Improving Generic Attacks Using Exceptional Functions

Xavier Bonnetain¹ Rachelle Heim Boissier² Gaëtan Leurent³ André Schrottenloher⁴

¹Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

²Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles, Versailles, France

³Inria, Paris, France

⁴Univ Rennes, Inria, CNRS, IRISA, Rennes, France

CRYPTO 2024

Gaëtan Leurent

Improving Generic Attacks Using Exceptional Functions

CRYPTO 2024

1/17

Generic attacks in symmetric cryptography

Security evaluation: classical approach

- Security proofs for modes of operation and constructions
 - Model primitives as ideal: PRF, Random Oracle
- Cryptanalysis of primitives
 - Evaluates whether concrete primitives behave like ideal model

Cryptanalysis of modes of operation and constructions

- Generic attacks target the mode without using properties of the primitives
 - Complementary to security proofs: gap between attacks and proofs
- Typical situation: birthday bound security
 - Security proof up to $2^{n/2}$ operations, with *n* the state size
 - Simple matching attack for simple security properties (e.g. collisions)
 - No matching attack for some more complex properties (e.g. preimage, state-recovery)

Generic attacks in symmetric cryptography

Security evaluation: classical approach

- Security proofs for modes of operation and constructions
 - Model primitives as ideal: PRF, Random Oracle
- Cryptanalysis of primitives
 - Evaluates whether concrete primitives behave like ideal model

Cryptanalysis of modes of operation and constructions

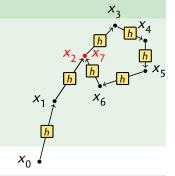
- Generic attacks target the mode without using properties of the primitives
 - Complementary to security proofs: gap between attacks and proofs
- Typical situation: birthday bound security
 - Security proof up to $2^{n/2}$ operations, with *n* the state size
 - Simple matching attack for simple security properties (e.g. collisions)
 - No matching attack for some more complex properties (e.g. preimage, state-recovery)

Hash combiners

Simple example: Pollard rho

Pollard's rho

- Given a public *n*-bit function $h : \{0,1\}^n \rightarrow \{0,1\}^n$
- Find x, y with h(x) = h(y)
- 1 Iterate $h: x_i = h(x_{i-1})$
- 2 Eventually, sequence cycles
- 3 Detect cycle, locate collision (Floyd, Brent)



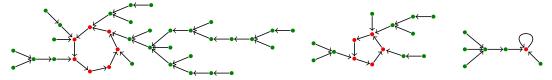
Complexity evaluation

- Assume average properties of random functions
 - ▶ Time to reach cycle (tail length) *O*(2^{n/2})
 - Cycle length O(2^{n/2})

Hash combiners

Average properties of random functions

Graph of a random function: trees connected to cycles



Expected properties of a random mapping over **2**^{*n*} *points*

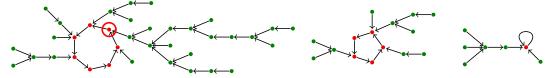
[Flajolet & Odlyzko, EC'89]

- # Components: n log(2)/2
- # Cyclic nodes: $\sqrt{\pi/2} \cdot 2^{n/2}$
- Tail length: $\sqrt{\pi/8} \cdot 2^{n/2}$
- Cycle length: $\sqrt{\pi/8} \cdot 2^{n/2}$
- ► Largest tree: 0.48 · 2ⁿ
- Largest component: 0.76 · 2ⁿ

Hash combiners

Attacks using the giant tree

Random functions have a giant component and a giant tree



Expected properties of a random mapping over **2**^{*n*} *points*

[Flajolet & Odlyzko, EC'89]

- Largest tree: $0.48 \cdot 2^n$
- ► Largest component: 0.76 · 2ⁿ
- Assume iteration of fixed public function, with secret state
- With constant probability, a random point is in the giant tree
- In particular, the first cyclic point is the root of the giant tree
 - Used in attacks against HMAC

[L, Peyrin & Wang, Asiacrypt'13]

Improving Generic Attacks Using Exceptional Functions

Hash combiners

Exceptional properties of random functions

With some probability, giant tree is connected to small cycle

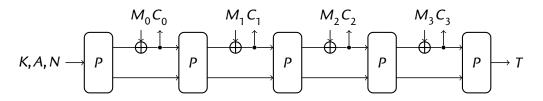
Exceptional properties of a random mapping over 2ⁿ points

[DeLaurentis, Crypto'87]

- ► Giant component has a cycle of length $\leq 2^{\mu}$ with probability $\Theta(2^{\mu-n/2})$
- ▶ Assume iteration of public function, with chosen parameter $h_u : \{0, 1\}^n \rightarrow \{0, 1\}^n$
- Find parameter β such that h_{β} has giant component with cycle length $\leq 2^{\mu}$
 - ► Complexity 2^{*n*-µ} [Gilbert, Heim Boissier, Khati & Rotella, EC'23]
- With constant probability, a random point reaches the small cycle of h_{β}

Hash combiners

Duplex Sponge AEAD



- Encryption XORs message inside state, extracts ciphertext
- Decryption replaces state with ciphertext
- Tag verification iterates public function with parameter
 - With a fixed ciphertext β, iteration of a fixed function

$$\begin{split} h_{\beta} &: \{0,1\}^n \to \{0,1\}^n \\ & x_i \mapsto x_{i+1} = P(\beta \parallel x_i) \end{split}$$

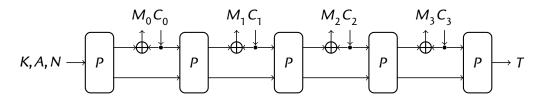
▶ With long ciphertext β^L , $L \ge 2^{n/2}$ final state in main cycle of h_β with high probability

Gaëtan Leurent

Improving Generic Attacks Using Exceptional Functions

Hash combiners

Duplex Sponge AEAD



- Encryption XORs message inside state, extracts ciphertext
- Decryption replaces state with ciphertext
- Tag verification iterates public function with parameter
 - With a fixed ciphertext β, iteration of a fixed function

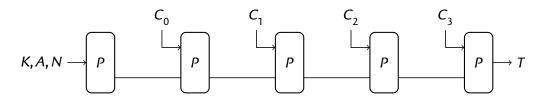
$$\begin{split} h_{\beta} &: \{0,1\}^n \to \{0,1\}^n \\ & x_i \mapsto x_{i+1} = P(\beta \parallel x_i) \end{split}$$

▶ With long ciphertext β^L , $L \ge 2^{n/2}$ final state in main cycle of h_β with high probability

Gaëtan Leurent

Improving Generic Attacks Using Exceptional Functions

Duplex Sponge AEAD



- Encryption XORs message inside state, extracts ciphertext
- Decryption replaces state with ciphertext
- Tag verification iterates public function with parameter
 - With a fixed ciphertext β, iteration of a fixed function

$$\begin{split} h_{\beta} &: \{0,1\}^n \rightarrow \{0,1\}^n \\ x_i &\mapsto x_{i+1} = P(\beta \parallel x_i) \end{split}$$

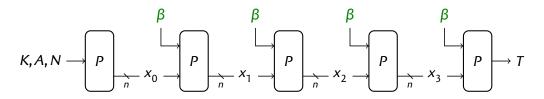
▶ With long ciphertext β^L , $L \ge 2^{n/2}$ final state in main cycle of h_β with high probability

Gaëtan Leurent

Improving Generic Attacks Using Exceptional Functions

Hash combiners

Duplex Sponge AEAD



- Encryption XORs message inside state, extracts ciphertext
- Decryption replaces state with ciphertext
- Tag verification iterates public function with parameter
 - With a fixed ciphertext β , iteration of a fixed function

$$\begin{split} h_{\beta} &: \{0,1\}^n \to \{0,1\}^n \\ x_i &\mapsto x_{i+1} = P(\beta \parallel x_i) \end{split}$$

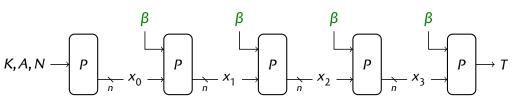
▶ With long ciphertext β^L , $L \ge 2^{n/2}$ final state in main cycle of h_β with high probability

Offline

Online

Forgery attack

[Gilbert, Heim Boissier, Khati & Rotella, EC'23]



- **0** Find cycle C of h_{β} , cycle length 2^{μ}
 - Compute $T = P(\beta \parallel x^*)$ with arbitrary $x^* \in C$
- **1** Make forgery attempt (β^L , *T*), with $L \ge 2^{n/2}$
 - With high probability, final state in cycle C
 - With probability $\approx 2^{-\mu}$, final state matches x^* and tag is valid

Using arbitrary β Using small cycle ($\mu \ll n/2$)> Precomputation cost $2^{n/2}$ > Precomputation cost $2^{n-\mu}$ > Cycle length $2^{\mu} \approx 2^{n/2}$ > Balance $2^{n-\mu}$ and $2^{n/2+\mu}$ > Complexity $2^{n/2+\mu} = 2^n$ > Complexity $2^{3n/4}$ ($\mu = n/4$)

Gaëtan Leurent

Improving Generic Attacks Using Exceptional Functions

Our results

• We extend the use of exceptional functions for cryptanalysis

1 New technique nesting exceptional functions

- Improved attack on duplex AEAD
- Alternative attacks on hash combiners
- 2 Revisit attack based on average properties of random functions, improve them using exceptional properties of random functions
 - Improved attack on hash combiners (XOR, zipper, hash-twice)

Outline

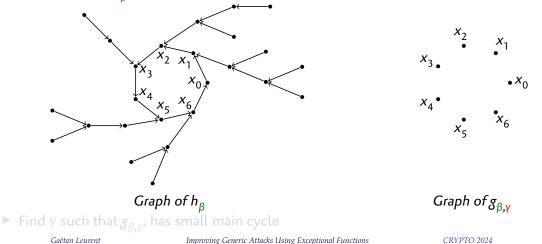
• We extend the use of exceptional functions for cryptanalysis

1 New technique nesting exceptional functions

- Improved attack on duplex AEAD
- Alternative attacks on hash combiners
- 2 Revisit attack based on average properties of random functions, improve them using exceptional properties of random functions
 - Improved attack on hash combiners (XOR, zipper, hash-twice)

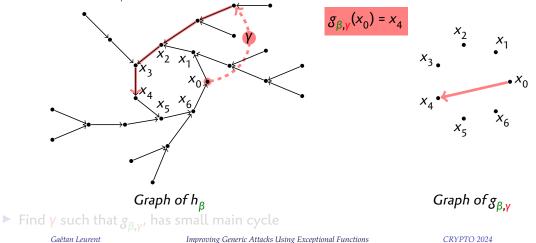
Hash combiners

- Find β such that h_{β} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,\gamma}$: $x \mapsto h_{\beta}^{L}(h_{\gamma}(x))$, with $L \ge 2^{n/2}$
 - h_v randomizes state
 - lteration of h_{β} reaches main cycle with high probability



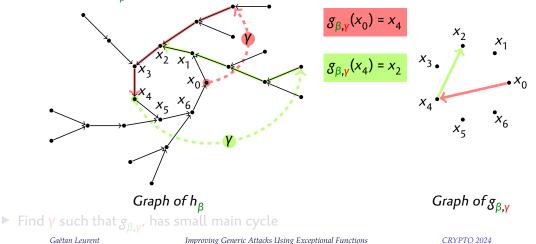
Hash combiners

- Find β such that h_{β} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,\gamma}$: $x \mapsto h_{\beta}^{L}(h_{\gamma}(x))$, with $L \ge 2^{n/2}$
 - h_{v} randomizes state
 - Iteration of h_{β} reaches main cycle with high probability



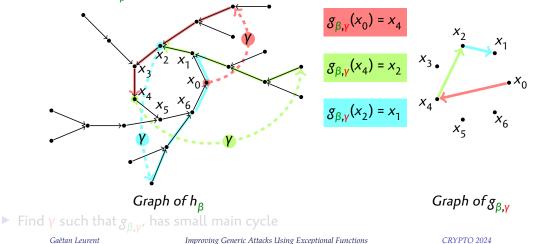
Hash combiners

- Find β such that h_{β} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,\gamma}$: $x \mapsto h_{\beta}^{L}(h_{\gamma}(x))$, with $L \ge 2^{n/2}$
 - h_v randomizes state
 - lteration of h_{β} reaches main cycle with high probability



Hash combiners

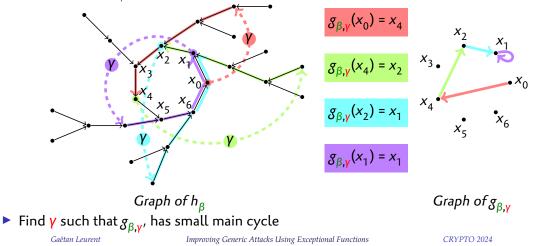
- Find β such that h_{β} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,\gamma}$: $x \mapsto h_{\beta}^{L}(h_{\gamma}(x))$, with $L \ge 2^{n/2}$
 - h_v randomizes state
 - lteration of h_{β} reaches main cycle with high probability



Hash combiners

10/17

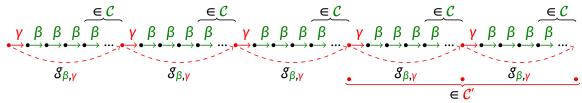
- Find β such that h_{β} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,\gamma}$: $x \mapsto h_{\beta}^{L}(h_{\gamma}(x))$, with $L \ge 2^{n/2}$
 - h_v randomizes state
 - Iteration of h_{β} reaches main cycle with high probability



Hash combiners

Improved forgery attack

• Build ciphertext $(\gamma \parallel \beta^L)^{\Lambda}$, with $L \ge 2^{n/2}$, $\Lambda > 2^{\mu/2}$



a Find β such that h_{β} has cycle C of length 2^μ Find γ such that $g_{\beta,\gamma}$ has cycle C' of length 2^ν

Compute $T = P(\beta \parallel x^*)$ with arbitrary $x^* \in \mathcal{C}'$

1 Make forgery attempt $(\gamma \parallel \beta^L)^{\Lambda}$, with $L \ge 2^{n/2}$, $\Lambda > 2^{\mu/2}$

- With high probability, final state in cycle \mathcal{C}'
- With probability $\approx 2^{-\mu}$, final state matches x^* and tag is valid
- Balance 2^{n-µ}, 2^{n/2} × 2^{µ-v}, 2^{n/2+µ/2} × 2^v

Optimal complexity: 2^{5n/7} ≈ 2^{0.71n}

Gaëtan Leurent

Improving Generic Attacks Using Exceptional Functions

 $\mu = 2n/7, v = n/14$

11/17

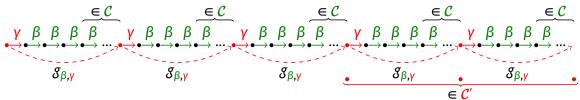
CRYPTO 2024

 $2^{n/2} \times 2^{\mu-\nu}$

Hash combiners

Improved forgery attack

• Build ciphertext $(\gamma \parallel \beta^L)^{\Lambda}$, with $L \ge 2^{n/2}$, $\Lambda > 2^{\mu/2}$



ind β such that h_{β} has cycle C of length 2^μ
Find γ such that $g_{\beta,\gamma}$ has cycle C' of length 2^ν

- Compute $T = P(\beta \parallel x^*)$ with arbitrary $x^* \in \mathcal{C}'$
- 1 Make forgery attempt $(\gamma \parallel \beta^L)^{\Lambda}$, with $L \ge 2^{n/2}$, $\Lambda > 2^{\mu/2}$
 - With high probability, final state in cycle \mathcal{C}'
 - With probability $\approx 2^{-\mu}$, final state matches x^* and tag is valid
 - Balance $2^{n-\mu}$, $2^{n/2} \times 2^{\mu-\nu}$, $2^{n/2+\mu/2} \times 2^{\nu}$
- ▶ Optimal complexity: 2^{5n/7} ≈ 2^{0.71n}

Improving Generic Attacks Using Exceptional Functions

 $\mu = 2n/7, v = n/14$

CRYPTO 2024

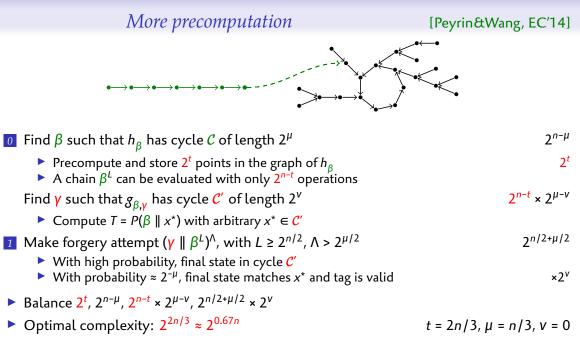
×2V

 $2^{n-\mu}$

 $2^{n/2} \times 2^{\mu-\nu}$

 $2^{n/2+\mu/2}$

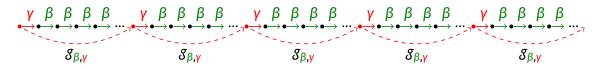
Hash combiners



Hash combiners

Nesting exceptional functions: summary

- ▶ Assume iteration of public function, with chosen parameter h_{ii} : $\{0,1\}^n \rightarrow \{0,1\}^n$
- With 2^{2n/3} operations, construct sequence of 2^{2n/3} parameters such that final state is a known fixed value with high probability (v = 0)



Applications

- Forgery attack against duplex AEAD with complexity $2^{2n/3}$ (previously $2^{3n/4}$)
 - Does not violate security proof, but some proposals had wrong parameters
- Provides alternative attacks on HMAC, zipper hash, hash twice, ...
 - Less efficient than best known attacks

(improved attacks in next section)

Outline

• We extend the use of exceptional functions for cryptanalysis

1 New technique **nesting** exceptional functions

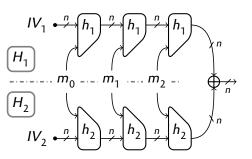
- Improved attack on duplex AEAD
- Alternative attacks on hash combiners

2 Revisit attack based on average properties of random functions, improve them using exceptional properties of random functions

Improved attack on hash combiners (XOR, zipper, hash-twice)

Preimage attack against Xor combiner

 $H(M)=H_1(M)\oplus H_2(M)$



Strategy:

tructure to control H₁ and H₂ independent
Sets of states A = {A_j}, B = {B_k}
Set of messages {M_{jk}} with h^{*}₁(M_{jk}) = A_j h^{*}₂(M_{jk}) = B_k

2 Preimage search for *H*:

- For random blocks w, match $\{h_1(A_j, w)\}$ and $\{h_2(B_k, w) \oplus \overline{H}\}$
- If there is a match (j, k): Get M_{ik}, preimage is M = M_{ik} || w
- Complexity $\mathcal{O}(2^n / \min\{|\mathcal{A}|, |\mathcal{B}|\})$

Hash combiners

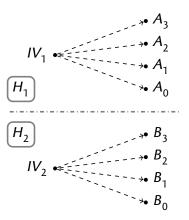
[L & Wang, EC'15]

Hash combiners

[L & Wang, EC'15]

Preimage attack against Xor combiner

 $H(M) = H_1(M) \oplus H_2(M)$



Strategy:

1 Structure to control H_1 and H_2 independently:

- Sets of states $\mathcal{A} = \{A_j\}, \mathcal{B} = \{B_k\}$
- Set of messages {M_{jk}} with

$$h_1^*(\mathbf{M}_{jk}) = A_j$$
$$h_2^*(\mathbf{M}_{jk}) = B_k$$

2 Preimage search for H

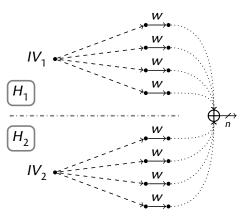
- For random blocks w, match $\{h_1(A_j, w)\}$ and $\{h_2(B_k, w) \oplus \overline{H}\}$
- If there is a match (j, k): Get M_{ik}, preimage is M = M_{ik} || w
- Complexity O(2ⁿ / min{|A|, |B|})

Hash combiners

[L & Wang, EC'15]

Preimage attack against Xor combiner

 $H(M) = H_1(M) \oplus H_2(M)$



Strategy:

Structure to control H₁ and H₂ independently:
Sets of states A = {A_j}, B = {B_k}
Set of messages {M_{jk}} with h^{*}₁(M_{jk}) = A_j h^{*}₂(M_{ik}) = B_k

2 Preimage search for *H*:

- For random blocks w, match $\{h_1(A_i, w)\}$ and $\{h_2(B_k, w) \oplus \overline{H}\}$
- If there is a match (j, k): Get M_{ik}, preimage is M = M_{ik} || w
- Complexity O(2ⁿ / min{|A|, |B|})

Cycle-based attack

- ▶ Hard part: build structure to control *H*₁ and *H*₂ independently
- Several techniques have been proposed (interchange, deep iterates, multicycles, ...)
- ▶ In this talk: alternative presentation of "multicycles" [Bao, Wang, Guo, Gu, C'17]

 $IV \xrightarrow{n}{x_0} \xrightarrow{h}{x_1} \xrightarrow{h}{x_2} \xrightarrow{h}{x_3} \xrightarrow{h}{H(M)}$

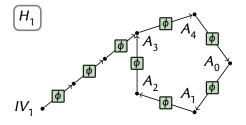
• Using a long message repeating a fixed block $M = \beta^{\lambda}$, we iterate fixed functions:

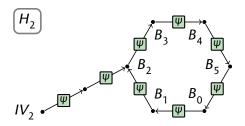
$$\begin{split} \phi &: x \mapsto h_1(x,\beta) \\ \psi &: x \mapsto h_2(x,\beta) \end{split}$$

Gaëtan Leurent

Improving Generic Attacks Using Exceptional Functions

Cycle-based attack





- Use cyclic nodes as end-point:
 - *A* = *H*₁ cycle, length 2^{µ1}
 B = *H*₂ cycle, length 2^{µ2}
- With suitable naming, for λ large enough: $h_1^*(\beta^{\lambda}) = A_{\lambda \mod 2^{\mu_1}} \quad h_2^*(\beta^{\lambda}) = B_{\lambda \mod 2^{\mu_2}}$
- ► To reach (A_j, B_k) , use Chinese Remainder Theorem $\begin{cases}
 h_1^*(\beta^{\lambda}) = A_j \\
 h_2^*(\beta^{\lambda}) = B_k
 \end{cases} \iff \begin{cases}
 \lambda \mod 2^{\mu_1} = i \\
 \lambda \mod 2^{\mu_2} = j
 \end{cases}$
 - Note: μ_1 , μ_2 are not integers
 - λ uniformly distributed in range of size $2^{\mu_1 + \mu_2}$

Hash combiners

Hash combiners

Complexity analysis

Preimage search, with maximal length 2^e

- For random w, match $\{h_1(A_j, w)\}$ and $\{h_2(B_k, w)\} \oplus \overline{H}\}$
- If there is a match (j, k), Find λ such that $h_1^*(\beta^{\lambda}) = A_j, h_2^*(\beta^{\lambda}) = B_k$ using CRT

• If
$$\lambda < 2^{\ell}$$
, return $\beta^{\lambda} \parallel w$

Proba $2^{\ell-\mu_1-\mu_2}$

Complexity 2^{μ} Proba $2^{\mu_1+\mu_2-n}$

• $2^{n-\ell}$ iterations, total complexity $2^{n-\ell+\mu}$

Using arbitrary β

- Cycle length $\mu_1 \approx \mu_2 \approx n/2$
- ▶ Balance 2^{*n*-ℓ+µ} and 2^ℓ
- Optimal tradeoff { = 3n/4
- Complexity 2^{3n/4} = 2^{0.75n}

Using small cycles $\mu \ll n/2$

- Precomputation cost 2^{3n/2-2µ}
- Balance $2^{3n/2-2\mu}$, $2^{n-\ell+\mu}$ and 2^{ℓ}
- Optimal tradeoff *ξ* = 7*n*/10, μ = 2*n*/5
- Complexity $2^{7n/10} = 2^{0.7n}$

Improving Generic Attacks Using Exceptional Functions

Hash combiners

Complexity analysis

Preimage search, with maximal length 2^e

- For random w, match $\{h_1(A_j, w)\}$ and $\{h_2(B_k, w)\} \oplus \overline{H}\}$
- If there is a match (j, k), Find λ such that $h_1^*(\beta^{\lambda}) = A_j, h_2^*(\beta^{\lambda}) = B_k$ using CRT

• If
$$\lambda < 2^{\ell}$$
, return $\beta^{\lambda} \parallel w$

• $2^{n-\ell}$ iterations, total complexity $2^{n-\ell+\mu}$

Using arbitrary β

- Cycle length $\mu_1 \approx \mu_2 \approx n/2$
- ▶ Balance 2^{*n*-ℓ+µ} and 2^ℓ
- Optimal tradeoff l = 3n/4
- Complexity 2^{3n/4} = 2^{0.75n}

Using small cycles $\mu \ll n/2$

- Precomputation cost 2^{3n/2-2µ}
- Balance $2^{3n/2-2\mu}$, $2^{n-\ell+\mu}$ and 2^{ℓ}
- Optimal tradeoff l = 7n/10, $\mu = 2n/5$
- Complexity $2^{7n/10} = 2^{0.7n}$

Gaëtan Leurent

Improving Generic Attacks Using Exceptional Functions

Complexity 2^{μ} Proba $2^{\mu_1+\mu_2-n}$

Proba $2^{\ell - \mu_1 - \mu_2}$

Hash combiners: summary

Exceptional functions with small main cycle improve the "multicycles" technique

Techniques	Complexity	Ref
Preimage on XOR combiner Interchange + Multicycles Interchange + Multicycles + Small cycles	$2^{11n/18} \approx 2^{0.611n}$ $2^{3n/5} = 2^{0.6n}$	[JC:BDGLW20] New
Second-preimage on zipper hash Multicollisions + Multicycles Multicollisions + Multicycles + Small cycles	$2^{3n/5} = 2^{0.6n}$ $2^{7n/12} = 2^{0.583n}$	[C:BWGG17] New
Second-preimage on hash-twice Interchange + Multicycles Interchange + Multicycles + Small cycles	$2^{13n/22} = 2^{0.591n}$ $2^{15n/26} = 2^{0.577n}$	[JC:BDGLW20] New
All Lower bound (security proof)	$2^{n/2} = 2^{0.5n}$	

Bonus result: quantum 2nd-preimage on hash-twice (not using exceptional functions)