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Summary

• Starting point: Episode IV

• Motivation for formally verifying cryptography

• From Kyber to the ML-KEM draft standard

• ML-KEM correctness and security properties:

• Machine-checked proofs
• Optimized & verified implementations
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Starting point: Episode IV

• "Formally verifying Kyber Episode IV: Implementation Correctness" [ABB+23]

• Human auditable formal specification
• Reference and vectorized/optimized implementations of Kyber-768
• Computer-verified proofs of functional correctness using EasyCrypt

• What is missing:

• No analysis of cryptographic properties in EasyCrypt
• Targeted round 3 Kyber, not ML-KEM
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Motivation: objectives

• Migrate Kyber implementations to ML-KEM

• Requires adapting proofs of functional correctness

• Ensure our interpretation of FIPS 203 [Nat23] is secure
• No compliance yet: ML-KEM was a draft and compliance requires certification
• Consolidate changes introduced to Kyber (now ML-KEM) in a security proof (e.g. changes

to the Fujisaki-Okamoto (FO) transform introduced by [HHK17])

Derive that our implementations are an IND-CCA secure KEM at the assembly level
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Motivation: relevance

• Kyber 2017 [BDK+18]
• Public key compression invalidated assumption in security proof
• Tweaked FO transform [FO99, FO13] broke (security) proof in QROM
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Motivation: relevance

• Early implementations of Kyber failed to perform implicit rejection

• Discrepancy between SABER’s [DKR+20] implementation and specification of the FO
transform [GMP22, Sec. 5.4]

• Overflow was found in the NTT implementations of Kyber targeting Cortex-M4: not
triggered by test vectors

• KyberSlash: timing side-channel found when using DIV instruction [BBB+24]
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Motivation: relevance

Goal: provide end to end formally verified implementations

• Security proofs

• Functional correctness proofs

• Link the two:
• Ensure the functional specification matches the one in the security proof
• Derive that our implementations are secure
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Contributions

• Computer-verified proof of IND-CCA security of ML-KEM

• Proof of IND-CCA security down to a variant of MLWE
• Functional correctness proof of ML-KEM implementations in Jasmin [ABB+17, ABB+20]

• Proof of IND-CPA security with concrete bounds that consider low-level details:
• compression
• SHA3-based noise generation
• SHA3-based rejection sampling

• Formalization, in EasyCrypt, of the relevant FO transform variant introduced in [HHK17]

Concrete security bound for ML-KEM that considers low-level details
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Kyber to ML-KEM - Kyber 2017

• Lattice-based PKE scheme based on Module-LWE [BDK+18]

• Several optimizations: parameter choice + public-key and ciphertext compression
• Correctness and security implications:

• Correctness bound is hard to compute: only heuristic results
• Public-key compression not contemplated in security proof
• Tweaked FO transform: ciphertext hashing
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Kyber to ML-KEM - Kyber Round 3

• KEM selected by NIST for standardization
after round 3

• Differences from Kyber 2017 [BDK+18]:
• Updated parameters (smaller prime q

and noise parameter η)
• No public key compression
• Public keys transmitted in the NTT

domain
• Full specification of the scheme

• Tweaked FO transform still in use:
ciphertext hashing
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Kyber to ML-KEM - ML-KEM “draft”

• Formerly CRYSTALS-Kyber

• Typical design of post-quantum KEMs

• IND-CPA PKE scheme from variant of
LWE

• IND-CCA KEM using FO
transform [FO99, FO13, HHK17]
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Overview
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Overview: IND-CPA construction
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Overview: IND-CPA construction

• IND-CPA security and correctness proof

• K-PKE scheme underlies Kyber and
ML-KEM

• Security proof under a variant of MLWE:
Hashed MLWE

• Replace sampling of matrix A with
deterministic procedure H

• Correctness proof sets upper bound for a
decryption failure
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Overview: IND-CCA security

• Machine-checked security proofs for
ML-KEM

• IND-CCA security ML-KEMop follows
from instantiating FOk transform:

• Reuse K-PKE construction from earlier
• Instantiate with concrete parameters

(ML-KEM-768 in our case)

• IND-CCA security of FOk derived from
proof that shows security of the
composition of T and U transforms
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Overview: Implementation correctness
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Overview: Implementation correctness

• Functional correctness proof of
ML-KEM-768 Jasmin x86-64
implementations

• Jasmin compiler guarantees:
• Semantic preservation of assembly

implementations
• Constant-time code via the type system

• Gap between security proof and assembly
implementation:

• Hash function (SHA3-512) is not a
Random Oracle
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EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers

• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters
• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:

• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers
• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters

• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:

• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers
• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters
• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:

• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers
• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters
• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:

• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



EasyCrypt for machine-checked proofs

• Advantages:
• Games, theorems and proofs match papers
• Abstract proofs (e.g. FO transform) can be instantiated with concrete schemes/parameters
• Supports specifications, security proofs, implementations, functional correctness

• Drawbacks:
• Proofs are not automatic and require significant effort
• Theorems can be hard to read

16



Caveats/Limitations

• Large Trusted Code Base (TCB):
• EasyCrypt (not formally verified)
• EasyCrypt proof statements and specifications1

• SMT solvers

• Classical security proof only: no security proof against quantum adversaries

1Machine-readable standards could provide a solution to the latter (future work)
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Future/Ongoing Work

• Update implementations to final FIPS-203

• ML-KEM implementations: more efficient code and support for more parameter sets and
architectures (currently x86-64 only)

• Extend (security) proof to the QROM

• Improve proof automation: integrate with other tools (e.g. Cryptoline [FLS+19, TFS+22])

• Formally verify other primitives: ML-DSA, SLH-DSA, FrodoKEM, etc

• Industry adoption of formally verified implementations
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More online

https://formosa-crypto.org

• High-assurance Kyber:
• Episode IV: https://eprint.iacr.org/2023/215
• Episode V: https://eprint.iacr.org/2024/843

• EasyCrypt specifications: https://github.com/formosa-crypto/crypto-specs
• Libjade: https://github.com/formosa-crypto/libjade
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