy! TestPwd(pw’)
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This is called an identity-binding PAKE 
(iPAKE) [CNPR22]
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Existing iPAKEs

[CNPR22] presents CHIP and CRISP

Both rely on Diffie-Hellman-type 
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Problem: This isn’t secure for all 
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In general: IBKE transcript must be 
independent of keygen coins

No PQ IBKE has this property!

⇒ No route to make CHIP (or 
CRISP) post-quantum
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Bonus! Encrypted IBKE ⇒ identity concealment
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Pre-quantum LATKE is 4% 
slower than CHIP

Post-quantum is 3% slower

Tradeoff: rounds vs. speed
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Read the paper if you find this cool!



Conclusion

Constructed LATKE an identity-
binding PAKE 

Generic: takes any PAKE and 
(nearly) any IBKE. Hence, PQ 
Fast: As low as 3% overhead 
compared to CHIP

Icon credits: Flat Icons, SmashIcons, 
Assia Benkerroum, Freepik, Those Iconsresearch@mrosenberg.pub

ia.cr/2023/324
github.com/rozbb/latke-ipake
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