LATKE: A Framework for Constructing Identity-Binding PAKEs

Jonathan Katz University of Maryland, Google

Michael Rosenberg, PhD(!) University of Maryland

Two parties use a password to establish a secure shared secret

Two parties use a password to establish a secure shared secret

Two parties use a password to establish a secure shared secret

A passive adversary cannot derive K

Two parties use a password to establish a secure shared secret

A passive adversary cannot derive K

An active adversary has only 1 pw guess per session

Two parties use a password to establish a secure shared secret

A passive adversary cannot derive K

An active adversary has only 1 pw guess per session

Two parties use a password to establish a secure shared secret

A passive adversary cannot derive K

An active adversary has only 1 pw guess per session

Two parties use a password to establish a secure shared secret

A passive adversary cannot derive K

An active adversary has only 1 pw guess per session

Weird! Cryptographic statements where nothing is high entropy!

Some IoT protocols do authentication/ key exchange using using just a password

Some IoT protocols do authentication/ key exchange using using just a password

Some IoT protocols do authentication/ key exchange using using just a password

Some IoT protocols do authentication/ key exchange using using just a password

Some IoT protocols do authentication/ key exchange using using just a password

Some IoT protocols do authentication/ key exchange using using just a password

Some IoT protocols do authentication/ key exchange using using just a password

Some IoT protocols do authentication/ key exchange using using just a password

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Solution:

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Solution:

"I'm a thermometer"

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Solution: **bind** the password to the device identity and **delete** the password. Now **every device has a unique pwfile**

3

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Some IoT protocols do authentication/ key exchange using using just a password

Problem: catastrophic impersonation

Solution: **bind** the password to the device identity and **delete** the password. Now every device has a unique pwfile

This is called an **identity-binding PAKE** (iPAKE) [CNPR22]

[CNPR22] presents **CHIP** and CRISP

Both rely on Diffie-Hellman-type assumptions

[CNPR22] presents **CHIP** and CRISP

Both rely on Diffie-Hellman-type assumptions

Cannot be made PQ!

Our contribution

LATKE is the first PQ iPAKE

LATKE is the first PQ iPAKE

LATKE is the first PQ iPAKE

LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

Can be pre- or (plausibly) postquantum

LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

Can be pre- or (plausibly) postquantum

Works in pre-specified and postspecified peer model

LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

Can be pre- or (plausibly) postquantum

Works in pre-specified and postspecified peer model

Works with any reasonable key exchange security def (CK, CK_{HMQV}, CK⁺, eCK)

LATKE is the first PQ iPAKE

Generic over IBKE and PAKE

Can be pre- or (plausibly) postquantum

Works in pre-specified and postspecified peer model

Works with any reasonable key exchange security def (CK, CK_{HMQV}, CK⁺, eCK)

Post-quantum LATKE is only 3% slower than pre-quantum CHIP (ignoring comms costs)

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

Key Generation (msk, mpk) := KeyGen(1^{λ}) Center

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need: Knowing $pw \Rightarrow can communicate$

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Compromise only reveals the pwfile

(msk, mpk) := KeyGen(1^λ; H(pw))

sk_B := Extract_{msk}("Bob")

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Compromise only reveals the pwfile

Generating pwfile

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Compromise only reveals the pwfile

Generating pwfile

(msk, mpk) := KeyGen(1[\]; H(pw))

sk_B := Extract_{msk}("Bob")

delete msk and pw

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Compromise only reveals the pwfile

Generating pwfile

- (msk, mpk) := KeyGen(1[\]; H(pw)) sk_B := Extract_{msk}("Bob")
- JNB LAUACUNSK DOD

delete msk and pw

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Compromise only reveals the pwfile

Generating pwfile

(msk, mpk) := KeyGen(1^λ; H(pw)) sk_A := Extract_{msk}("Alice")

delete msk and pw

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Compromise only reveals the pwfile

Generating pwfile

(msk, mpk) := KeyGen(1^λ; H(pw))

sk_A := Extract_{msk}("Alice")

delete msk and pw

Weird! Identity-based cryptography with no trusted third party (KGC)!

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Compromise only reveals the pwfile

Generating pwfile

(msk, mpk) := KeyGen(1^λ; H(pw))

sk_A := Extract_{msk}("Alice")

delete msk and pw

Weird! Identity-based cryptography with no trusted third party (KGC)!

Need to bind an ID to a key (pw) in an irreversible way.

This sounds like identity-based cryptography!

For the password context, need:

Knowing pw \Rightarrow can communicate

Every ID gets a unique pwfile

Compromise only reveals the pwfile

Generating pwfile

(msk, mpk) := KeyGen(1^λ; H(pw))

sk_A := Extract_{msk}("Alice")

delete msk and pw

Weird! Identity-based cryptography with no trusted third party (KGC)!

Problem: This isn't secure for all IBKE

mpk leaks data about H(pw)

(msk, mpk) := KeyGen(1[\]; H(pw))

 $\bullet \bullet \bullet$

Problem: This isn't secure for all IBKE

mpk leaks data about H(pw)

Problem: This isn't secure for all IBKE

mpk leaks data about H(pw)

In general: IBKE transcript must be **independent** of keygen coins

Problem: This isn't secure for all IBKE

mpk leaks data about H(pw)

In general: IBKE transcript must be **independent** of keygen coins

No PQ IBKE has this property!

Problem: This isn't secure for all IBKE

mpk leaks data about H(pw)

In general: IBKE transcript must be **independent** of keygen coins

No PQ IBKE has this property!

 \Rightarrow No route to make CHIP (or CRISP) post-quantum

Augmented PAKE (aPAKE) — PAKE where:

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

 Ω Method — aPAKE from PAKE+signature

 Ω .Setup(pw) exec'd by Alice (h₁, h₂) := (H₁(pw), H₂(pw)) (sk, pk) := Sig.KeyGen(1^λ) esk := AE.Enc_{h2}(sk)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

 Ω Method — aPAKE from PAKE+signature

 Ω .Setup(pw) exec'd by Alice (h₁, h₂) := (H₁(pw), H₂(pw)) (sk, pk) := Sig.KeyGen(1^λ) esk := AE.Enc_{h2}(sk) delete sk, pw, h₂

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

 Ω Method — aPAKE from PAKE+signature

 Ω .Setup(pw) exec'd by Alice (h₁, h₂) := (H₁(pw), H₂(pw)) (sk, pk) := Sig.KeyGen(1^λ) esk := AE.Enc_{h2}(sk) delete sk, pw, h₂

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

 Ω Method — aPAKE from PAKE+signature

Verify_{pk}(σ , tr)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

 Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about $H_2(pw)$

Verify_{pk}(σ , tr)

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

 Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about $H_2(pw)$

Verify_{pk}(σ , tr)

Inspo: The \Omega Method aPAKE [GMR06]

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

 Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about $H_2(pw)$

Encrypting it with K is sufficient, though

Verify_{pk}(σ , tr)

Inspo: The Ω Method aPAKE [GMR06]

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

 Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about $H_2(pw)$

Encrypting it with K is sufficient, though

If an adversary compromised the PAKE, it knows H₁(pw). So knowing H₂(pw) doesn't help!

Verify_{pk}(σ , tr)

Inspo: The Ω Method aPAKE [GMR06]

Augmented PAKE (aPAKE) — PAKE where:

Client has pw

Server has pwfile (not identity-binding)

 Ω Method — aPAKE from PAKE+signature

Observation: esk leaks data about $H_2(pw)$

Encrypting it with K is sufficient, though

If an adversary compromised the PAKE, it knows H₁(pw). So knowing H₂(pw) doesn't help!

Takeaway: use a PAKE to make a secure channel. Then put leaky protocols in that channel

Use **self-KGC trick** of CHIP

Use **self-KGC trick** of CHIP

Use **self-KGC trick** of CHIP

Use **self-KGC trick** of CHIP

Establish a secure channel like $\boldsymbol{\Omega}$ method

Run any IBKE in the secure channel

Use **self-KGC trick** of CHIP

Establish a secure channel like $\boldsymbol{\Omega}$ method

Run any IBKE in the secure channel

Use self-KGC trick of CHIP

Establish a secure channel like $\boldsymbol{\Omega}$ method

Run **any IBKE in the secure channel** Important details:

Use **self-KGC trick** of CHIP

Establish a secure channel like $\boldsymbol{\Omega}$ method

Run **any IBKE in the secure channel** Important details:

"Secure channel" (EUE transform)

Use **self-KGC trick** of CHIP

Establish a secure channel like $\boldsymbol{\Omega}$ method

Run **any IBKE in the secure channel** Important details:

"Secure channel" (EUE transform)

How to make a PQ IBKE

Use **self-KGC trick** of CHIP

Establish a secure channel like $\boldsymbol{\Omega}$ method

Run **any IBKE in the secure channel** Important details:

"Secure channel" (EUE transform)

How to make a PQ IBKE

Security notion of IBKE (need KCIR+FS)

Use **self-KGC trick** of CHIP

Establish a secure channel like Ω method

Run any IBKE in the secure channel Important details:

"Secure channel" (EUE transform)

How to make a PQ IBKE

Security notion of IBKE (need KCIR+FS)

Bonus! Encrypted IBKE \Rightarrow identity concealment

Wrote LATKE and CHIP in Rust PAKEs: CPace, CAKE[Saber]

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH, (ID)SIGMA[Ed25519, Saber], (ID)SIGMA[Dilithium, Saber]

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH, (ID)SIGMA[Ed25519, Saber], (ID)SIGMA[Dilithium, Saber]

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH, (ID)SIGMA[Ed25519, Saber], (ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home router

Chip[Cpa

Wrote LATKE and CHIP in Rust

Latk Latk Latke[Latke[

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH, (ID)SIGMA[Ed25519, Saber], (ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home router

iPAKE	PQ?	Rounds	Comm.	Setup	Online	
ace,Fg] [CNPR22]	x	2	208B	$284 \mu s$	$5.33\mathrm{ms}$	
Latke[Cpace,FgC]	x	4	404B	$314 \mu s$	$5.56\mathrm{ms}$	(1.
e[Cpace,IdHmqvC]	×	4	532B	$467 \mu s$	$5.62\mathrm{ms}$	(1.
e[Cpace,IdSigDh]	×	2	616B	$615 \mu s$	$8.32 \mathrm{ms}$	(1.
Cake, $Id\Sigma Ed25519$]	enc.	6	$3.53 \mathrm{kB}$	$813 \mu s$	$5.46\mathrm{ms}$	(1.
Cake, $Id\Sigma Dilith2$]	enc.+auth.	6	$15.5 \mathrm{kB}$	$2.55\mathrm{ms}$	$10.1 \mathrm{ms}$	(1.
e[Cpace,IdHmqvC] e[Cpace,IdSigDh] Cake,IdΣEd25519] Cake,IdΣDilith2]	x x enc. enc.+auth.	$\begin{array}{c} 4\\ 2\\ 6\\ 6\end{array}$	532B 616B 3.53kB 15.5kB	$467 \mu s$ $615 \mu s$ $813 \mu s$ 2.55 m s	5.62 ms 8.32 ms 5.46 ms 10.1 ms	() () ()

$(1 \times)$ $.04 \times$ $.05 \times$ $.56 \times$ $.03 \times)$ $.89 \times$)

Chip[Cpa

Wrote LATKE and CHIP in Rust

Latk Latk Latke[Latke[

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH, (ID)SIGMA[Ed25519, Saber], (ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home router

iPAKE	PQ?	Rounds	Comm.	Setup	Online	
ace,Fg] [CNPR22]	x	2	208B	$284 \mu s$	$5.33\mathrm{ms}$	
Latke[Cpace,FgC]	x	4	404B	$314 \mu s$	$5.56\mathrm{ms}$	(1.
e[Cpace,IdHmqvC]	×	4	532B	$467 \mu s$	$5.62\mathrm{ms}$	(1.
e[Cpace,IdSigDh]	×	2	616B	$615 \mu s$	$8.32 \mathrm{ms}$	(1.
Cake, $Id\Sigma Ed25519$]	enc.	6	$3.53 \mathrm{kB}$	$813 \mu s$	$5.46\mathrm{ms}$	(1.
Cake, $Id\Sigma Dilith2$]	enc.+auth.	6	$15.5 \mathrm{kB}$	$2.55\mathrm{ms}$	$10.1 \mathrm{ms}$	(1.
	•					

Pre-quantum LATKE is 4% slower than CHIP

$(1 \times)$.04 \times) .05 \times) .56 \times) .03 \times) .89 \times)

Chip[Cpa

Wrote LATKE and CHIP in Rust

Latk Latk Latke[Latke[

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH, (ID)SIGMA[Ed25519, Saber], (ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home router

iPAKE	PQ?	Rounds	Comm.	Setup	Online	
ace,Fg] [CNPR22]	x	2	208B	$284 \mu s$	$5.33 \mathrm{ms}$	
Latke[Cpace,FgC]	×	4	404B	$314 \mu s$	$5.56\mathrm{ms}$	(1.
e[Cpace,IdHmqvC]	×	4	532B	$467 \mu s$	$5.62\mathrm{ms}$	(1.
e[Cpace,IdSigDh]	×	2	616B	$615 \mu s$	$8.32 \mathrm{ms}$	(1.
Cake, $Id\Sigma Ed25519$]	enc.	6	$3.53 \mathrm{kB}$	$813 \mu s$	$5.46\mathrm{ms}$	(1.
Cake, $Id\Sigma Dilith2$]	enc.+auth.	6	$15.5 \mathrm{kB}$	$2.55\mathrm{ms}$	$10.1\mathrm{ms}$	(1.

Pre-quantum LATKE is 4% slower than CHIP

Post-quantum is 3% slower

$(1 \times)$.04 \times) .05 \times) .56 \times) .03 \times) .89 \times)

Chip[Cpa

Wrote LATKE and CHIP in Rust

Latk Latk Latke[Latke[

PAKEs: CPace, CAKE[Saber]

IBKEs: (ID)HMQV, Fiore-Gennaro, (ID)Sig-DH, (ID)SIGMA[Ed25519, Saber], (ID)SIGMA[Dilithium, Saber]

IoT believability: ran on my old home router

PQ?	Rounds	Comm.	Setup	Online	
x	2	208B	$284 \mu s$	$5.33\mathrm{ms}$	
x	4	404B	$314 \mu s$	$5.56\mathrm{ms}$	(1.
×	4	532B	$467 \mu s$	$5.62\mathrm{ms}$	(1.
×	2	616B	$615 \mu s$	$8.32 \mathrm{ms}$	(1.
enc.	6	$3.53 \mathrm{kB}$	$813 \mu s$	$5.46\mathrm{ms}$	(1.
enc.+auth.	6	$15.5 \mathrm{kB}$	$2.55\mathrm{ms}$	$10.1\mathrm{ms}$	(1.
	PQ? × × × × enc. enc.+auth.	PQ?Rounds \times 2 \times 4 \times 4 \times 2enc.6enc.+auth.6	PQ?RoundsComm.×2208B×4404B×4532B×2616Benc.63.53kBenc.+auth.615.5kB	PQ?RoundsComm.Setupx2208B284µsx4404B314µsx4532B467µsx2616B615µsenc.63.53kB813µsenc.+auth.615.5kB2.55ms	PQ?RoundsComm.SetupOnlinex2208B284µs5.33msx4404B314µs5.56msx4532B467µs5.62msx2616B615µs8.32msenc.63.53kB813µs5.46msenc.+auth.615.5kB2.55ms10.1ms

Pre-quantum LATKE is 4% slower than CHIP

Post-quantum is 3% slower

Tradeoff: rounds vs. speed

$(1 \times)$.04 \times) .05 \times) .56 \times) .03 \times) .89 \times)

Strong iPAKE (siPAKE). An siPAKE is an iPAKE whose pwfiles cannot be precomputed. CRISP is (kinda) an siPAKE. Can we make a PQ one?

Strong iPAKE (siPAKE). An siPAKE is an iPAKE whose pwfiles cannot be precomputed. CRISP is (kinda) an siPAKE. Can we make a PQ one?

Round optimality. CHIP and LATKE are both at least 2 rounds. Can we do better?

Strong iPAKE (siPAKE). An siPAKE is an iPAKE whose pwfiles cannot be precomputed. CRISP is (kinda) an siPAKE. Can we make a PQ one?

Round optimality. CHIP and LATKE are both at least 2 rounds. Can we do better?

Hybrid iPAKE. LATKE is generic over PAKE and IBKE. Hybrid IBKE exists. Does a hybrid PAKE exist?

Strong iPAKE (siPAKE). An siPAKE is an iPAKE whose pwfiles cannot be precomputed. CRISP is (kinda) an siPAKE. Can we make a PQ one?

Round optimality. CHIP and LATKE are both at least 2 rounds. Can we do better?

Hybrid iPAKE. LATKE is generic over PAKE and IBKE. Hybrid IBKE exists. Does a hybrid PAKE exist?

Bonus points: why does the obvious hybrid PAKE not work?

Strong iPAKE (siPAKE). An siPAKE is an iPAKE whose pwfiles cannot be precomputed. CRISP is (kinda) an siPAKE. Can we make a PQ one?

Round optimality. CHIP and LATKE are both at least 2 rounds. Can we do better?

Hybrid iPAKE. LATKE is generic over PAKE and IBKE. Hybrid IBKE exists. Does a hybrid PAKE exist?

Bonus points: why does the obvious hybrid PAKE not work?

End notes

End notes

This paper is the result of >1yr of work

End notes

This paper is the result of >1yr of work

The first version was so broken that it had to be retracted
This paper is the result of >1yr of work

The **first version was so broken** that it had to be retracted Fun tidbits not covered:

This paper is the result of >1yr of work

The **first version was so broken** that it had to be retracted Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

This paper is the result of >1yr of work

The **first version was so broken** that it had to be retracted Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

Can make a **PAKE from just Saber + wide block cipher**. Saber is naturally an "obfuscated KEM" (see 2024/1086)

This paper is the result of >1yr of work

The **first version was so broken** that it had to be retracted Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

Can make a **PAKE from just Saber + wide block cipher**. Saber is naturally an "obfuscated KEM" (see 2024/1086)

Needed to (slightly) modify ideal functionality Fipake

This paper is the result of >1yr of work

The **first version was so broken** that it had to be retracted Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

Can make a **PAKE from just Saber + wide block cipher**. Saber is naturally an "obfuscated KEM" (see 2024/1086)

Needed to (slightly) modify ideal functionality Fipake

Fixed CHIP's proof of security

This paper is the result of >1yr of work

The **first version was so broken** that it had to be retracted Fun tidbits not covered:

LATKE is two iPAKEs: post- and pre-specified peer model

KEM" (see 2024/1086)

Needed to (slightly) modify ideal functionality Fipake

Fixed CHIP's proof of security

Can make a **PAKE from just Saber + wide block cipher**. Saber is naturally an "obfuscated

Read the paper if you find this cool!

Conclusion

Constructed LATKE an identitybinding PAKE Generic: takes any PAKE and (nearly) any IBKE. Hence, PQ Fast: As low as 3% overhead compared to CHIP

Icon credits: Flat Icons, SmashIcons, Assia Benkerroum, Freepik, Those Icons

