
Robust Additive Randomized Encodings
From IO And Pseudo-non-linear-codes

NIR BITANSKY SAPIR FREIZEIT

Basic Paradigm In Secure Computation
[Yao82, BMR90, IK00, ...]

Reduce general secure computation to secure computation of simple functions.

⟹

Additive Randomized Encodings (ARE)
[Halevi - Ishai - Kushilevitz - Rabin 23]

Additive Randomized Encodings (ARE)
[Halevi - Ishai - Kushilevitz - Rabin 23]

𝑓: (𝑥1, … , 𝑥𝑘) → 0,1 ∗, 𝑝𝑝 =public parameters

𝑥1

𝑥𝑘−1

𝑥𝑘

Decoding

Server

𝑦

Additive Randomized Encodings (ARE)
[Halevi - Ishai - Kushilevitz - Rabin 23]

𝑓: (𝑥1, … , 𝑥𝑘) → 0,1 ∗, 𝑝𝑝 =public parameters

𝑥1

𝑥𝑘−1

𝑥𝑘

መ𝑓(Ԧ𝑥)

.

.

.

ො𝑥1

ො𝑥𝑘−1

ො𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

𝑦

* The summation is over some abelian group

Decoder learns nothing, but 𝑓 Ԧ𝑥

Security

Additive Randomized Encodings (ARE)
[Halevi - Ishai - Kushilevitz - Rabin 23]

𝑓: (𝑥1, … , 𝑥𝑘) → 0,1 ∗, 𝑝𝑝 =public parameters

𝑦 = 𝑓 Ԧ𝑥

𝑥1

𝑥𝑘−1

𝑥𝑘

መ𝑓(Ԧ𝑥)

.

.

.

ො𝑥1

ො𝑥𝑘−1

ො𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Correctness

Decoding

Server

𝑦

* The summation is over some abelian group

Addition Is Simple

• Simplest global encoder: addition

Addition Is Simple

• Simplest global encoder: addition

• Can be realized in the shuffle model (e.g., using annonymous communication) [Ishai Kushilevitz Ostrovsky Sahai 06]

Decoding

Server
…

…

…

𝑦
⇒ ∑ ො𝑥𝑖

Addition Is Simple

• Simplest global encoder: addition

• Can be realized in the shuffle model (e.g., using annonymous communication) [Ishai Kushilevitz Ostrovsky Sahai 06]

• Yields NI-MPC (in the shuffle model) w/o correlated-randomness, nor public-key-infrastructure.

Decoding

Server
…

…

…

𝑦
⇒ ∑ ො𝑥𝑖

ARE Security

• Security against corrupted decoder (can’t learn additional info about parties’ inputs).

𝑓: (𝑥1, … , 𝑥𝑘) → 0,1 ∗, 𝑝𝑝

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

ො𝑥1

𝑥𝑘−1 ො𝑥𝑘−1

𝑥𝑘 ො𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

𝑓(Ԧ𝑥)

ARE Security

• Security against corrupted decoder (can’t learn additional info about parties’ inputs).

• Intuitively: decoder’s view መ𝑓 Ԧ𝑥 , 𝑝𝑝 can be recovered from 𝑓(Ԧ𝑥).

𝑓: (𝑥1, … , 𝑥𝑘) → 0,1 ∗, 𝑝𝑝

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

ො𝑥1

𝑥𝑘−1 ො𝑥𝑘−1

𝑥𝑘 ො𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

𝑓(Ԧ𝑥)

ARE Security

• Security against corrupted decoder (can’t learn additional info about parties’ inputs).

• Intuitively: decoder’s view መ𝑓 Ԧ𝑥 , 𝑝𝑝 can be recovered from 𝑓(Ԧ𝑥).

• Simulation: 𝑆𝑖𝑚 𝑓(Ԧ𝑥) ≈ መ𝑓 Ԧ𝑥 , 𝑝𝑝 (perfect / statistical / computational).

𝑓: (𝑥1, … , 𝑥𝑘) → 0,1 ∗, 𝑝𝑝

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

ො𝑥1

𝑥𝑘−1 ො𝑥𝑘−1

𝑥𝑘 ො𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

𝑓(Ԧ𝑥)

Our Focus: Robust ARE (RARE) [HIKR23]

• Security against corrupted parties 𝐶 who collude with the corrupted server .

𝑓: (𝑥1, … , 𝑥𝑘) → 0,1 ∗, 𝑝𝑝

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

ො𝑥1

𝑥𝑘−1 ො𝑥𝑘−1

𝑥𝑘 ො𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

𝑓(Ԧ𝑥)

Our Focus: Robust ARE (RARE) [HIKR23]

• Security against corrupted parties 𝐶 who collude with the corrupted server .

• Inevitable attack: residual function of honest parties 𝐻: 𝑓𝑥𝐻
𝑥𝐶 ≔ 𝑓(𝑥𝐻, 𝑥𝐶).

𝑓: (𝑥1, … , 𝑥𝑘) → 0,1 ∗, 𝑝𝑝

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

ො𝑥1

𝑥𝑘−1 ො𝑥𝑘−1

𝑥𝑘 ො𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

𝑓(Ԧ𝑥)

Our Focus: Robust ARE (RARE) [HIKR23]

• Security against corrupted parties 𝐶 who collude with the corrupted server .

• Inevitable attack: residual function of honest parties 𝐻: 𝑓𝑥𝐻
𝑥𝐶 ≔ 𝑓(𝑥𝐻, 𝑥𝐶).

• VBB simulation security, 𝑆𝑖𝑚𝑓𝑥𝐻 𝑓(𝑥) ≈ መ𝑓 𝑥 , 𝑝𝑝

𝑓: (𝑥1, … , 𝑥𝑘) → 0,1 ∗, 𝑝𝑝

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

ො𝑥1

𝑥𝑘−1 ො𝑥𝑘−1

𝑥𝑘 ො𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

𝑓(Ԧ𝑥)

RARE implies Obfuscation

• 2-party simulation-secure RARE implies VBB Obfuscation ⇒ Impossible.

RARE implies Obfuscation

• 2-party simulation-secure RARE implies VBB Obfuscation ⇒ Impossible.

• Instead, indistinguishability security.

RARE implies Obfuscation

• 2-party simulation-secure RARE implies VBB Obfuscation ⇒ Impossible.

• Instead, indistinguishability security.

Our focus: Indistinguishability security:

For every Ԧ𝑥𝐻, 𝑤𝐻, with 𝑓 Ԧ𝑥𝐻
≡ 𝑓𝑤𝐻

,

𝑝𝑝, መ𝑓(Ԧ𝑥𝐻) ≈𝑐 𝑝𝑝, መ𝑓(𝑤𝐻)

Implies 𝑖𝑂

Known Results From [HIKR23]

• Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).

• Computational (non-robust) ARE for all efficient functions.

(from standard assumptions in bilinear groups)

• Simulation-based RARE for all efficient functions in the ideal-obfuscation model.

Open question:

Can we construct indistinguishability-based RARE for all efficient functions from IO and

standard cryptographic assumptions? (in the plain model)

Known Results From [HIKR23]

• Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).

• Computational (non-robust) ARE for all efficient functions.

(from standard assumptions in bilinear groups)

• Simulation-based RARE for all efficient functions in the ideal-obfuscation model.

Open question:

Can we construct indistinguishability-based RARE for all efficient functions from IO and

standard cryptographic assumptions? (in the plain model)

Known Results From [HIKR23]

• Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).

• Computational (non-robust) ARE for all efficient functions.

(from standard assumptions in bilinear groups)

• Simulation-based RARE for all efficient functions in the ideal-obfuscation model.

Open question:

Can we construct indistinguishability-based RARE for all efficient functions from IO and

standard cryptographic assumptions? (in the plain model)

Known Results From [HIKR23]

• Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).

• Computational (non-robust) ARE for all efficient functions.

(from standard assumptions in bilinear groups)

• Simulation-based RARE for all efficient functions in the ideal-obfuscation model.

Open question:

Can we construct indistinguishability-based RARE for all efficient functions from IO and

standard cryptographic assumptions? (in the plain model)

Known Results From [HIKR23]

• Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).

• Computational (non-robust) ARE for all efficient functions.

(from standard assumptions in bilinear groups)

• Simulation-based RARE for all efficient functions in the ideal-obfuscation model.

Open question:

Can we construct indistinguishability-based RARE for all efficient functions from IO and

standard cryptographic assumptions? (in the plain model)

Our Results

1. Indistinguishability-based RARE from IO and (a new primitive we call)

Pseudo Non Linear Codes (PNLC).

2. PNLC from either LWE or DDH.

3. Our RARE is succinct (more in next slide).

Our Results

1. Indistinguishability-based RARE from IO and (a new primitive we call)

Pseudo Non Linear Codes (PNLC).

2. PNLC from either LWE or DDH.

3. Our RARE is succinct (more in next slide).

Our Results

1. Indistinguishability-based RARE from IO and (a new primitive we call)

Pseudo Non Linear Codes (PNLC).

2. PNLC from either LWE or DDH.

3. Our RARE is succinct (more in next slide).

Succinct RARE

Split parties’ encodings ො𝑥𝑖 = Ƹ𝑧𝑖, ො𝑔𝑖 .

• ො𝑔𝑖 group element, Ƹ𝑧𝑖 non-interactive part.

• Minimal communication complexity:

• ො𝑔𝑖 ~ security parameter.

• Ƹ𝑧𝑖 ~ size of the input 𝑥𝑖.

• Independent of 𝑘, |𝑓|

• Trusted computation is minimal.

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server 𝑓(Ԧ𝑥)

Succinct RARE

Split parties’ encodings ො𝑥𝑖 = Ƹ𝑧𝑖, ො𝑔𝑖 .

• ො𝑔𝑖 group element, Ƹ𝑧𝑖 non-interactive part.

• Minimal communication complexity:

• ො𝑔𝑖 ~ security parameter.

• Ƹ𝑧𝑖 ~ size of the input 𝑥𝑖.

• Independent of 𝑘, |𝑓|

• Trusted computation is minimal.

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

ො𝑔1

𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

Ƹ𝑧1

ො𝑔𝑘

Ƹ𝑧𝑘
𝑓(Ԧ𝑥)

Succinct RARE

Split parties’ encodings ො𝑥𝑖 = Ƹ𝑧𝑖, ො𝑔𝑖 .

• ො𝑔𝑖 group element, Ƹ𝑧𝑖 non-interactive part.

• Minimal communication complexity:

• ො𝑔𝑖 ~ security parameter.

• Ƹ𝑧𝑖 ~ size of the input 𝑥𝑖.

• Independent of 𝑘, |𝑓|

• Trusted computation is minimal.

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

ො𝑔1

𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

Ƹ𝑧1

ො𝑔𝑘

Ƹ𝑧𝑘
𝑓(Ԧ𝑥)

Succinct RARE

Split parties’ encodings ො𝑥𝑖 = Ƹ𝑧𝑖, ො𝑔𝑖 .

• ො𝑔𝑖 group element, Ƹ𝑧𝑖 non-interactive part.

• Minimal communication complexity:

• ො𝑔𝑖 ~ security parameter.

• Ƹ𝑧𝑖 ~ size of the input 𝑥𝑖.

• Independent of 𝑘, |𝑓|

• Trusted computation is minimal.

መ𝑓(Ԧ𝑥)

𝑥1

.

.

.

ො𝑔1

𝑥𝑘

Trusted

Encoder

෍

𝑖=1

𝑘

ො𝑥𝑖

Decoding

Server

Ƹ𝑧1

ො𝑔𝑘

Ƹ𝑧𝑘
𝑓(Ԧ𝑥)

And now, the construction

Warmup: Ideal Obfuscation

𝐏(𝐸1, … , 𝐸𝑘)

Decrypt

 𝑥𝑖 = 𝐷𝑠𝑘𝑖
(𝐸𝑖)

Compute

 ret 𝑓(𝑥1, … , 𝑥𝑘)

𝑥𝑖

𝐸𝑝𝑘𝑖
(𝑥𝑖)

𝑥1

𝑥𝑘

.

.

.

.

.

.

public parameters: 𝑝𝑘𝑖, 𝑂𝑏𝑓(𝐏)

Decoder

𝑂𝑏𝑓

Problem:

Can change subsets of the

honest parties’ inputs.

Warmup: Ideal Obfuscation

𝐏(𝐸1, … , 𝐸𝑘, 𝑔)

Decrypt

 𝑥𝑖, 𝑔𝑖 = 𝐷𝑠𝑘𝑖
(𝐸𝑖)

Sum-check

 ∑𝑔𝑖 == 𝑔?

Compute

 ret 𝑓(𝑥1, … , 𝑥𝑘)

𝑥𝑖

𝑔𝑖

𝐸𝑝𝑘𝑖
(𝑥𝑖, 𝑔𝑖)

Trusted

Encoder

𝑔 = ෍

𝑖

𝑔𝑖

𝑥1

𝑥𝑘

.

.

.

.

.

.

𝑔

𝑔1

public parameters: 𝑝𝑘𝑖, 𝑂𝑏𝑓(𝐏)

Decoder

𝑂𝑏𝑓

• Idea: “glue”

honest parties

together.

• Add additive

elements 𝑔𝑖.

• Non-malleable

encryption
(CCA2-secure).

• Secure in the

ideal-obf model.

Warmup: Ideal Obfuscation

𝐏(𝐸1, … , 𝐸𝑘, 𝑔)

Decrypt

 𝑥𝑖, 𝑔𝑖 = 𝐷𝑠𝑘𝑖
(𝐸𝑖)

Sum-check

 ∑𝑔𝑖 == 𝑔?

Compute

 ret 𝑓(𝑥1, … , 𝑥𝑘)

𝑥𝑖

𝑔𝑖

𝐸𝑝𝑘𝑖
(𝑥𝑖, 𝑔𝑖)

Trusted

Encoder

𝑔 = ෍

𝑖

𝑔𝑖

𝑥1

𝑥𝑘

.

.

.

.

.

.

𝑔

𝑔1

public parameters: 𝑝𝑘𝑖, 𝑂𝑏𝑓(𝐏)

Decoder

𝑂𝑏𝑓

• Idea: “glue”

honest parties

together.

• Add additive

elements 𝑔𝑖.

• Non-malleable

encryption
(CCA2-secure).

• Secure in the

ideal-obf model.

Warmup: Ideal Obfuscation

𝐏(𝐸1, … , 𝐸𝑘, 𝑔)

Decrypt

 𝑥𝑖, 𝑔𝑖 = 𝐷𝑠𝑘𝑖
(𝐸𝑖)

Sum-check

 ∑𝑔𝑖 == 𝑔?

Compute

 ret 𝑓(𝑥1, … , 𝑥𝑘)

𝑥𝑖

𝑔𝑖

𝐸𝑝𝑘𝑖
(𝑥𝑖, 𝑔𝑖)

Trusted

Encoder

𝑔 = ෍

𝑖

𝑔𝑖

𝑥1

𝑥𝑘

.

.

.

.

.

.

𝑔

𝑔1

public parameters: 𝑝𝑘𝑖, 𝑂𝑏𝑓(𝐏)

Decoder

𝑂𝑏𝑓

• Idea: “glue”

honest parties

together.

• Add additive

elements 𝑔𝑖.

• Non-malleable

encryption
(CCA2-secure).

• Secure in the

ideal-obf model.

Moving To 𝑖𝑂

𝑓1 ≡ 𝑓2 ⟹ 𝑖𝑂 𝑓1 ≈𝑐 𝑖𝑂(𝑓2)

𝑥 + 𝑦 ⋅ 𝑧 𝑥 ⋅ 𝑧 + 𝑦 ⋅ 𝑧
≈𝑐

Moving To 𝑖𝑂: First Problem

• CCA2- PKE is not necessarily 𝑖𝑂 friendly.

• Has already been handled before (e.g, in io-based constructions of FE [GGH+13]).

• Solution: Naor-Yung double encryption with a Statistically-Simulation-Sound NIZK [Sah99].

𝐸 𝑚 = (𝐸𝑙𝑒𝑓𝑡 𝑚 , 𝐸𝑟𝑖𝑔ℎ𝑡 𝑚 , Π𝑁𝐼𝑍𝐾)

Moving To 𝑖𝑂: First Problem

• CCA2- PKE is not necessarily 𝑖𝑂 friendly.

• Has already been handled before (e.g, in io-based constructions of FE [GGH+13]).

• Solution: Naor-Yung double encryption with a Statistically-Simulation-Sound NIZK [Sah99].

𝐸 𝑚 = (𝐸𝑙𝑒𝑓𝑡 𝑚 , 𝐸𝑟𝑖𝑔ℎ𝑡 𝑚 , Π𝑁𝐼𝑍𝐾)

Moving To 𝑖𝑂: First Problem

• CCA2- PKE is not necessarily 𝑖𝑂 friendly.

• Has already been handled before (e.g, in io-based constructions of FE [GGH+13]).

• Solution: Naor-Yung double encryption with a Statistically-Simulation-Sound NIZK [Sah99].

𝐸 𝑚 = (𝐸𝑙𝑒𝑓𝑡 𝑚 , 𝐸𝑟𝑖𝑔ℎ𝑡 𝑚 , Π𝑁𝐼𝑍𝐾)

Moving To 𝑖𝑂: First Problem

• CCA2- PKE is not necessarily 𝑖𝑂 friendly.

• Has already been handled before (e.g, in io-based constructions of FE [GGH+13]).

• Solution: Naor-Yung double encryption with a Statistically-Simulation-Sound NIZK [Sah99].

𝐸 𝑚 = (𝐸𝑙𝑒𝑓𝑡 𝑚 , 𝐸𝑟𝑖𝑔ℎ𝑡 𝑚 , Π𝑁𝐼𝑍𝐾)

Moving To 𝑖𝑂: Second Problem (simplified)

Moving To 𝑖𝑂: Second Problem (simplified)

𝑖𝑂 𝐏 , 𝐸𝑖
∗ 𝑎𝑖, 𝑔𝑖

∗ , ∑𝑖∈𝐻 𝑔𝑖
∗

≈𝑐

𝑖𝑂 𝐏 , 𝐸𝑖
∗ 𝑏𝑖, 𝑔𝑖

∗ , ∑𝑖∈𝐻 𝑔𝑖
∗

“need to replace encryptions

of 𝑎 with encryptions of 𝑏.”

Let 𝑓𝑎𝐻
≡ 𝑓𝑏𝐻

. Goal:

Moving To 𝑖𝑂: Second Problem (simplified)

𝑖𝑂 Hybrids

⇒
𝑖𝑂 𝐏 , 𝐸𝑖

∗ 𝑎𝑖, 𝑔𝑖
∗ , ∑𝑖∈𝐻 𝑔𝑖

∗
≈𝑐

𝑖𝑂 𝐏 , 𝐸𝑖
∗ 𝑏𝑖, 𝑔𝑖

∗ , ∑𝑖∈𝐻 𝑔𝑖
∗

“need to replace encryptions

of 𝑎 with encryptions of 𝑏.”

Let 𝑓𝑎𝐻
≡ 𝑓𝑏𝐻

. Goal:

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑎𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑏𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

≡?

Moving To 𝑖𝑂: Second Problem (simplified)

𝑖𝑂 Hybrids

⇒
𝑖𝑂 𝐏 , 𝐸𝑖

∗ 𝑎𝑖, 𝑔𝑖
∗ , ∑𝑖∈𝐻 𝑔𝑖

∗
≈𝑐

𝑖𝑂 𝐏 , 𝐸𝑖
∗ 𝑏𝑖, 𝑔𝑖

∗ , ∑𝑖∈𝐻 𝑔𝑖
∗

“need to replace encryptions

of 𝑎 with encryptions of 𝑏.”

Let 𝑓𝑎𝐻
≡ 𝑓𝑏𝐻

. Goal:

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑎𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑏𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

≡?

Problem:

If ∃ subset 𝐹 ⊊ 𝐻: 𝑓 Ԧ𝑎𝐹, ⋅ ≢ 𝑓 𝑏𝐹, ⋅

⇒

different functionalities (might be hard to find).

Solution: Pseudo-non-linear-codes

Replace group elements 𝑔𝑖 with PNLC encodings ො𝑔𝑖.

1. Homomorphicly additive ⇒ can do sum-check stage.

2. Admits fake-encodings, for which subset sums fail sum-check stage.

The fake-encodings are ≈𝑐 from valid encodings.

3. Can construct from wither LWE or DDH

More details in the paper…

Pseudo Non Linear Codes

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑎𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑏𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

≡?

Solution: Pseudo-non-linear-codes

Replace group elements 𝑔𝑖 with PNLC encodings ො𝑔𝑖.

1. Homomorphicly additive ⇒ can do sum-check stage.

2. Admits fake-encodings, for which subset sums fail sum-check stage.

The fake-encodings are ≈𝑐 from valid encodings.

3. Can construct from wither LWE or DDH

More details in the paper…

Pseudo Non Linear Codes

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑎𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑏𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

≡?

Solution: Pseudo-non-linear-codes

Replace group elements 𝑔𝑖 with PNLC encodings ො𝑔𝑖.

1. Homomorphicly additive ⇒ can do sum-check stage.

2. Admits fake-encodings, for which subset sums evade the code.

The fake-encodings are ≈𝑐 from valid encodings.

3. Can construct from wither LWE or DDH

More details in the paper…

Pseudo Non Linear Codes

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑎𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑏𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

≡?

Solution: Pseudo-non-linear-codes

Replace group elements 𝑔𝑖 with PNLC encodings ො𝑔𝑖.

1. Homomorphicly additive ⇒ can do sum-check stage.

2. Admits fake-encodings, for which subset sums evade the code.

The fake-encodings are ≈𝑐 from valid encodings.

3. Can construct from wither LWE or DDH

More details in the paper…

Pseudo Non Linear Codes

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑎𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖 = 𝑏𝑖 , 𝑔𝑖
∗

Dec & Sum-check & Compute

≡?

Future Direction - ARE

1. Simpler public parameters? no setup at all?

2. Assumptions lighter then 𝒊𝑶 for limited classes of functions.

Improving RARE

1. Does statistically secure ARE for all efficient functions exist?

2. What assumptions imply computational ARE? Post-quantum? PK cryptography needed?

(non-robust) ARE

Future Direction - ARE

1. Simpler public parameters? no setup at all?

2. Assumptions lighter then 𝒊𝑶 for limited classes of functions.

Improving RARE

1. Does statistically secure ARE for all efficient functions exist?

2. What assumptions imply computational ARE? Post-quantum? PK cryptography needed?

(non-robust) ARE

Thank You

	Slide 1: Robust Additive Randomized Encodings From IO And Pseudo-non-linear-codes
	Slide 2: Basic Paradigm In Secure Computation [Yao82, BMR90, IK00, ...]
	Slide 3: Additive Randomized Encodings (ARE) [Halevi - Ishai - Kushilevitz - Rabin 23]
	Slide 4: Additive Randomized Encodings (ARE) [Halevi - Ishai - Kushilevitz - Rabin 23]
	Slide 5: Additive Randomized Encodings (ARE) [Halevi - Ishai - Kushilevitz - Rabin 23]
	Slide 6: Additive Randomized Encodings (ARE) [Halevi - Ishai - Kushilevitz - Rabin 23]
	Slide 7: Addition Is Simple
	Slide 8: Addition Is Simple
	Slide 9: Addition Is Simple
	Slide 10: ARE Security
	Slide 11: ARE Security
	Slide 12: ARE Security
	Slide 13: Our Focus: Robust ARE (RARE) [HIKR23]
	Slide 14: Our Focus: Robust ARE (RARE) [HIKR23]
	Slide 15: Our Focus: Robust ARE (RARE) [HIKR23]
	Slide 16: RARE implies Obfuscation
	Slide 17: RARE implies Obfuscation
	Slide 18: RARE implies Obfuscation
	Slide 19: Known Results From [HIKR23]
	Slide 20: Known Results From [HIKR23]
	Slide 21: Known Results From [HIKR23]
	Slide 22: Known Results From [HIKR23]
	Slide 23: Known Results From [HIKR23]
	Slide 24: Our Results
	Slide 25: Our Results
	Slide 26: Our Results
	Slide 27: Succinct RARE
	Slide 28: Succinct RARE
	Slide 29: Succinct RARE
	Slide 30: Succinct RARE
	Slide 31: And now, the construction
	Slide 32: Warmup: Ideal Obfuscation
	Slide 33: Warmup: Ideal Obfuscation
	Slide 34: Warmup: Ideal Obfuscation
	Slide 35: Warmup: Ideal Obfuscation
	Slide 36: Moving To i. O
	Slide 37: Moving To i. O : First Problem
	Slide 38: Moving To i. O : First Problem
	Slide 39: Moving To i. O : First Problem
	Slide 40: Moving To i. O : First Problem
	Slide 41: Moving To i. O : Second Problem (simplified)
	Slide 42: Moving To i. O : Second Problem (simplified)
	Slide 43: Moving To i. O : Second Problem (simplified)
	Slide 44: Moving To i. O : Second Problem (simplified)
	Slide 45: Solution: Pseudo-non-linear-codes
	Slide 46: Solution: Pseudo-non-linear-codes
	Slide 47: Solution: Pseudo-non-linear-codes
	Slide 48: Solution: Pseudo-non-linear-codes
	Slide 49: Future Direction - ARE
	Slide 50: Future Direction - ARE

