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Fine-grained multi-party NIKE [ACMS23]
(Eurocrypt 2023)

Assumption: random oracle or
(multilinear) generic group model
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® Based only on mild assumption
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Our results

Multi-party NIKE in the bounded parallel-time model

Adversary: NC1
Honest user: ACO[2] (included in NC1)

Assumption: NC! =& L/poly

ACO[2]: circuits with constant depth, polynomial size, and
unbounded fan-in using AND, OR, NOT, and PARITY gates
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Adversary: NC1
Honest user: ACO[2] (included in NC1)

Assumption: NC! =& L/poly

NC1: circuits with logarithm depth,
polynomial-size and fan-in 2 gates




Our results

Adversary: NC1
Honest user: ACO[2] (included in NC1)

Assumption: NC! =& L/poly

@ L/poly : log space turning machine
with parity acceptance
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Starting point: fine-grained HPS

Key pairs are vectors generated by
different types of algorithms




Starting point: fine-grained HPS

sk

When more parties are involved, it is unclear
how to combine a bunch of vectors to
generate a session key
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To compute K, the third
user has to know sk,M



Strawman solution: vectors to matrices
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pk; pks

Too much leakage on
sk, when both sk,M and
pk, are both revealed




Solution: symmetric matrices

pk;
)
( \
\ J
\ J Y

pk; pks

M’ = M™M and sk; « SymR,
where SymR is the uniform
distribution over symmetric matrices




Solution: symmetric matrices

pk;
)
( \
\ J
\ ] Y

pk; pks

The third party knows sk,M’= pk, "
now
=> Correctness is guaranteed




Solution: symmetric matrices
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pk; pks

Smoothness of HPS cannot be used for security proof
since sk;are not uniformly random




Core lemma

identity matrix



Solution: symmetric matrices
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Solution: symmetric matrices
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The bottom-right bit of the result is a proof
with smoothness
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Solution: symmetric matrices
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Key length can be increased by running the scheme in parallel
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Our results

Adversary: O (A" +K)
Honest user: O (A" +k1)
Assumption: average-case hard zero k-clique




Base

correct solution <= .

= [ instantces

Finding the correct solution requires
essentially solving all instances [LLW19]



Starting point: two party key exchange
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Starting point: two party key exchange

There would be a single instance in
common having a solution



Starting point: two party key exchange
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Challenge: the probability of users sharing

the same indices decreases rapidly @
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Solution: increase the number of instances
with solutions
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As the number of instances increases, the

number of the common indices also increases Q

» Key = index;, index,,




Extension to multi-party setting
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@um of the overlapping part




Correctness

n, instance lists Indicators
A
| |
index1| @ O @®| — | 1 | IndicatorY;
index 2| @ O O » | 1 | Indicator Y,
index [ —1 O
index! | @ ® — Indicator Y]

Y; = 1 if the i"th index chosen by the last
party is also chosen by all parties




Correctness

n, instance lists Indicators
A
[ !
index1| @ O @®| — | 1 | IndicatorY;
index 2| @ O @ — | 1 | IndicatorY,
index [ —1 O
index! | @ @ — | 0| Indicatorl;

Otherwise Y; = 0




Correctness

ny, instance lists

I Indicators
| |
index 1| @ O O 1 | Indicator ¥;
index2| @ ® @ 1 | Indicator Y,
: = Independent
index [ —1 O
index ! | @ O 0 | IndicatorY

w.o.l.g., we assume the indices chosen by
the last party are genuinely independent




Correctness

index 1

index 2

index [ —1

index [

n,, instance lists
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Indicators

= Independent

This guarantees the independence of
these indicators

Indicator Y;

Indicator Y,

Indicator Y;

= Independent
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n,, instance lists

p l Indicators
| |
index1| @ O O 1 | Indicator V3
index2| @ O O 1 | Indicator Y,
Distinct
index [ —1 O
index! | @ _ 5 O 0 | Indicator Y,

Indices chosen by all other parties are independent
but all distinct
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n,, instance lists

p l Indicators
| 1
index 1) @ O O 1 | Indicator Y;
index 2| @ @ @ 1 | Indicator Y,
Distinct
index [ —1 .
index! | @ _ i O 0 | Indicator Y,

Pr[Y; = 0] is small
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n,, instance lists

p l Indicators
| 1
index 1| @ O O 1 | Indicator ¥;
index 2| @ @ @ 1 | Indicator Y,
Distinct
index [ —1 .
index! | @ _ i O 0 | Indicator Y,

1 —[]Pr[Y; = 0] is large
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The reduction aims to find the correct
solution by making use of an adversary




Security

To simulate the view of the adversary, the
reduction splits the list into multiple ones
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Then plants other solutions into the list




Security

LLW19

The existing splitting algorithm splits the
list into list pairs [LLW19]
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To split one instance into multiple ones,
we introduce a binary tree structure




Security

and

The generalized splitting algorithm also

and

produce incorrect instance lists with

different solutions.

and ...



Security
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By introducing additional efficient
checking procedures, we can eliminate
incorrect lists.

and ...



Privacy amplification

Goldreich-Levin
extractor [GL89]

Weak security Strong security
(One-wayness) (Indistinguishability)
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Adversary:0(A™*1)
Honest user:0 (A™»)




NIKE in the BSM

A long URS
R; R, R3 R4, R Rg Ry Rg Rg -

(1,7,8,9,..) (2,4,7,8, ..}
{Rll R7; R8; R9; } {RZ, R4) R7) R8) }

Each party stores a set of bits in the URS



NIKE in the BSM

pk; = {1,7,8,9,...} pknp = {2,4,7,8, ...}

Skl = {R]J R7; R8l R9; } Sknp = {RZJ R4-; R7; R8; }

pky, ..., Dk,

pd N
~ Tl

Once the URS disappears, the
parties exchange the indices



NIKE in the BSM

pk; = {1,7,8,9,...} pknp = {2,4,7,8, ...}

Skl = {R]J R7; R8l R9; }
pKy, ) PKn,

pd
~

(7,8,..}
{R71 R8; }

Then save the bits in common



NIKE in the BSM

pk; = {1,7,8,9,...} pknp = {2,4,7,8, ...}
Skl = {R]J R7; R8l R9; } Sknp - {RZJ R4-l R7; R8r }
B pkli ) pknp R
pairwise independent 4—
{R7) R8) } {R7r R8) }

The indices are pairwise independent



NIKE in the BSM

pk; = {1,7,8,9,...} pknp = {2,4,7,8, ...}
Skl = {R]J R7; R8l R9; } Sknp - {RZJ R4-l R7; R8r }
B pkli "'ipknp R
(7,8,..) (7,8,..)

{R;, Rg, ...} High entropy <«=———C {R;, Rg, ...}

So the shared bits have high entropy



NIKE in the BSM

pk; = {1,7,8,9,...} pknp = {2,4,7,8, ...}
Skl = {R]J R7; R8l R9; } Sknp - {RZJ R4-l R7; R8r }
B pkli "'ipknp R
(7,8,..) (7,8,..)

{R;, Rg, ...} High entropy <«=———C {R;, Rg, ...}

This allows the parties to apply
privacy amplification



NIKE in the BSM

pkl: hl — Hn pknp: hnp < HTl

sky = {Rn, 1) Ry 20 Ryyr o Ruy@3 SKny, = (R (1)) Ry 20 Riy 397 -0 R (003
pky, ..., pky,

pd ~
~ 7

To ensure efficiency, the parties utilize
strongly 2-universal hash functions



Security in the multi-party setting

Mp
ﬂ(hi(i))je[q] <— pairwise independent
i=1

The security is guaranteed by the pairwise
independence of the indices from the intersection



Correctness in the multi-party setting

n, parties

index 1 hy(1) . h,(1) . hn, (1) .
index2 | ha(2) [ h2(2) [ hny (2) [

indexn —1 hz(q).
ndecn h(q) by @) [

The correctness is guaranteed by that the size of
the intersection is sufficiently large




Correctness in the multi-party setting

n, parties
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hn, (1) [

hy(2) . h2(2) .

hn,,<2).
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Indicators

— | 1 | IndicatorY;

—p | 1 | Indicator Y,

—— | 0 | IndicatorY;




Correctness in the multi-party setting

n, parties Indicators

A

N\

'
m) [l ROl o= 50 ] —
hy (2) . ha(2) . iy (2) = £, (2) . —

m@ [ oy @ = fo, (@ [ —>

Indicator Y;

Indicator Y,

Indicator Y,

Firstly, we change the approximately pairwise
indices into the perfectly pairwise indices




Correctness in the multi-party setting

n, parties Indicators
N\
fnp(l) — | 1 | Indicator ¥; |
(2) . — | 1 | IndicatorY.
Jrp ’ (Perfectly)
: 5 : > Pairwise
independent

fr, (@) .—» 0 | IndicatorY

@e pairwise independence o@




Correctness in the multi-party setting

n, parties
A

s N\
no [0l A0 B
m@ = oy O

> Distinct - :

fu@ N
J

'd
Independent

Indicators

Indicator Y;

Indicator Y,

Indicator Y]

Other indices are approximately pairwise
independent




Correctness in the multi-party setting

n, parties

- A
) [ (1) ()
h(2) [ 0o (2) [

ol
h1(q) . fn,, (@) . 0 | Indicator Y,
\\ J

'd
Independent

This ensures each indicator equals 1 with
high probability

Indicators

N\
fn,, (1) . 1 | Indicator ¥;

fn, (2) . 1 | Indicator Y,

Distinct --- :




Correctness in the multi-party setting

n, parties Indicators

A
- ™
h1(1).h2(1). fn,, (1) . 1 | Indicator ¥;

1 | IndicatorY,

0 | IndicatorY

Then we can apply Chebyshev’s Inequality and
Markov’s Inequality to show that the size of
intersection is sufficient large with high probability




Correctness in the multi-party setting

ny parties Indicators

A
' N\
201 6] ey ) 1 | Indicator 1,

hi(2) .h2(2). fon () . 1 | Indicator v,
: : _ (Perfectly) :
' ' : Pairwise '
independent
fnp(q) .; 0 | Indicator Y
A\ ~ J
Independent

The result holds when the indices are perfectly
pairwise independent




Correctness in the multi-party setting

ny parties Indicators

A
- N
01 [16] ol ) 1 | Indicator ¥,
QI Ol el 1 | Indicator ¥,

\ (Approximately) .
Pairwise '
independent

hnp (q) .4 0 | IndicatorY;
J/

Independent

This only makes the sum smaller and hence
does not affect our result.




Extension to IB-NIKE

% Multi-party IB-NIKE from multi-party NIKE with extendability

Conversion technique in
[BW13]

Extendable multi-party

NIKEs (Restricted) BPRFs

Generic technique in
[Hofheinz14]

(Restricted) BPRFs Multi-party IB-NIKEs




Thank you!



