THE ALGEBRAIC FREELUNCH: EFFICIENT GRÖBNER BASIS ATTACKS AGAINST ARITHMETIZATION-ORIENTED PRIMITIVES

Augustin Bariant^{1,2}, Aurélien Boeuf², Axel Lemoine^{2,4}, Irati Manterola Ayala³, Morten Øygarden³, Léo Perrin², and Håvard Raddum³

¹ANSSI, Paris, France ²INRIA, Paris, France ³Simula UiB, Bergen, Norway ⁴DGA, France

Crypto 2024, Santa Barbara

Griffin ArionHash Crypto23 arXiv

Anemoi

Crypto23

Anemoi Crypto23

ArionHash arXiv

Full-round break of some instances

Anemoi Crypto23

Full-round break of some instances

Full-round break of some instances

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

Three main improvements on previous algebraic cryptanalysis:

- 1. Free Gröbner basis for some monomial orders.
- 2. Better approach to solving the system than generic FGLM variants.
- 3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

ARITHMETIZATION-ORIENTED PRIMITIVES

Freelunch Systems for Free Größner Bases

Solving the System given a Gröbner Basis

ARITHMETIZATION-ORIENTED PRIMITIVES

AOPs: dedicated primitives for advanced protocols (ZK proofs, MPC, FHE...)

Classic	Arithmetization-Oriented	
Binary operations	Arithmetic operations	
Algebraically complex (for cheap)	Algebraically simple	
Small field (\mathbb{F}_{2^8})	Large field $(\mathbb{F}_q, q > 2^{64})$	
e.g. AES, SHA-3	e.g. Griffin, Anemoi	

QUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of hash functions.
- Instantiated with the Griffin- π , Arion- π and Anemoi families of permutations.

QUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of hash functions.
- Instantiated with the Griffin- π , Arion- π and Anemoi families of permutations.
- Many instances are defined: variable \mathbb{F}_p , number of branches, exponents for monomial permutations...

⇒ We attack some instances better than others.

CICO PROBLEM

CICO Problem of size c (capacity of the sponge) for permutation P:

$$P(*, \dots, *, \underbrace{0, \dots, 0}_{c \text{ elements}}) = (*', \dots, *', \underbrace{0, \dots, 0}_{c \text{ elements}})$$

CICO PROBLEM

CICO Problem of size c (capacity of the sponge) for permutation P:

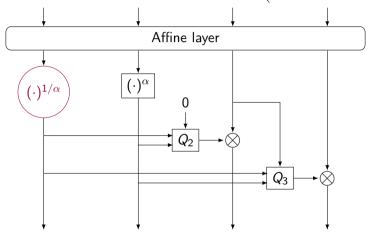
$$P(*,\ldots,*,\underbrace{0,\ldots,0}_{c \text{ elements}}) = (*',\ldots,*',\underbrace{0,\ldots,0}_{c \text{ elements}})$$

Solving CICO of size *c* gives collisions to the hash function.

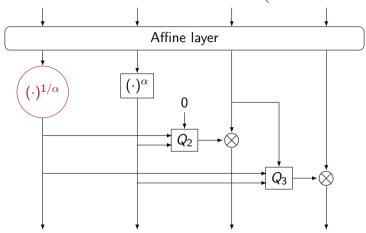
- \Rightarrow Multivariate attack; solve CICO faster than brute-force attacks using a model of P.
- \Rightarrow We focus on c = 1.

$$P(x,*,...,*,0) = (*',...,*',0).$$

Griffin- π - Round Function (4 branches)



Griffin- π - Round Function (4 branches)



 $(\cdot)^{1/\alpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/\alpha}$.

- CICO problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$. \Longrightarrow One variable \mathbf{x}_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ $((\cdot)^{1/\alpha} \text{ S-boxes}).$

- CICO problem: $\mathcal{G}_{\pi}(\cdots | | 0) = (\cdots | | 0)$. \Longrightarrow One variable \mathbf{x}_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ $((\cdot)^{1/\alpha} \text{ S-boxes}).$

Example (
$$\alpha=3$$
, one round)
$$x_1^3=ax_0+b$$

$$x_0^7+cx_0^4x_1+dx_0x_1^2+\cdots=0$$

$$\begin{cases} p_1(x_1, \dots, x_N) = 0 \\ \vdots \\ p_{k-1}(x_1, \dots, x_N) = 0 \\ p_k(x_1, \dots, x_N) = 0 \end{cases}$$

1. Define system

$$\begin{cases} p_1(x_1, ..., x_N) = 0 \\ \vdots \\ p_{k-1}(x_1, ..., x_N) = 0 \\ p_k(x_1, ..., x_N) = 0 \end{cases} \begin{cases} g_1(x_1, ..., x_N) = 0 \\ \vdots \\ g_{\kappa-1}(x_1, ..., x_N) = 0 \\ g_{\kappa}(x_1, ..., x_N) = 0 \end{cases}$$

- 1. Define system 2. Find a **Gröbner Basis**

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

- 1. Define system 2. Find a **Gröbner Basis**
- 3. Change order to **lex** (FGLM)

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

- 1. Define system 2. Find a **Gröbner Basis**
 - 3. Change order to **lex** (FGLM)
- 4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their security on the hardness of **Step 2**.

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} x_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ x_{1}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

- 1. Define system
- 2. Find a Gröbner Basis
- 3. Change order to lex (FGLM)
- 4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Step 2 and **Step 3** are the most costly. Designers of Anemoi and Griffin base their security on the hardness of **Step 2**.

But we can skip it!

ARITHMETIZATION-ORIENTED PRIMITIVE

FREELUNCH SYSTEMS FOR FREE GRÖBNER BASES

Solving the System given a Gröbner Basis

USEFUL PROPOSITION

If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

Useful Proposition

If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In $\mathbb{F}[x, y]$:

• $\{x^2 - 1, y^2 - x\}$ is a Gröbner basis for the **grevlex** order (leading monomials are x^2 and y^2).

USEFUL PROPOSITION

If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In $\mathbb{F}[x, y]$:

- $\{x^2 1, y^2 x\}$ is a Gröbner basis for the **grevlex** order (leading monomials are x^2 and y^2).
- $\{x^2 1, y^2 x\}$ is not a Gröbner basis for the **lex** order with x > y (leading monomials are x^2 and x).

USEFUL PROPOSITION

If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In $\mathbb{F}[x, y]$:

- $\{x^2 1, y^2 x\}$ is a Gröbner basis for the **grevlex** order (leading monomials are x^2 and y^2).
- $\{x^2 1, y^2 x\}$ is not a Gröbner basis for the **lex** order with x > y (leading monomials are x^2 and x).
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any **lex** or **deglex** order.

USEFUL PROPOSITION

If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In $\mathbb{F}[x, y]$:

- $\{x^2 1, y^2 x\}$ is a Gröbner basis for the **grevlex** order (leading monomials are x^2 and y^2).
- $\{x^2 1, y^2 x\}$ is not a Gröbner basis for the **lex** order with x > y (leading monomials are x^2 and x).
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any **lex** or **deglex** order.
- $\{y^3 + x, y^3 + x^2\}$ is a Gröbner basis for **weighted degree** orders with $\mathbf{wt}(x) = 2$ and $\mathbf{wt}(y) = 1$, as then $\mathrm{LM}(y^3 + x) = y^3$ and $\mathrm{LM}(y^3 + x^2) = x^2$ are **coprime**.

Example (
$$\alpha = 3$$
, two rounds)

$$x_1^3 = ax_0 + b$$

 $x_2^3 = cx_0^7 + \cdots$
 $x_0^{49} + dx_0^{46} + ex_0^{45} + \cdots = 0$

Example ($\alpha = 3$, two rounds)

$$x_1^3 = ax_0 + b$$

 $x_2^3 = cx_0^7 + \cdots$
 $x_0^{49} + dx_0^{46} + ex_0^{45} + \cdots = 0$

 \implies In **grevlex** (degree-first), the leading monomials are x_1^3 , x_0^7 and x_0^{49} . Proposition does not apply.

Example ($\alpha = 3$, two rounds)

$$x_1^3 = ax_0 + b$$

 $x_2^3 = cx_0^7 + \cdots$
 $x_0^{49} + dx_0^{46} + ex_0^{45} + \cdots = 0$

 \implies In **grevlex** (degree-first), the leading monomials are x_1^3 , x_0^7 and x_0^{49} . Proposition does not apply.

 \implies In weighted grevlex, with $wt(x_0) = wt(x_1) = 1$ and $wt(x_2) = 3$, the leading monomials are x_1^3 , x_2^3 and x_0^{49} .

Example ($\alpha = 3$, two rounds)

$$x_1^3 = ax_0 + b$$

 $x_2^3 = cx_0^7 + \cdots$
 $x_0^{49} + dx_0^{46} + ex_0^{45} + \cdots = 0$

- \implies In **grevlex** (degree-first), the leading monomials are x_1^3 , x_0^7 and x_0^{49} . Proposition does not apply.
- \implies In weighted grevlex, with $wt(x_0) = wt(x_1) = 1$ and $wt(x_2) = 3$, the leading monomials are x_1^3 , x_2^3 and x_0^{49} .
- ⇒ It's a Gröbner basis! (coprime leading monomials)
- ⇒ This generalizes for more rounds.

ARITHMETIZATION-ORIENTED PRIMITIVES

Freelunch Systems for Free Größner Bases

SOLVING THE SYSTEM GIVEN A GRÖBNER BASIS

FGLM IN A NUTSHELL

- Given a Gröbner basis G_1 for some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- D_l the number of **solutions of the system** in the algebraic closure (in our case the product of the degrees of the leading monomials of the GB).

FGLM IN A NUTSHELL

- Given a Gröbner basis G_1 for some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- D_I the number of **solutions of the system** in the algebraic closure (in our case the product of the degrees of the leading monomials of the GB).
- Order change is interesting because a GB in lex order must have a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)

FGLM IN A NUTSHELL

- Given a Gröbner basis G_1 for some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- D_I the number of **solutions of the system** in the algebraic closure (in our case the product of the degrees of the leading monomials of the GB).
- Order change is interesting because a GB in lex order must have a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)
- Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is already enough to break some instances of Griffin and Arion.

FASTER CHANGE OF ORDER STRATEGY

- Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El Din.
- Strategy: for the smallest variable x, compute the characteristic polynomial χ of the linear operation $P \mapsto \text{Red}_{<}(x \cdot P, G)$.
- $\chi(x) = 0$.
- Issue: our systems do not verify an important property of the original paper.

Computing the Characteristic Polynomial

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \dots, x_N]$ that maps P to $\text{Red}_{<}(x_0 \cdot P, G)$. We only have very loose complexity bounds for this step.

Step 2: Compute det(XI - T).

- \implies T is sparse. With block matrix reasoning, this reduces to computing the determinant of a polynomial matrix of size $D_1 = d_1 \cdots d_N$.
- \implies In Griffin and Arion, d_0 is by far the highest degree, so this reduces complexity by a lot.
- \implies This can be computed with fast linear algebra, in $\mathcal{O}(d_0\log(d_0)^2d_1^\omega\cdots d_N^\omega)$.

Our Full Algorithm

- 1. sysGen: Compute the Freelunch system and the order for a free Gröbner basis.
- 2. matGen: Compute the multiplication matrix T of multiplication by x_0 .
 - **⇒** Complexity hard to evaluate.
- 3. polyDet: Compute the characteristic polynomial χ of T ($\chi(\chi_0) = 0$).
 - ⇒ Longest step aside from matGen.
- 4. uniSol: Find roots of χ with Berlekamp-Rabin in $\tilde{\mathcal{O}}(D_I)$.

CONCLUSION

- These Arithmetization-Oriented hash functions (and similar) should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, designers can focus on the growth of D_I with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to be secure.

CONCLUSION

- These Arithmetization-Oriented hash functions (and similar) should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, designers can focus on the growth of D_I with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to be secure.

Ongoing work:

- Better approach for matGen (stay tuned).
- Other contexts where we can get free or "cheap" Gröbner bases?
- CICO on more than one branch?

CONCLUSION

- These Arithmetization-Oriented hash functions (and similar) should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, designers can focus on the growth of D_I with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to be secure.

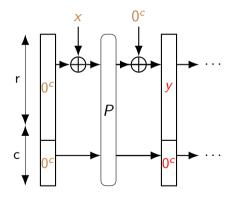
Ongoing work:

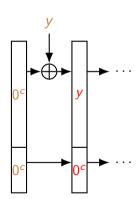
- Better approach for matGen (stay tuned).
- Other contexts where we can get free or "cheap" Gröbner bases?
- CICO on more than one branch?

THANK YOU FOR YOUR ATTENTION!

COLLISION FROM THE CICO PROBLEM

• Suppose you know x such that $P(x || 0^c) = (y || 0^c)$.

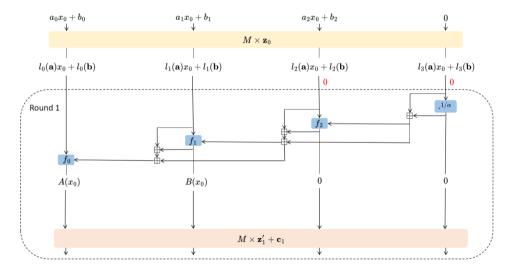




Griffin Trick



ARION TRICK



Consider a multivariate polynomial ring $\mathbb{F}[x_1, x_2, \dots, x_N]$. We want to solve:

$$\begin{cases} p_1(x_1, \dots, x_N) = 0 \\ p_2(x_1, \dots, x_N) = 0 \\ \vdots \\ p_k(x_1, \dots, x_N) = 0 \end{cases}$$

$$\begin{cases} m_{1,1}x_1 + \dots + m_{1,N}x_N + a_1 = 0 \\ m_{2,1}x_1 + \dots + m_{2,N}x_N + a_2 = 0 \\ \vdots \\ m_{k,1}x_1 + \dots + m_{k,N}x_N + a_k = 0 \end{cases}$$

Polynomials of **degree 1**: Linear system \Rightarrow **Linear algebra**.

$$\begin{cases} p_1(x_1) = 0 \\ p_2(x_1) = 0 \\ \vdots \\ p_k(x_1) = 0 \end{cases}$$

One variable: Univariate root finding \Rightarrow Euclidian division (for Berlekamp-Rabin algorithm).

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Several variables, high degree: **Linear algebra** + **Euclidian division** (F4/F5, FGLM, Fast-FGLM...).

• Euclidian division on **integers**:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

$$13=4\times 3+1.$$

• Euclidian division on integers:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

$$13 = 4 \times 3 + 1$$
.

• Euclidian division on **univariate polynomials** ($\mathbb{F}[X]$):

$$A = BQ + R$$
, $deg(R) < deg(B)$.

Division of $X^3 + X + 1$ by X:

$$X^3 + X + 1 = (X^2 + 1)X + 1.$$

• Euclidian division on multivariate polynomials:

$$A = BQ + R...$$
 condition on R ?

• Euclidian division on multivariate polynomials:

$$A = BQ + R... \ \ \text{condition on } R?$$
 Division of x by $x + y$ in $\mathbb{F}[x, y]$:
$$x = 0 \cdot (x + y) + x$$
 or
$$x = 1 \cdot (x + y) - y ?$$

• Euclidian division on multivariate polynomials:

$$A = BQ + R...$$
 condition on R ?

Division of x by x + y in $\mathbb{F}[x, y]$:

$$x = 0 \cdot (x+y) + x \iff x < y$$
or
 $x = 1 \cdot (x+y) - y \iff y < x$

Need to define a monomial ordering.

⇒ Division steps determined by **leading monomials (LM)**.

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, x^{1000} ? y

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz$? $y^{2}z$

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $x^{1000} <_{\text{lex }} y$, $x^{6} yz <_{\text{lex }} y^{2}z$.

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz <_{\text{lex}} y^{2}z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, y ? x^2

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $x^{1000} <_{\text{lex }} y$, $x^{6} yz <_{\text{lex }} y^{2}z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, z^2 ? xyz

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $x^{1000} <_{\text{lex }} y$, $x^{6} yz <_{\text{lex }} y^{2}z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $x^{1000} <_{\text{lex }} y$, $x^6 yz <_{\text{lex }} y^2 z$.

Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for $x <_{\text{lex}} y <_{\text{lex}} z$ and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$x$$
? yz^2

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $x^{1000} <_{\text{lex }} y$, $x^{6} yz <_{\text{lex }} y^{2}z$.

Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for $x <_{\text{lex}} y <_{\text{lex}} z$ and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$x >_{\text{wglex}} yz^2 \text{ because } \mathbf{wt}(x) = 6 \text{ and } \mathbf{wt}(yz) = \mathbf{wt}(y) + 2\mathbf{wt}(z) = 5.$$

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $x^{1000} <_{\text{lex }} y$, $x^{6}yz <_{\text{lex }} y^{2}z$.

Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for $x <_{\text{lex}} y <_{\text{lex}} z$ and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$x >_{\text{wglex}} yz^2 \text{ because } \mathbf{wt}(x) = 6 \text{ and } \mathbf{wt}(yz) = \mathbf{wt}(y) + 2\mathbf{wt}(z) = 5.$$

$$x^2 <_{\text{wglex}} z^6 \text{ because } \mathbf{wt}(x^2) = \mathbf{wt}(z^6) = 12 \text{ and } x^2 <_{\text{lex}} z^6.$$

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$.

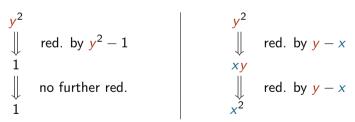
 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: **final remainder** can depend on the choice of divisors!

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: **final remainder** can depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with **lex** ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.

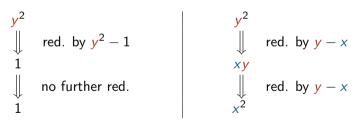


THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: **final remainder** can depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with **lex** ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.



The solution: Gröbner Bases.

What is a Gröbner Basis?

Let $G = \{p_1, \dots, p_k\}$ and < a monomial ordering.

DEFINITION

G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend on the order chosen for the reductors.

What is a Gröbner Basis?

Let $G = \{p_1, \dots, p_k\}$ and < a monomial ordering.

DEFINITION

G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend on the order chosen for the reductors.

USEFUL PROPOSITION

If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

• $\{y^2 - 1, y - x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for **lex** order with x > y. Proof: $LM(y^2 1) = y^2$ and LM(y x) = x are **coprime**.

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for **lex** order with x > y. Proof: $LM(y^2 1) = y^2$ and LM(y x) = x are **coprime**.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any **lex** or **deglex** order.

Größner Basis - Examples

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for **lex** order with x > y. Proof: $LM(y^2 1) = y^2$ and LM(y x) = x are **coprime**.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any **lex** or **deglex** order.
- However, it is a Gröbner basis for **weighted degree** orders with $\mathbf{wt}(x) = 2$ and $\mathbf{wt}(y) = 1$, as then $LM(y^3 + x) = y^3$ and $LM(y^3 + x^2) = x^2$ are **coprime**.

Example (\$\alpha=3\$, one round)
$$x_1^3=ax_0^2+bx_0+c$$

$$x_0x_1+dx_1^2+ex_0+fx_1+g=0$$

Example (
$$\alpha=3$$
, one round)
$$x_1^3=ax_0^2+bx_0+c$$

$$x_0x_1+dx_1^2+ex_0+fx_1+g=0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Example (
$$\alpha = 3$$
, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order! Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0, x_1) = ax_0^3 + bdx_0^2 x_1 + \cdots$$

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

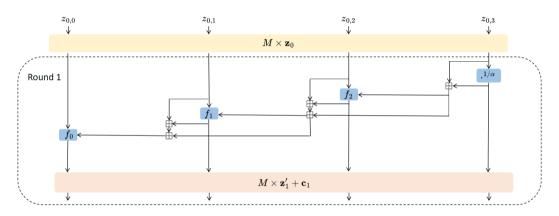
$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order! Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

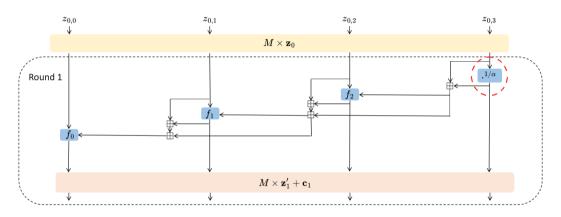
$$p^*(x_0, x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

- \implies The first equation and p^* are a Gröbner basis for some weighted order.
- \implies This adds a few parasitic solutions (corresponding to $x_1 = 0$), but not many.
- \implies This generalizes for more rounds (multiply the last polynomial by some of the x_i and reduce it). Freelunch is saved!

Arion- π - Round Function (4 branches)

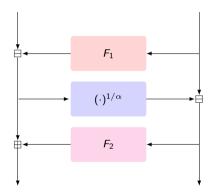


Arion- π - Round Function (4 branches)

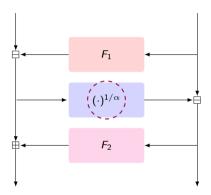


 $(\cdot)^{1/\alpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/\alpha}$.

Anemoi - Nonlinear Layer (2 branches)

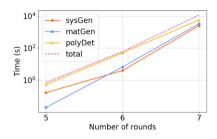


Anemoi - Nonlinear Layer (2 branches)

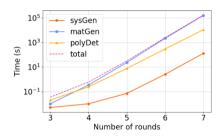


 $(\cdot)^{1/lpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/lpha}.$

EXPERIMENTAL RESULTS

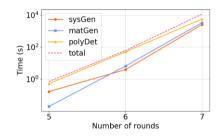


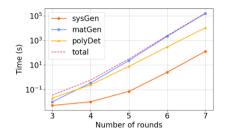
Complexity of Griffin (broke up to 7 out of 10 rounds, $\alpha{=}3$) 21 rounds, $\alpha=3$)



Complexity of Anemoi (broke up to 7 out of

EXPERIMENTAL RESULTS





Complexity of Griffin (broke up to 7 out of 10 rounds, α =3) 21 rounds, α = 3)

Complexity of Anemoi (broke up to 7 out of

- ⇒ For Griffin, polyDet upper-bounds the others up to 7 rounds.
- ⇒ For Anemoi, matGen is the bottleneck.