Fine-Grained Non-Interactive Key-Exchange without Idealized Assumptions

Yuyu Wang¹, Chuanjie Su¹, Jiaxin pan²

- 1. University of Electronic Science and Technology of China
 - 2. University of Kassel

2-party setting

 $K=Share(pk_1,pk_2,sk_1)=Share(pk_1,pk_2,sk_2)$

2-party setting

Diffie-Hellman NIKE

3-party setting

3-party setting

Fine-grained cryptography

Honest party

An honest party uses less resources than the adversary

Adversary

The resources of an adversary can be a-prior bounded

Fine-grained cryptography

Honest party

An honest party uses less resources than the adversary

Adversary

The resources of an adversary can be a-prior bounded

Based only on mild assumption

- Bounded parallel-time setting [Hås87/DVV16/WP22]
 - Primitive: OWP / PRG, weak-PRF, SKE, CRHF/NIZK for ACO
 - Assumption: None
 - Honest party: $C_1 = NC^0/AC^0$
 - Adversary: $C_2 = AC^0$

[Hås87] Johan Håstad. One-way permutations in nc0

[DVV16] A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan. Fine-grained cryptography.

[WP22] Y. Wang, Jiaxin. Pan. Unconditionally secure NIZK in the fine-grained setting.

- Bounded parallel-time setting [DVV16/CG18/EWT19/EWT21/WPC21/WP22]
 - Primitive: OWF, PRG, PKE, CRHF / SHE, VC
 / OWP, HPS (imply CCA PKE), TDF / full domain TDF / ABE,QANIZK/NIZK,FHE
 - Assumption: $NC^1 \neq \oplus L/poly$
 - Honest party: $C_1 = NC^1$
 - Adversary: $C_2 = NC^1$

[DVV16] A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan. Fine-grained cryptography.
[CG18] Matteo Campanelli and Rosario Gennaro. Fine-grained secure computation.
[EWT19, EWT21] S. Egashira, Y. Wang, and K. Tanaka. Fine-grained Cryptography revisited.
[WPC21,WPC23] Y. Wang, Jiaxin. Pan, Y. Chen. Fine-grained secure attribute-based encryption.
[WP22] Y. Wang, Jiaxin. Pan. Non-interactive zero-knowledge proofs with fine-grained security.

- Bounded time setting [Mer78, BGI08/LLW19/ACMS23]
 - Primitive: (Multi-party) key exchange
 - Assumption: random oracle, exponentially strong OWF / average-case hard zero k-clique/multilinear Shoup's GGM
 - Honest party: $\mathcal{C}_1 = O(t)$
 - Adversary: $\mathcal{C}_2 = o(t^2)/o(t^{1.5})/o(t^{n/n-1})$
- Bounded storage setting [CM97]
 - Primitive: Key exchange
 - Assumption: None
 - Honest party: $\mathcal{C}_1 = O(s)$
 - Adversary: $\mathcal{C}_2 = o(s^2)$

[Mer78] Ralph C. Merkle. Secure communications over insecure channels.

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key cryptography on strong one-way functions. [LLW19] Rio LaVigne, Andrea Lincoln and Virginia Vassilevska Williams. Public-Key Cryptography in the Fine-Grained Setting [CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded adversaries.

- Bounded time setting [Mer78, BGI08/LLW19/ACMS23]
 - Primitive: (Multi-party) key exchange
 - Assumption: random oracle, experience
 clique/multilinear Shoup's GG
 - Honest party: $\mathcal{C}_1 = O(t)$
 - Adversary: $\mathcal{C}_2 = o(t^2)/o(t^2)$
- Bounded storage setting [CM97]
 - Primitive: Key exchange
 - Assumption: None
 - Honest party: $\mathcal{C}_1 = O(s)$
 - Adversary: $\mathcal{C}_2 = o(s^2)$

Fine-grained multi-party NIKE [BCS24]

Assumption: exponential secure injective PRGs and sub-exponential hardness of CDH/multilinear Maurer's GGM

[Mer78] Ralph C. Merkle. Secure communications over insecure channels.

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key cryptography on strong one-way functions. [LLW19] Rio LaVigne, Andrea Lincoln and Virginia Vassilevska Williams. Public-Key Cryptography in the Fine-Grained Setting [CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded adversaries.

so k-

- Bounded time setting [Mer78, BGI08/LLW19/ACMS23]
 - Primitive: (Multi-party) key exchange
 - Assumption: random oracle, exponentially strong OWF / average-case hard zero k-clique/multilinear Shoup's GGM
 - Honest party: $\mathcal{C}_1 = O(t)$
 - Adversary: $\mathcal{C}_2 = o(t^2)/o(t^{1.5})/o(t^{n/n-1})$
- Bounded storage setting [CM97]
 - Primitive: Key exchange
 - Assumption: None
 - Honest party: $\mathcal{C}_1 = O(s)$
 - Adversary: $\mathcal{C}_2 = o(s^2)$

[Mer78] Ralph C. Merkle. Secure communications over insecure channels.

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key cryptography on strong one-way functions. [LLW19] Rio LaVigne, Andrea Lincoln and Virginia Vassilevska Williams. Public-Key Cryptography in the Fine-Grained Setting [CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded adversaries.

- Bounded time setting [Mer78, BGI08/LLW19/ACMS23]
 - Primitive: (Multi-party) key exchange
 - Assumption: random oracle, exponentially strong OWF / average-case hard zero k-clique/multilinear Shoup's GGM
 - Honest party: $\mathcal{C}_1 = O(t)$
 - Adversary: $\mathcal{C}_2 = o(t^2)/o(t^{1.5})$

• Bounded storage setting [CM97]

- Primitive: Key exchange

- Assumption: None

- Honest party: $\mathcal{C}_1 = O(s)$

- Adversary: $\mathcal{C}_2 = o(s^2)$

Multi-party NIKE without idealized assumptions?

[Mer78] Ralph C. Merkle. Secure communications over insecure channels.

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key cryptography on strong one-way functions. [LLW19] Rio LaVigne, Andrea Lincoln and Virginia Vassilevska Williams. Public-Key Cryptography in the Fine-Grained Setting [CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded adversaries.

Multi-party NIKE in the bounded parallel-time model

Multi-party NIKE in the bounded time model

Multi-party NIKE in the bounded storage model

Multi-party NIKE in the bounded parallel-time model

Multi

Adversary: NC1
Honest user: AC0[2] (included in NC1)

Assumption: $NC^1 \neq \bigoplus L/poly$

Multi-party NIKE in the bounded storage model

Multi-party NIKE in the bounded parallel-time model

Multi

Adversary: NC1 Honest user: AC0[2] (included in NC1) Assumption: $NC^1 \neq \bigoplus L/poly$

Multin

ACO[2]: circuits with constant depth, polynomial size, and unbounded fan-in using AND, OR, NOT, and PARITY gates

Multi-party NIKE in the bounded parallel-time model

Multi

Adversary: NC1 Honest user: AC0[2] (included in NC1) Assumption: $NC^1 \neq \bigoplus L/poly$

Multi-party NIKE : ... 'arage model

NC1: circuits with logarithm depth, polynomial-size and fan-in 2 gates

Multi-party NIKE in the bounded parallel-time model

Multi

Adversary: NC1 Honest user: AC0[2] (included in NC1) Assumption: $NC^1 \neq \bigoplus L/poly$

Multi-party NIKF in 1

⊕ L/poly : log space turning machine with parity acceptance

Starting point: fine-grained HPS

Security: smoothness of HPS based on $NC^1 \neq \bigoplus L/poly$

Starting point: fine-grained HPS

Key pairs are vectors generated by different types of algorithms

Starting point: fine-grained HPS

When more parties are involved, it is unclear how to combine a bunch of vectors to generate a session key

Strawman solution: vectors to matrices

Strawman solution: vectors to matrices

Strawman solution: vectors to matrices

 $M' = M^TM$ and $sk_i \leftarrow SymR$, where SymR is the uniform distribution over symmetric matrices

The third party knows $sk_2M' = pk_2^T$ now
=> Correctness is guaranteed

Smoothness of HPS cannot be used for security proof since sk_i are not uniformly random

Core lemma

Last column is outside the span of M'

The bottom-right bit of the result is a proof with smoothness

Key length can be increased by running the scheme in parallel

Multi-party NIKE in the bounded parallel-time model

Multi-party NIKE in the bounded time model

Multi-party NIKE in the bounded storage model

Multi-party NIKE in the bounded parallel-time model

Multi-party NIKE in the bounded time model

Multi₁

Adversary: $\tilde{O}(\lambda^{n_p+k})$

Honest user: $\tilde{O}(\lambda^{n_p+k-1})$

Assumption: average-case hard zero k-clique

Base

Finding the correct solution requires essentially solving all instances [LLW19]

Starting point: two party key exchange

Two parties exchange lists

Starting point: two party key exchange

There would be a single instance in common having a solution

Starting point: two party key exchange

Challenge: the probability of users sharing the same indices decreases rapidly

Solution: increase the number of instances with solutions

As the number of instances increases, the number of the common indices also increases

Share the sum of the overlapping part

 $Y_i = 1$ if the i'th index chosen by the last party is also chosen by all parties

w.o.l.g., we assume the indices chosen by the last party are genuinely independent

This guarantees the independence of these indicators

Indices chosen by all other parties are independent but all distinct

$$Pr[Y_i = 0]$$
 is small

To simulate the view of the adversary, the reduction splits the list into multiple ones

Then plants other solutions into the list

The existing splitting algorithm splits the list into list pairs [LLW19]

The generalized splitting algorithm also produce incorrect instance lists with different solutions.

Privacy amplification

Our results

Multi-party NIKE in the bounded parallel-time model

Multi-party NIKE in the bounded time model

Multi-party NIKE in the bounded storage model

Our results

Multi-party NIKE in the bounded parallel-time model

Multi-party NIKE in the bounded time model

Multi-party NIKE in the bounded storage model

Adversary: $O(\lambda^{n_p+1})$ Honest user: $O(\lambda^{n_p})$

Each party stores a set of bits in the URS

Once the URS disappears, the parties exchange the indices

To ensure efficiency, the parties utilize strongly 2-universal hash functions

Security in the multi-party setting

The security is guaranteed by the pairwise independence of the indices from the intersection

The correctness is guaranteed by that the size of the intersection is sufficiently large

Firstly, we change the approximately pairwise indices into the perfectly pairwise indices

This ensures the pairwise independence of the indicators

Then we can apply Chebyshev's Inequality and Markov's Inequality to show that the size of intersection is sufficient large with high probability

Extension to IB-NIKE

❖ Multi-party IB-NIKE from multi-party NIKE with extendability

Thank you!