Solving the Tensor Isomorphism Problem on Special Orbits with low rank points **Cryptanalysis and repair** of an Asiacrypt 2023 commitment scheme

Valerie Gilchrist, Laurane Marco, Christophe Petit, Gang Tang (eprint 2024/337)

CRYPTO 2024 - August 22nd, 2024

Post-quantum cryptography

Public-key Cryptography

Laurane Marco

2

Post-quantum cryptography

Laurane Marco

2

Post-quantum cryptography

Laurane Marco

Post-quantum Cryptography

Post-quantum cryptography

Laurane Marco

Post-quantum Cryptography

Lattices **|** Isogenies Hashes Codes **Multivariate**

Post-quantum cryptography

Diversity matters!!!

 \rightarrow several recent attacks (Rainbow, SIDH/SIKE, ...)

Post-quantum cryptography

Diversity matters!!!

→ several recent attacks (Rainbow, SIDH/SIKE, ...)

Recent proposal: commitment scheme from tensor-based hard problems

Outline

Outline

(Asiacrypt 23')

Laurane Marco

Cryptanalysis of the tensor-based commitment scheme of D'Alconzo, Flamini, Gangemi

Outline

Cryptanalysis of the tensor-based commitment scheme of D'Alconzo, Flamini, Gangemi (Asiacrypt 23')

- → Breaks the hiding property of the commitment

Laurane Marco

→ Polynomial time attack on decisional Tensor Isomorphism problem on special orbits

→ Extension to a **polynomial time attack** on the **computational version**

Outline

Cryptanalysis of the tensor-based commitment scheme of D'Alconzo, Flamini, Gangemi (Asiacrypt 23')

- → Breaks the hiding property of the commitment
- → Extension to a **polynomial time attack** on the **computational version**

X Tools: Low rank points on tensors and knowledge of their stabiliser subgroup.

Polynomial time attack on decisional Tensor Isomorphism problem on special orbits

Outline

Cryptanalysis of the tensor-based commitment scheme of D'Alconzo, Flamini, Gangemi (Asiacrypt 23')

- → Polynomial time attack on decisional Tensor Isomorphism problem on special orbits → Breaks the hiding property of the commitment
- → Extension to a **polynomial time attack** on the **computational version**

Repair

→ Alternative commitment scheme from random tensors

Laurane Marco

X Tools: Low rank points on tensors and knowledge of their stabiliser subgroup.

Tensor-based cryptography

Tensor-based cryptography

3-tensors: $v \in \mathbb{F}_q^n \otimes \mathbb{F}_q^n \otimes \mathbb{F}_q^n$ can be written as $v = \sum_{i=1}^{n} v(i, j, k) e_i \otimes e_j \otimes e_k$ *i*,*j*,*k*=1

or as a list of matrices $[M_1, \ldots, M_n], M_i \in M(n,q)$

Tensor-based cryptography

3-tensors: $v \in \mathbb{F}_q^n \otimes \mathbb{F}_q^n \otimes \mathbb{F}_q^n$ can be v =

or as a list of matrices $[M_1, \ldots, M_n], M_i \in M(n,q)$

Laurane Marco

e written as

$$\sum_{i,j,k=1}^{n} v(i,j,k)e_i \otimes e_j \otimes e_k$$

Example: $(1,0,0,1) \otimes (0,2,0,2) \otimes (3,0,4,0)$ in $F_{11}^4 \otimes F_{11}^4 \otimes F_{11}^4$ can be written as

Tensor-based cryptography

Group action:

 $G = GL(n,q) \times GL(n,q) \times GL(n,q) \text{ acts on } \mathbf{V} = \mathbb{F}_q^n \otimes \mathbb{F}_q^n \otimes \mathbb{F}_q^n$

$$(A, B, C), \sum_{i,j,k} v(i, j, k)e_i$$

Studied by Ji, Qiao, Song, Fun (TCC 19'), Grochow, Qiao (ITICS 21')

Laurane Marco

 $\star: G \times \mathbf{V} \to \mathbf{V}$

 $_{i} \otimes e_{j} \otimes e_{k} \mapsto \sum_{i,j,k} v(i,j,k) A e_{i} \otimes B e_{j} \otimes C e_{k}$

Tensor-based cryptography

Hard problems

Tensor-based cryptography

Hard problems

Decisional Tensor Isomorphism Problem (dTIP) : Given two random tensors $v_0, v_1 \in \mathbf{V}$ decide whether there exists $(A, B, C) \in GL(n) \times GL(n) \times GL(n)$ such that $(A, B, C) \star v_0 = v_1$

Tensor-based cryptography

Hard problems

Laurane Marco

Decisional Tensor Isomorphism Problem (dTIP) : Given two random tensors $v_0, v_1 \in \mathbf{V}$ decide whether there exists $(A, B, C) \in GL(n) \times GL(n) \times GL(n)$ such that $(A, B, C) \star v_0 = v_1$

Computational Tensor Isomorphism Problem (cTIP) : Given two **random** tensors $v_0, v_1 \in \mathbf{V}$ such that $(A, B, C) \star v_0 = v_1$ for some $(A, B, C) \in GL(n) \times GL(n) \times GL(n)$, compute (A, B, C)

Tensor-based cryptography

Hard problems

Equivalent to:

- trilinear form equivalence problem
- matrix code equivalence problem (MEDS, NIST signature call).

Laurane Marco

Decisional Tensor Isomorphism Problem (dTIP) : Given two random tensors $v_0, v_1 \in \mathbf{V}$ decide whether there exists $(A, B, C) \in GL(n) \times GL(n) \times GL(n)$ such that $(A, B, C) \star v_0 = v_1$

Computational Tensor Isomorphism Problem (cTIP) : Given two **random** tensors $v_0, v_1 \in \mathbf{V}$ such that $(A, B, C) \star v_0 = v_1$ for some $(A, B, C) \in GL(n) \times GL(n) \times GL(n)$, compute (A, B, C)

Bit commitment scheme from tensors

D'alconzo, Flamini, Gangemi (Asiacrypt 2023)

Laurane Marco

Bit commitment scheme from tensors

D'alconzo, Flamini, Gangemi (Asiacrypt 2023)

Laurane Marco

Bit commitment scheme from tensors

D'alconzo, Flamini, Gangemi (Asiacrypt 2023)

(A, B, C)

l

Laurane Marco

Bit commitment scheme from tensors

D'alconzo, Flamini, Gangemi (Asiacrypt 2023)

(A, B, C)

l

Laurane Marco

Bit commitment scheme from tensors

D'alconzo, Flamini, Gangemi (Asiacrypt 2023)

Laurane Marco

Bit commitment scheme from tensors

D'alconzo, Flamini, Gangemi (Asiacrypt 2023)

Requirements:

- \rightarrow t₀, t₁ **must** be in **different orbits**
- $\rightarrow c$ must look random

Laurane Marco

EPFL LASEC

Tensor rank

Rank 1 tensor: $v = a \otimes b \otimes c, a, b, c \in \mathbb{F}_q^n$. Rank of a tensor: minimal r such that $v = \sum w_i$ with w_i rank 1. i=1 $I \rightarrow$ hard to compute for **random** tensors!*

*Håstadt (J. Algorithms), Hilar, Lim (J. ACM), Schaefer, Stefankovic (Theory Compute. System.)

Tensor rank

Rank 1 tensor: $v = a \otimes b \otimes c, a, b, c \in \mathbb{F}_{q}^{n}$. Rank of a tensor: minimal r such that $v = \sum w_i$ with w_i rank 1. i=1 $I \rightarrow$ hard to compute for **random** tensors!*

*Håstadt (J. Algorithms), Hilar, Lim (J. ACM), Schaefer, Stefankovic (Theory Compute. System.)

Tensor rank

Rank 1 tensor: $v = a \otimes b \otimes c, a, b, c \in \mathbb{F}_q^n$. Rank of a tensor: minimal r such that $v = \sum w_i$ with w_i rank 1. i=1I → hard to compute for **random** tensors!*

Lemma: For $(A, B, C) \in G, v \in V$, we have $rank((A, B, C) \star v) = rank(v)$

 $rank(t_0) = n$ and $rank(t_1) = n - 1 \rightarrow$ different orbits!

*Håstadt (J. Algorithms), Hilar, Lim (J. ACM), Schaefer, Stefankovic (Theory Compute. System.)

Building a bit commitment scheme

Building a bit commitment scheme

 t_0, t_1 are public.

Commitment scheme

Building a bit commitment scheme

 t_0, t_1 are public.

Commitment scheme

Sender

Commit

Building a bit commitment scheme

 t_0, t_1 are public.

Commitment scheme

Security

Binding → Perfect

Security

Binding → Perfect

Hiding → Related to the decisional Tensor Isomorphism Problem.

Security

Binding → Perfect

Hiding \rightarrow Related to the **decisional Tensor Isomorphism Problem.**

Laurane Marco

Decisional Tensor Isomorphism Problem (dTIP) : Given two random tensors $v_0, v_1 \in \mathbf{V}$ decide whether there exists $(A, B, C) \in GL(n) \times GL(n) \times GL(n)$ such that $(A, B, C) \star v_0 = v_1$

Security

Binding → Perfect

Hiding \rightarrow Related to the **decisional Tensor Isomorphism Problem.**

Laurane Marco

Decisional Tensor Isomorphism Problem (dTIP) : Given two random tensors $v_0, v_1 \in \mathbf{V}$ decide whether there exists $C) \in GL(n) \times GL(n) \times GL(n)$ such that $(A, B, C) \star v_0 = v_1$

Effect of special orbits

n = 4, q = 11

Effect of special orbits

n = 4, q = 11

	$\boxed{5}$	2	9	2		$\lceil 10 \rceil$	4	7	7		$\lceil 7 \rceil$	7	7
(5	8	9	10		10	10	4	1		8	8	1
	0	2	7	1	,	0	1	7	4	,	9	0	2
	6	8	10	9		9	6	0	9		6	8	10

$$\begin{array}{c} 2\\ 3\\ 3\\ 3\\ 3 \end{array} \right) \star t_0$$

Effect of special orbits

n = 4, q = 11

	$\boxed{5}$	2	9	2		$\lceil 10 \rceil$	4	7	7		$\lceil 7 \rceil$	7	7
(5	8	9	10		10	10	4	1		8	8	1
	0	2	7	1	,	0	1	7	4	,	9	0	2
	6	8	10	9		9	6	0	9		6	8	10

$$\begin{bmatrix} 2\\3\\3\\3 \end{bmatrix}) \star t_0 = \begin{bmatrix} 6 & 8 & 2 & 2\\9 & 8 & 0 & 1\\9 & 4 & 7 & 10\\6 & 4 & 8 & 2 \end{bmatrix} , \begin{bmatrix} 0 & 5 & 5 & 10\\5 & 6 & 2 & 10\\5 & 5 & 4 & 0\\6 & 2 & 4 & 0 \end{bmatrix} , \begin{bmatrix} 6 & 2 & 9 & 3\\8 & 4 & 4 & 3\\2 & 0 & 0 & 1\\3 & 2 & 5 & 2 \end{bmatrix} , \begin{bmatrix} 6 & 5\\2 & 10\\2 & 0\\7 & 3 \end{bmatrix}$$

Attack on dTIP: rank of points

Attack on dTIP: rank of points

Attack on dTIP: rank of points

 $t = [M_1, \dots, M_n]$

Attack on dTIP: rank of points

 $t = [M_1, \dots, M_n]$ The **rank** of $u = [u_1, \dots u_n] \in \mathbb{F}_q^n$ is:

Attack on dTIP: rank of points

 $t = [M_1, \dots, M_n]$ The **rank** of $u = [u_1, \dots u_n] \in \mathbb{F}_q^n$ is: $rank(u_1M_1 + \ldots + u_nM_n),$

Attack on dTIP: rank of points

 $t = [M_1, \dots, M_n]$ The **rank** of $u = [u_1, \dots u_n] \in \mathbb{F}_q^n$ is: rank

Example: $u = (u_1, u_2, u_3, u_4) \in \mathbb{F}_{11}^4$, rank of u in t_0 (resp. t_1) is the rank of

$$M_0 = egin{bmatrix} u_1 & 0 & 0 & 0 \ 0 & u_2 & 0 & 0 \ 0 & 0 & u_3 & 0 \ 0 & 0 & 0 & u_4 \end{bmatrix}$$

$$k(u_1M_1+\ldots+u_nM_n),$$

resp.
$$M_1 = \begin{bmatrix} u_1 & 0 & 0 & 0 \\ 0 & u_2 & 0 & 0 \\ 0 & 0 & u_3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Attack on dTIP: rank of points

 $t = [M_1, \ldots, M_n]$ The **rank** of $u = [u_1, \dots u_n] \in \mathbb{F}_q^n$ is: rank

Example: $u = (u_1, u_2, u_3, u_4) \in \mathbb{F}_{11}^4$, rank of u in t_0 (resp. t_1) is the rank of

 $M_0 = \begin{bmatrix} u_1 & 0 & 0 & 0 \\ 0 & u_2 & 0 & 0 \\ 0 & 0 & u_3 & 0 \\ 0 & 0 & 0 & u_4 \end{bmatrix}$

Lemma: The group action preserves the number of points of a given rank.

$$k(u_1M_1+\ldots+u_nM_n),$$

resp.
$$M_1 = \begin{bmatrix} u_1 & 0 & 0 & 0 \\ 0 & u_2 & 0 & 0 \\ 0 & 0 & u_3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Attack on dTIP: rank-0 points

Example: $u = (u_1, u_2, u_3, u_4) \in \mathbb{F}_{11}$

 $rank_{t_0}(u) = 0 \Leftrightarrow rank(M_0) = 0 \Leftrightarrow u$

Hence t₀ has no non-trivial rank-0 p

 t_1 has **1** rank-0 point (e_n), up to scalar

$$M_{0} = \begin{bmatrix} u_{1} & 0 & 0 & 0 \\ 0 & u_{2} & 0 & 0 \\ 0 & 0 & u_{3} & 0 \\ 0 & 0 & 0 & u_{4} \end{bmatrix}$$
points

$$M_{1} = \begin{bmatrix} u_{1} & 0 & 0 & 0 \\ 0 & u_{2} & 0 & 0 \\ 0 & 0 & u_{3} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Attack on dTIP: rank-0 points

Example: $u = (u_1, u_2, u_3, u_4) \in \mathbb{F}_{11}$ $rank_{t_0}(u) = 0 \Leftrightarrow rank(M_0) = 0 \Leftrightarrow u$

Hence t₀ has no non-trivial rank-0 p

 t_1 has **1** rank-0 point (e_n) , up to scalar

Lemma: Let
$$t_b = \sum_{i=1}^{n-b} e_i \otimes e_i \otimes e_i$$
, Th

Laurane Marco

$$M_{0} = \begin{bmatrix} u_{1} & 0 & 0 & 0 \\ 0 & u_{2} & 0 & 0 \\ 0 & 0 & u_{3} & 0 \\ 0 & 0 & 0 & u_{4} \end{bmatrix}$$
points
$$M_{1} = \begin{bmatrix} u_{1} & 0 & 0 & 0 \\ 0 & u_{2} & 0 & 0 \\ 0 & 0 & u_{3} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

he rank-0 points of t_b form a vector space of **dimension** b

Distinguishing attack

Goal: Given $c = (A, B, C) \star t_b$, recover b.

Distinguishing attack

Goal: Given $c = (A, B, C) \star t_b$, recover b.

- \mathbb{P} Group action preserves the **number** of rank k points
- \mathbb{P} We **know** the exact number of rank-0 points on t_0 and t_1
- → Compute the **number of rank-0 points of** *c* to decide

Distinguishing attack

Group action preserves the **number** of rank k points \mathbb{P} We **know** the exact number of rank-0 points on t_0 and t_1 → Compute the **number of rank-0 points of** *c* to decide Write $c = [G_1, ..., G_n]$ Solve the linear system $\alpha_1 G_1 + \ldots +$ If there is a solution b = 1, else b = 0

 \rightarrow A couple seconds on a laptop \bigcirc (at most $O(n^4)$ operations)

- **Goal:** Given $c = (A, B, C) \star t_b$, recover b.

$$\alpha_n G_n = 0 \text{ for } \alpha \in \mathbb{F}_q^n$$

Takeaways of the attack

Takeaways of the attack

→ Breaks hiding property of the commitment scheme

Takeaways of the attack

- → Breaks hiding property of the commitment scheme
- → Decisional Tensor Isomorphism problem is easy on orbits of tensors with low rank points.

Takeaways of the attack

- → Breaks hiding property of the commitment scheme
- → Decisional Tensor Isomorphism problem is easy on orbits of tensors with low rank points.

Takeaways of the attack

- → Breaks hiding property of the commitment scheme
- Decisional Tensor Isomorphism problem is easy on orbits of tensors with low rank points.
- **Q:** What about the **computational** Tensor Isomorphism Problem?

Computational Tensor Isomorphism Problem (cTIP) :

Given two random tensors $v_0, v_1 \in \mathbf{V}$ such that $(A, B, C) \star v_0 = v_1$ for some $(A, B, C) \in GL(n) \times GL(n) \times GL(n)$, compute (A, B, C)

Takeaways of the attack

- → Breaks hiding property of the commitment scheme
- Decisional Tensor Isomorphism problem is easy on orbits of tensors with low rank points.
- **Q:** What about the **computational** Tensor Isomorphism Problem?

Q: How likely is it for a tensor to have low rank points?

Laurane Marco

Computational Tensor Isomorphism Problem (cTIP) : Given two random tensors $v_0, v_1 \in \mathbf{V}$ such that $(A, B, C) \star v_0 = v_1$ for some $(A, B, C) \in GL(n) \times GL(n) \times GL(n)$, compute (A, B, C)

Attack on cTIP

Laurane Marco

Attack on cTIP

Naive strategy Solve using Gröbner basis \rightarrow too many solutions!

Laurane Marco

Attack on cTIP

Naive strategy Solve using Gröbner basis \rightarrow too many solutions!

Version Use rank-1 points and knowledge of the stabiliser subgroup to get a unique solution

Laurane Marco

Attack on cTIP

Naive strategy Solve using Gröbner basis \rightarrow too many solutions!

Version Version of the stabiliser subgroup to get a unique solution

1. Rank 1 points of t_0 t_0 has **n rank-1 points** $\{e_1, ..., e_n\}$ (up to scalars)

c will also have *n* rank 1 points $\{a_1, \ldots, a_n\}$ \rightarrow Compute them (MinRank).

Laurane Marco

Attack on cTIP

Goal : Given $c = (A, B, C) \star t_b$, compute (A, B, C).

Naive strategy Solve using Gröbner basis \rightarrow too many solutions!

1. Rank 1 points of t_0 t_0 has **n rank-1 points** $\{e_1, \ldots, e_n\}$ (up to scalars)

c will also have *n* rank 1 points $\{a_1, \ldots, a_n\}$ \rightarrow Compute them (MinRank).

Laurane Marco

Version Use rank-1 points and knowledge of the stabiliser subgroup to get a unique solution

Lemma : Given $\{a_1, ..., a_n\}$ and $\{e_1, ..., e_n\}$ there exists an ordering σ of $\{a_1, \ldots, a_n\}$ and a matrix A such that for each *i*, $a_{\sigma(i)} = e_i A^{-1}$

Attack on cTIP

Goal : Given $c = (A, B, C) \star t_b$, compute (A, B, C).

Naive strategy Solve using Gröbner basis \rightarrow too many solutions!

1. Rank 1 points of t_0 t_0 has **n rank-1 points** $\{e_1, \ldots, e_n\}$ (up to scalars)

c will also have n rank 1 points $\{a_1, \ldots, a_n\}$ \rightarrow Compute them (MinRank).

Laurane Marco

Version Use rank-1 points and knowledge of the stabiliser subgroup to get a unique solution

Attack on cTIP

Goal : Given $c = (A, B, C) \star t_b$, compute (A, B, C).

Naive strategy Solve using Gröbner basis \rightarrow too many solutions!

1. Rank 1 points of t_0 t_0 has **n rank-1 points** $\{e_1, \ldots, e_n\}$ (up to scalars)

c will also have n rank 1 points $\{a_1, \ldots, a_n\}$ \rightarrow Compute them (MinRank).

 \rightarrow **Recover** A

Laurane Marco

Version Use rank-1 points and knowledge of the stabiliser subgroup to get a unique solution

Attack on cTIP: wrapping up

Attack on cTIP: wrapping up

2. Solving for some *B*, *C*: system of linear equations

 $(I, B, I) \star t_0 = (A^{-1}, I, C^{-1}) \star c.$

Attack on cTIP: wrapping up

2. Solving for some *B*, *C*: system of linear equations

3. Filter solutions using knowledge of the **stabiliser subgroup**.

- $(I, B, I) \star t_0 = (A^{-1}, I, C^{-1}) \star c.$

Attack on cTIP: wrapping up

2. Solving for some *B*, *C*: system of linear equations

3. Filter solutions using knowledge of the **stabiliser subgroup**.

Laurane Marco

- $(I, B, I) \star t_0 = (A^{-1}, I, C^{-1}) \star c.$

Diagonal matrices also leave t_0 invariant

Attack on cTIP: wrapping up

2. Solving for some *B*, *C*: system of linear equations

3. Filter solutions using knowledge of the **stabiliser subgroup**.

Theorem : We can recover a valid (A, B, C) in $O(n^6)$ operations

- $(I, B, I) \star t_0 = (A^{-1}, I, C^{-1}) \star c.$

Proposal for a fix

Proposal for a fix

Random tensors \rightarrow (almost always) in **different orbits.**

Proposal for a fix

Random tensors \rightarrow (almost always) in **different orbits.**

Random tensors \rightarrow **no** low rank points.

Proposal for a fix

Random tensors \rightarrow (almost always) in **different orbits.**

Random tensors \rightarrow **no** low rank points.

Sampling random tensors in the set-up is enough

Proposal for a fix

Random tensors \rightarrow (almost always) in **different orbits.**

Random tensors \rightarrow **no** low rank points.

Sampling random tensors in the set-up is enough

Proposal for a fix

 \bigcirc Random tensors \rightarrow (almost always) in different orbits.

Random tensors \rightarrow **no** low rank points.

Sampling random tensors in the set-up is enough

- → Statistically binding and computationally hiding commitment scheme!

Proposal for a fix

 \bigcirc Random tensors \rightarrow (almost always) in different orbits.

Random tensors \rightarrow **no** low rank points.

Sampling random tensors in the set-up is enough

- → Statistically binding and computationally hiding commitment scheme!
- \rightarrow No structure on the tensors!

Proposal for a fix

- \mathbf{P} Random tensors \rightarrow (almost always) in different orbits.
- **Random tensors** \rightarrow **no** low rank points.

Sampling random tensors in the set-up is enough

- → Statistically binding and computationally hiding commitment scheme!
- \rightarrow No structure on the tensors!
- \rightarrow No new assumptions!

To conclude

Laurane Marco

Solving the Tensor Isomorphism Problem for special orbits with low rank points: **Cryptanalysis and repair** of an Asiacrypt 2023 commitment scheme

To conclude

Distinguish the committed bit and compute (A, B, C)

> **Solving the Tensor Isomorphism Problem** for special orbits with low rank points: **Cryptanalysis and repair** of an Asiacrypt 2023 commitment scheme

To conclude

Distinguish the committed bit and compute (A, B, C)

> **Solving the Tensor Isomorphism Problem** for special orbits with low rank points: **Cryptanalysis and repair** of an Asiacrypt 2023 commitment scheme

Laurane Marco

Exploit the **underlying structure** of t_0, t_1

To conclude

Distinguish the committed bit and compute (A, B, C)

> **Solving the Tensor Isomorphism Problem** for special orbits with low rank points: **Cryptanalysis** and repair of an Asiacrypt 2023 commitment scheme

Give two **polynomial time** attacks that break the commitment scheme

Laurane Marco

Exploit the **underlying structure** of t_0, t_1

To conclude

Distinguish the committed bit and compute (A, B, C)

> **Solving the Tensor Isomorphism Problem** for special orbits with low rank points: **Cryptanalysis and repair** of an Asiacrypt 2023 commitment scheme

Give two **polynomial time** attacks that break the commitment scheme

Laurane Marco

Exploit the **underlying structure** of t_0, t_1

> Propose an alternative commitment scheme from random tensors

Laurane Marco

Thanks!

eprint 2024/337

