
Formally verifying Kyber
Episode V: Machine-checked IND-CCA Security and Correctness of ML-KEM in EasyCrypt

José Bacelar Almeida, Santiago Arranz Olmos, Manuel Barbosa, Gilles Barthe, François
Dupressoir, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Cameron Low,
Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, Pierre-Yves Strub

August 21, 2024



Summary

• Starting point: Episode IV

• Motivation for formally verifying cryptography

• From Kyber to the ML-KEM draft standard

• ML-KEM correctness and security properties:

• Machine-checked proofs
• Optimized & verified implementations

1



Summary

• Starting point: Episode IV

• Motivation for formally verifying cryptography

• From Kyber to the ML-KEM draft standard

• ML-KEM correctness and security properties:

• Machine-checked proofs
• Optimized & verified implementations

1



Summary

• Starting point: Episode IV

• Motivation for formally verifying cryptography

• From Kyber to the ML-KEM draft standard

• ML-KEM correctness and security properties:

• Machine-checked proofs
• Optimized & verified implementations

1



Summary

• Starting point: Episode IV

• Motivation for formally verifying cryptography

• From Kyber to the ML-KEM draft standard

• ML-KEM correctness and security properties:

• Machine-checked proofs
• Optimized & verified implementations

1



Summary

• Starting point: Episode IV

• Motivation for formally verifying cryptography

• From Kyber to the ML-KEM draft standard

• ML-KEM correctness and security properties:
• Machine-checked proofs

• Optimized & verified implementations

1



Summary

• Starting point: Episode IV

• Motivation for formally verifying cryptography

• From Kyber to the ML-KEM draft standard

• ML-KEM correctness and security properties:
• Machine-checked proofs
• Optimized & verified implementations

1



Starting point: Episode IV

• "Formally verifying Kyber Episode IV: Implementation Correctness" [ABB+23]

• Human auditable formal specification
• Reference and vectorized/optimized implementations of Kyber-768
• Computer-verified proofs of functional correctness using EasyCrypt

• What is missing:

• No analysis of cryptographic properties in EasyCrypt
• Targeted round 3 Kyber, not ML-KEM

2



Starting point: Episode IV

• "Formally verifying Kyber Episode IV: Implementation Correctness" [ABB+23]
• Human auditable formal specification
• Reference and vectorized/optimized implementations of Kyber-768
• Computer-verified proofs of functional correctness using EasyCrypt

• What is missing:

• No analysis of cryptographic properties in EasyCrypt
• Targeted round 3 Kyber, not ML-KEM

2



Starting point: Episode IV

• "Formally verifying Kyber Episode IV: Implementation Correctness" [ABB+23]
• Human auditable formal specification
• Reference and vectorized/optimized implementations of Kyber-768
• Computer-verified proofs of functional correctness using EasyCrypt

• What is missing:

• No analysis of cryptographic properties in EasyCrypt
• Targeted round 3 Kyber, not ML-KEM

2



Starting point: Episode IV

• "Formally verifying Kyber Episode IV: Implementation Correctness" [ABB+23]
• Human auditable formal specification
• Reference and vectorized/optimized implementations of Kyber-768
• Computer-verified proofs of functional correctness using EasyCrypt

• What is missing:
• No analysis of cryptographic properties in EasyCrypt

• Targeted round 3 Kyber, not ML-KEM

2



Starting point: Episode IV

• "Formally verifying Kyber Episode IV: Implementation Correctness" [ABB+23]
• Human auditable formal specification
• Reference and vectorized/optimized implementations of Kyber-768
• Computer-verified proofs of functional correctness using EasyCrypt

• What is missing:
• No analysis of cryptographic properties in EasyCrypt
• Targeted round 3 Kyber, not ML-KEM

2



Motivation: objectives

• Migrate Kyber implementations to ML-KEM

• Requires adapting proofs of functional correctness

• Ensure our interpretation of FIPS 203 [Nat23] is secure
• No compliance yet: ML-KEM was a draft and compliance requires certification
• Consolidate changes introduced to Kyber (now ML-KEM) in a security proof (e.g. changes

to the Fujisaki-Okamoto (FO) transform introduced by [HHK17])

Derive that our implementations are an IND-CCA secure KEM at the assembly level

3



Motivation: objectives

• Migrate Kyber implementations to ML-KEM
• Requires adapting proofs of functional correctness

• Ensure our interpretation of FIPS 203 [Nat23] is secure
• No compliance yet: ML-KEM was a draft and compliance requires certification
• Consolidate changes introduced to Kyber (now ML-KEM) in a security proof (e.g. changes

to the Fujisaki-Okamoto (FO) transform introduced by [HHK17])

Derive that our implementations are an IND-CCA secure KEM at the assembly level

3



Motivation: objectives

• Migrate Kyber implementations to ML-KEM
• Requires adapting proofs of functional correctness

• Ensure our interpretation of FIPS 203 [Nat23] is secure
• No compliance yet: ML-KEM was a draft and compliance requires certification
• Consolidate changes introduced to Kyber (now ML-KEM) in a security proof (e.g. changes

to the Fujisaki-Okamoto (FO) transform introduced by [HHK17])

Derive that our implementations are an IND-CCA secure KEM at the assembly level

3



Motivation: objectives

• Migrate Kyber implementations to ML-KEM
• Requires adapting proofs of functional correctness

• Ensure our interpretation of FIPS 203 [Nat23] is secure
• No compliance yet: ML-KEM was a draft and compliance requires certification
• Consolidate changes introduced to Kyber (now ML-KEM) in a security proof (e.g. changes

to the Fujisaki-Okamoto (FO) transform introduced by [HHK17])

Derive that our implementations are an IND-CCA secure KEM at the assembly level

3



Motivation: relevance

• Kyber 2017 [BDK+18]
• Public key compression invalidated assumption in security proof
• Tweaked FO transform [FO99, FO13] broke (security) proof in QROM

4



Motivation: relevance

• Early implementations of Kyber failed to perform implicit rejection

• Discrepancy between SABER’s [DKR+20] implementation and specification of the FO
transform [GMP22, Sec. 5.4]

• Overflow was found in the NTT implementations of Kyber targeting Cortex-M4: not
triggered by test vectors

• KyberSlash: timing side-channel found when using DIV instruction [BBB+24]

5



Motivation: relevance

• Early implementations of Kyber failed to perform implicit rejection

• Discrepancy between SABER’s [DKR+20] implementation and specification of the FO
transform [GMP22, Sec. 5.4]

• Overflow was found in the NTT implementations of Kyber targeting Cortex-M4: not
triggered by test vectors

• KyberSlash: timing side-channel found when using DIV instruction [BBB+24]

5



Motivation: relevance

• Early implementations of Kyber failed to perform implicit rejection

• Discrepancy between SABER’s [DKR+20] implementation and specification of the FO
transform [GMP22, Sec. 5.4]

• Overflow was found in the NTT implementations of Kyber targeting Cortex-M4: not
triggered by test vectors

• KyberSlash: timing side-channel found when using DIV instruction [BBB+24]

5



Motivation: relevance

• Early implementations of Kyber failed to perform implicit rejection

• Discrepancy between SABER’s [DKR+20] implementation and specification of the FO
transform [GMP22, Sec. 5.4]

• Overflow was found in the NTT implementations of Kyber targeting Cortex-M4: not
triggered by test vectors

• KyberSlash: timing side-channel found when using DIV instruction [BBB+24]

5



Motivation: relevance

Goal: provide end to end formally verified implementations

• Security proofs

• Functional correctness proofs

• Link the two:
• Ensure the functional specification matches the one in the security proof
• Derive that our implementations are secure

6



Motivation: relevance

Goal: provide end to end formally verified implementations

• Security proofs

• Functional correctness proofs

• Link the two:
• Ensure the functional specification matches the one in the security proof
• Derive that our implementations are secure

6



Motivation: relevance

Goal: provide end to end formally verified implementations

• Security proofs

• Functional correctness proofs

• Link the two:
• Ensure the functional specification matches the one in the security proof
• Derive that our implementations are secure

6



Contributions

• Computer-verified proof of IND-CCA security of ML-KEM

• Proof of IND-CCA security down to a variant of MLWE
• Functional correctness proof of ML-KEM implementations in Jasmin [ABB+17, ABB+20]

• Proof of IND-CPA security with concrete bounds that consider low-level details:
• compression
• SHA3-based noise generation
• SHA3-based rejection sampling

• Formalization, in EasyCrypt, of the relevant FO transform variant introduced in [HHK17]

Concrete security bound for ML-KEM that considers low-level details

7



Contributions

• Computer-verified proof of IND-CCA security of ML-KEM
• Proof of IND-CCA security down to a variant of MLWE
• Functional correctness proof of ML-KEM implementations in Jasmin [ABB+17, ABB+20]

• Proof of IND-CPA security with concrete bounds that consider low-level details:
• compression
• SHA3-based noise generation
• SHA3-based rejection sampling

• Formalization, in EasyCrypt, of the relevant FO transform variant introduced in [HHK17]

Concrete security bound for ML-KEM that considers low-level details

7



Contributions

• Computer-verified proof of IND-CCA security of ML-KEM
• Proof of IND-CCA security down to a variant of MLWE
• Functional correctness proof of ML-KEM implementations in Jasmin [ABB+17, ABB+20]

• Proof of IND-CPA security with concrete bounds that consider low-level details:
• compression
• SHA3-based noise generation
• SHA3-based rejection sampling

• Formalization, in EasyCrypt, of the relevant FO transform variant introduced in [HHK17]

Concrete security bound for ML-KEM that considers low-level details

7



Contributions

• Computer-verified proof of IND-CCA security of ML-KEM
• Proof of IND-CCA security down to a variant of MLWE
• Functional correctness proof of ML-KEM implementations in Jasmin [ABB+17, ABB+20]

• Proof of IND-CPA security with concrete bounds that consider low-level details:
• compression
• SHA3-based noise generation
• SHA3-based rejection sampling

• Formalization, in EasyCrypt, of the relevant FO transform variant introduced in [HHK17]

Concrete security bound for ML-KEM that considers low-level details

7



Contributions

• Computer-verified proof of IND-CCA security of ML-KEM
• Proof of IND-CCA security down to a variant of MLWE
• Functional correctness proof of ML-KEM implementations in Jasmin [ABB+17, ABB+20]

• Proof of IND-CPA security with concrete bounds that consider low-level details:
• compression
• SHA3-based noise generation
• SHA3-based rejection sampling

• Formalization, in EasyCrypt, of the relevant FO transform variant introduced in [HHK17]

Concrete security bound for ML-KEM that considers low-level details

7



Kyber to ML-KEM - Kyber 2017

• Lattice-based PKE scheme based on Module-LWE [BDK+18]

• Several optimizations: parameter choice + public-key and ciphertext compression
• Correctness and security implications:

• Correctness bound is hard to compute: only heuristic results
• Public-key compression not contemplated in security proof
• Tweaked FO transform: ciphertext hashing

8



Kyber to ML-KEM - Kyber 2017

• Lattice-based PKE scheme based on Module-LWE [BDK+18]

• Several optimizations: parameter choice + public-key and ciphertext compression

• Correctness and security implications:
• Correctness bound is hard to compute: only heuristic results
• Public-key compression not contemplated in security proof
• Tweaked FO transform: ciphertext hashing

8



Kyber to ML-KEM - Kyber 2017

• Lattice-based PKE scheme based on Module-LWE [BDK+18]

• Several optimizations: parameter choice + public-key and ciphertext compression
• Correctness and security implications:

• Correctness bound is hard to compute: only heuristic results
• Public-key compression not contemplated in security proof
• Tweaked FO transform: ciphertext hashing

8



Kyber to ML-KEM - Kyber Round 3

• KEM selected by NIST for standardization
after round 3

• Differences from Kyber 2017 [BDK+18]:
• Updated parameters (smaller prime q

and noise parameter η)
• No public key compression
• Public keys transmitted in the NTT

domain
• Full specification of the scheme

• Tweaked FO transform still in use:
ciphertext hashing

9



Kyber to ML-KEM - Kyber Round 3

• KEM selected by NIST for standardization
after round 3

• Differences from Kyber 2017 [BDK+18]:
• Updated parameters (smaller prime q

and noise parameter η)
• No public key compression
• Public keys transmitted in the NTT

domain
• Full specification of the scheme

• Tweaked FO transform still in use:
ciphertext hashing

9



Kyber to ML-KEM - Kyber Round 3

• KEM selected by NIST for standardization
after round 3

• Differences from Kyber 2017 [BDK+18]:
• Updated parameters (smaller prime q

and noise parameter η)
• No public key compression
• Public keys transmitted in the NTT

domain
• Full specification of the scheme

• Tweaked FO transform still in use:
ciphertext hashing

9



Kyber to ML-KEM - ML-KEM “draft”

• Formerly CRYSTALS-Kyber

• Typical design of post-quantum KEMs

• IND-CPA PKE scheme from variant of
LWE

• IND-CCA KEM using FO
transform [FO99, FO13, HHK17]

10



Overview

11



Overview: IND-CPA construction

12



Overview: IND-CPA construction

• IND-CPA security and correctness proof

• K-PKE scheme underlies Kyber and
ML-KEM

• Security proof under a variant of MLWE:
Hashed MLWE

• Replace sampling of matrix A with
deterministic procedure H

• Correctness proof sets upper bound for a
decryption failure

12



Overview: IND-CPA construction

• IND-CPA security and correctness proof

• K-PKE scheme underlies Kyber and
ML-KEM

• Security proof under a variant of MLWE:
Hashed MLWE

• Replace sampling of matrix A with
deterministic procedure H

• Correctness proof sets upper bound for a
decryption failure

12



Overview: IND-CPA construction

• IND-CPA security and correctness proof

• K-PKE scheme underlies Kyber and
ML-KEM

• Security proof under a variant of MLWE:
Hashed MLWE

• Replace sampling of matrix A with
deterministic procedure H

• Correctness proof sets upper bound for a
decryption failure

12



Overview: IND-CCA security

13



Overview: IND-CCA security

• Machine-checked security proofs for
ML-KEM

• IND-CCA security ML-KEMop follows
from instantiating FOk transform:

• Reuse K-PKE construction from earlier
• Instantiate with concrete parameters

(ML-KEM-768 in our case)

• IND-CCA security of FOk derived from
proof that shows security of the
composition of T and U transforms

13



Overview: IND-CCA security

• Machine-checked security proofs for
ML-KEM

• IND-CCA security ML-KEMop follows
from instantiating FOk transform:

• Reuse K-PKE construction from earlier
• Instantiate with concrete parameters

(ML-KEM-768 in our case)

• IND-CCA security of FOk derived from
proof that shows security of the
composition of T and U transforms

13



Overview: IND-CCA security

• Machine-checked security proofs for
ML-KEM

• IND-CCA security ML-KEMop follows
from instantiating FOk transform:

• Reuse K-PKE construction from earlier
• Instantiate with concrete parameters

(ML-KEM-768 in our case)

• IND-CCA security of FOk derived from
proof that shows security of the
composition of T and U transforms

13



Overview: Implementation correctness

14



Overview: Implementation correctness

• Functional correctness proof of
ML-KEM-768 Jasmin x86-64
implementations

• Jasmin compiler guarantees:
• Semantic preservation of assembly

implementations
• Constant-time code via the type system

• Gap between security proof and assembly
implementation:

• Hash function (SHA3-512) is not a
Random Oracle

14



Overview: Implementation correctness

• Functional correctness proof of
ML-KEM-768 Jasmin x86-64
implementations

• Jasmin compiler guarantees:
• Semantic preservation of assembly

implementations
• Constant-time code via the type system

• Gap between security proof and assembly
implementation:

• Hash function (SHA3-512) is not a
Random Oracle

14



Overview: Implementation correctness

• Functional correctness proof of
ML-KEM-768 Jasmin x86-64
implementations

• Jasmin compiler guarantees:
• Semantic preservation of assembly

implementations
• Constant-time code via the type system

• Gap between security proof and assembly
implementation:

• Hash function (SHA3-512) is not a
Random Oracle

14



Overview

15



EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers

• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters
• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:

• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers
• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters

• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:

• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers
• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters
• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:

• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers
• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters
• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:

• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers
• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters
• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:
• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



Caveats/Limitations

• Large Trusted Code Base (TCB):
• EasyCrypt (not formally verified)
• EasyCrypt proof statements and specifications1

• SMT solvers

• Classical security proof only: no security proof against quantum adversaries

1Machine-readable standards could provide a solution to the latter (future work)

17



Future/Ongoing Work

• Update implementations to final FIPS-203

• ML-KEM implementations: more efficient code and support for more parameter sets and
architectures (currently x86-64 only)

• Extend (security) proof to the QROM

• Improve proof automation: integrate with other tools (e.g. Cryptoline [FLS+19, TFS+22])

• Formally verify other primitives: ML-DSA, SLH-DSA, FrodoKEM, etc

• Industry adoption of formally verified implementations

18



Future/Ongoing Work

• Update implementations to final FIPS-203

• ML-KEM implementations: more efficient code and support for more parameter sets and
architectures (currently x86-64 only)

• Extend (security) proof to the QROM

• Improve proof automation: integrate with other tools (e.g. Cryptoline [FLS+19, TFS+22])

• Formally verify other primitives: ML-DSA, SLH-DSA, FrodoKEM, etc

• Industry adoption of formally verified implementations

18



Future/Ongoing Work

• Update implementations to final FIPS-203

• ML-KEM implementations: more efficient code and support for more parameter sets and
architectures (currently x86-64 only)

• Extend (security) proof to the QROM

• Improve proof automation: integrate with other tools (e.g. Cryptoline [FLS+19, TFS+22])

• Formally verify other primitives: ML-DSA, SLH-DSA, FrodoKEM, etc

• Industry adoption of formally verified implementations

18



Future/Ongoing Work

• Update implementations to final FIPS-203

• ML-KEM implementations: more efficient code and support for more parameter sets and
architectures (currently x86-64 only)

• Extend (security) proof to the QROM

• Improve proof automation: integrate with other tools (e.g. Cryptoline [FLS+19, TFS+22])

• Formally verify other primitives: ML-DSA, SLH-DSA, FrodoKEM, etc

• Industry adoption of formally verified implementations

18



Future/Ongoing Work

• Update implementations to final FIPS-203

• ML-KEM implementations: more efficient code and support for more parameter sets and
architectures (currently x86-64 only)

• Extend (security) proof to the QROM

• Improve proof automation: integrate with other tools (e.g. Cryptoline [FLS+19, TFS+22])

• Formally verify other primitives: ML-DSA, SLH-DSA, FrodoKEM, etc

• Industry adoption of formally verified implementations

18



Future/Ongoing Work

• Update implementations to final FIPS-203

• ML-KEM implementations: more efficient code and support for more parameter sets and
architectures (currently x86-64 only)

• Extend (security) proof to the QROM

• Improve proof automation: integrate with other tools (e.g. Cryptoline [FLS+19, TFS+22])

• Formally verify other primitives: ML-DSA, SLH-DSA, FrodoKEM, etc

• Industry adoption of formally verified implementations

18



More online

https://formosa-crypto.org

• High-assurance Kyber:
• Episode IV: https://eprint.iacr.org/2023/215
• Episode V: https://eprint.iacr.org/2024/843

• EasyCrypt specifications: https://github.com/formosa-crypto/crypto-specs
• Libjade: https://github.com/formosa-crypto/libjade

19

https://formosa-crypto.org
https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2024/843
https://github.com/formosa-crypto/crypto-specs
https://github.com/formosa-crypto/libjade


References

[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. Jasmin: High-assurance and high-speed cryptography. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017: 24th Conference on Computer and Communications Security, pages
1807–1823, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

[ABB+20] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien
Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The last mile:
High-assurance and high-speed cryptographic implementations. In 2020 IEEE
Symposium on Security and Privacy, pages 965–982, San Francisco, CA, USA,
May 18–21, 2020. IEEE Computer Society Press.



[ABB+23] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma,
Peter Schwabe, Antoine Séré, and Pierre-Yves Strub. Formally verifying kyber episode
IV: Implementation correctness. Cryptology ePrint Archive, Paper 2023/215, 2023.
https://eprint.iacr.org/2023/215.

[BBB+24] Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anupam
Chattopadhyay, Tee Kiah Chia, Matthias J. Kannwischer, Franziskus Kiefer, Thales
Paiva, Prasanna Ravi, and Goutam Tamvada. KyberSlash: Exploiting
secret-dependent division timings in kyber implementations. Cryptology ePrint
Archive, Paper 2024/1049, 2024.

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure
module-lattice-based KEM. In 2018 IEEE European Symposium on Security and
Privacy, EuroS&P 2018, pages 353–367. IEEE, 2018.
https://eprint.iacr.org/2017/634.

https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2017/634


[DKR+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren,
Jose Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso. SABER.
Technical report, National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[FLS+19] Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin
Yang. Signed cryptographic program verification with typed CryptoLine. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019: 26th Conference on Computer and Communications Security, pages 1591–1606,
London, UK, November 11–15, 2019. ACM Press.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology –
CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 537–554,
Santa Barbara, CA, USA, August 15–19, 1999. Springer, Berlin, Heidelberg, Germany.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. Journal of Cryptology, 26(1):80–101, January 2013.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions


[GMP22] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust
post-quantum public key encryption. In Orr Dunkelman and Stefan Dziembowski,
editors, Advances in Cryptology – EUROCRYPT 2022, Part III, volume 13277 of
Lecture Notes in Computer Science, pages 402–432, Trondheim, Norway,
May 30 – June 3, 2022. Springer, Cham, Switzerland.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. Cryptology ePrint Archive, Report 2017/604, 2017.

[Nat23] National Institute of Standards and Technology. FIPS PUB 203 (Initial Public Draft)
– module-lattice-based key-encapsulation mechanism standard, 2023.
https://csrc.nist.gov/pubs/fips/203/ipd.

[TFS+22] Ming-Hsien Tsai, Yu-Fu Fu, Xiaomu Shi, Jiaxiang Liu, Bow-Yaw Wang, and Bo-Yin
Yang. Automatic certified verification of cryptographic programs with
COQCRYPTOLINE. Cryptology ePrint Archive, Report 2022/1116, 2022.

https://csrc.nist.gov/pubs/fips/203/ipd

	References

