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Certi�cation/Evaluation

Security critical products must undergo certi�cation before they can enter the market.
Side channel attacks are important and expensive part of such an evaluation:

▶ May have to aim for �ideal adversary� (i.e. evidence signi�cant time and e�ort to estimate
adversarial leakage model, evidence quality of derived model);

▶ May have to demonstrate attack based on classical and deep learning models.

Model building, evaluation, and attacks require multiple data sets (and maybe even multiple
independent repeats), which makes attack based evaluations extremely expensive in practice.

Are there any alternatives?
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�How to Certify the Leakage of a Chip?� (Durvaux et al. 2014)

Among alternatives, the 2014 paper by Durvaux et al. looked at mutual information (MI)
�like� quantities to capture the �strength� of an (estimated) adversarial leakage model.

▶ Absolute strength: how close is an (estimated) model to the �true device leakage�?
▶ Relative strength: how do multiple (estimated) models compare to each other?

Estimating MI is a hard problem for high dimensional, and/or discrete-continuous mixture
models.

Previous work provides solutions for evaluating relative strength for (high dimensional)
classi�cation models.
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Making Things �Simple� (Our Work)

We provide a uni�ed treatment of classi�cation models and predictive models.

We provide novel MI based quantities to express both relative and absolute strength (including
a useful equivalence in relation to predictive models).

We leverage a new result for high-dimensional MI estimation and demonstrate experimentally
that it accurately estimates the MI for the ideal adversary.

We provide several real world case studies.

Our solution aids �simplicity� because all quantities that we de�ne are MI based and can be
e�ciently estimated by the same statistical estimator.
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Rest of this Talk

Using minimal terminology and formalism we explain quantities to de�ne the �strength� of a
model (aka concrete adversary) for classi�cation models.

We brie�y show some pitfalls when estimating MI (like) quantities, motivating why an approach
that can be carried out with one reliable estimator makes things �simple�.

We show/compare how to use our (and previous) quantities to assess the �pro�ling complexity�
in a concrete scenario.
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The Side Channel Scenario
Adversary gets, alongside input/output X , observations (typically multivariate traces) T , that
depend on X , some unknown instance k∗ ∈ K, some randomness S perhaps dependent on
(x, k), and some independent randomness R:

T (x, k, S(x, k), R) = L(C(x, k), S) +R

Visually expressed as:

X ,K C L + T
(x, k∗) y

S(x, k∗)

z

R

t

The MI, I((X,K);T ), intuitively expresses how much information there is in the traces about
key K.
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Expressing Model Quality (Previous Work)

Assume C is one-to-one, and T are discrete.

HI(Y ;T ; L̂) = H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈T

p(Y,L̂)(t|y) log2 p(Y,L̂)(y|t)

PI(Y ;T ; L̂) = H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈T

p(Y,T )(t|y) log2 p(Y,L̂)(y|t)

Bronchain et al. 2019; Masure et al. 2023 proposed:
▶ Estimate I(Y ;T ) via the HI estimator.
▶ The absolute strength of a model M is given via the regret, HI(Y ;T ;M)− PI(Y ;T ;M).
▶ The relative strengths of two models is given by the di�erence of their regrets (or PIs).

7/14



Expressing Model Quality (Our Work)

Motivated by the fact that the PI largely captures a property of the conditional distribution
Y |T , we adopt the link to the conditional cross-entropy, see also McAllester et al. 2020:

I(T ;Y ) ≥ H(Y )−H(PY |T , PY |TM
)

Equality holds if and only if PY |T = PY |TM
.

We de�ne the absolute strength of a model as

δ(T,M) = I(T ;Y )−
(
H(Y )−H(PY |T , PY |TM

)
)
.
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Spot the Di�erence ...

Previous Work

R(T,M) = HI(Y ;T ;M)− PI(Y ;T ;M)
Require HI and PI estimators:

▶ Needs to discretize traces
▶ Issues with multivariate traces

Our Work

δ(T,M) =

I(T ;Y )−
(
H(Y )−H(PY |T , PY |TM

)
)

▶ Simpli�ed into two MI quantities
▶ Use single �consistent� estimator

Using recent work of Gao et al. 2017 for MI estimation, we produce a performant estimator
implementation (GKOV) for the side channel use case (public repo. is referenced in the paper).
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The Challenge of Multivariate MI Estimation

(a) L : (HW,HD), R ∼ N (0, 4) (b) L : (HW,HW,HD), R ∼ N (0, 2)

In
hist: , eHI: , I((X,K);T ) : , InGKOV: , ePI:

The GKOV estimator is superior in comparison to previous estimators (black line is ground
truth, red is GKOV).
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Practical Use Case: How good are given classi�cation models in absolute
terms?
Data set: Xilinx Virtex-5 FPGA implementation of unprotected AES-128, 30 points are selected
using GKOV. We train deep nets (M∗

1 ,M
∗
2 ) so that M∗

1 is the better model per design.

MI estimates show that both models are far from optimal.
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Practical Use Case: How many traces are enough for training?

▶ All quantities �rank� the
classi�cation models consistently.

▶ The non-MI quantities cannot be
�directly compared� with the true
MI (red line).

▶ The MI quantities demonstrate
how far the models are from
being optimal.
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Limitations and Future Directions

Our work is the �rst to clearly di�erentiate between theoretical quantities to judge model
quality and their estimation: we need more research towards what is the �right quantity�.

GKOV enables multivariate MI estimation, but in practice it is also limited because of the knn
search. Better implementations would be helpful.

Can we integrate the quantities directly into training (e.g. could a loss function directly take
advantage of some simultaneous MI estimation)?
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