
Robust Additive Randomized Encodings 
From IO And Pseudo-non-linear-codes

NIR BITANSKY SAPIR FREIZEIT



Basic Paradigm In Secure Computation
[Yao82, BMR90, IK00, ...]

Reduce general secure computation to secure computation of simple functions.

⟹
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Addition Is Simple

• Simplest global encoder: addition

• Can be realized in the shuffle model (e.g., using annonymous communication) [Ishai Kushilevitz Ostrovsky Sahai 06]

• Yields NI-MPC (in the shuffle model) w/o correlated-randomness, nor public-key-infrastructure.
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𝑦
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ARE Security

• Security against corrupted decoder (can’t learn additional info about parties’ inputs).
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• Security against corrupted decoder (can’t learn additional info about parties’ inputs).

• Intuitively: decoder’s view መ𝑓 Ԧ𝑥 , 𝑝𝑝  can be recovered from 𝑓( Ԧ𝑥).
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Our Focus: Robust ARE (RARE) [HIKR23] 

• Security against corrupted parties 𝐶 who collude with the corrupted server .
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Our Focus: Robust ARE (RARE) [HIKR23] 

• Security against corrupted parties 𝐶 who collude with the corrupted server .

• Inevitable attack: residual function of honest parties 𝐻:  𝑓𝑥𝐻
𝑥𝐶 ≔ 𝑓(𝑥𝐻, 𝑥𝐶).

• VBB simulation security,  𝑆𝑖𝑚𝑓𝑥𝐻 𝑓(𝑥) ≈ መ𝑓 𝑥 , 𝑝𝑝  
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RARE implies Obfuscation

• 2-party simulation-secure RARE implies VBB Obfuscation ⇒ Impossible.

• Instead, indistinguishability security.

Our focus: Indistinguishability security:

For every  Ԧ𝑥𝐻, 𝑤𝐻,  with  𝑓 Ԧ𝑥𝐻
≡ 𝑓𝑤𝐻

,

𝑝𝑝, መ𝑓( Ԧ𝑥𝐻) ≈𝑐 𝑝𝑝, መ𝑓(𝑤𝐻)

Implies 𝑖𝑂



Known Results From [HIKR23]

• Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).

• Computational (non-robust) ARE for all efficient functions.

(from standard assumptions in bilinear groups)

• Simulation-based RARE for all efficient functions in the ideal-obfuscation model.

Open question:

Can we construct indistinguishability-based RARE for all efficient functions from IO and 

standard cryptographic assumptions? (in the plain model)
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Our Results

1.  Indistinguishability-based RARE from IO and (a new primitive we call)   

Pseudo Non Linear Codes (PNLC).

2.  PNLC from either LWE or DDH.

3.  Our RARE is succinct (more in next slide).
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Succinct RARE

Split parties’ encodings ො𝑥𝑖 = Ƹ𝑧𝑖, ො𝑔𝑖 .

•  ො𝑔𝑖 group element, Ƹ𝑧𝑖 non-interactive part.

• Minimal communication complexity:

• ො𝑔𝑖  ~ security parameter. 

• Ƹ𝑧𝑖  ~ size of the input 𝑥𝑖.

• Independent of 𝑘, |𝑓|

• Trusted computation is minimal.
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And now, the construction



Warmup: Ideal Obfuscation
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Moving To 𝑖𝑂

𝑓1 ≡ 𝑓2 ⟹ 𝑖𝑂 𝑓1 ≈𝑐 𝑖𝑂(𝑓2)

𝑥 + 𝑦 ⋅ 𝑧 𝑥 ⋅ 𝑧 + 𝑦 ⋅ 𝑧
≈𝑐



Moving To 𝑖𝑂: First Problem

• CCA2- PKE is not necessarily 𝑖𝑂 friendly. 

• Has already been handled before (e.g, in io-based constructions of FE [GGH+13]).

• Solution: Naor-Yung double encryption with a Statistically-Simulation-Sound NIZK [Sah99]. 

𝐸 𝑚 = (𝐸𝑙𝑒𝑓𝑡 𝑚 , 𝐸𝑟𝑖𝑔ℎ𝑡 𝑚 , Π𝑁𝐼𝑍𝐾)
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𝑖𝑂 𝐏 , 𝐸𝑖
∗ 𝑎𝑖, 𝑔𝑖

∗ , ∑𝑖∈𝐻 𝑔𝑖
∗ 

≈𝑐

𝑖𝑂 𝐏 , 𝐸𝑖
∗ 𝑏𝑖, 𝑔𝑖

∗ , ∑𝑖∈𝐻 𝑔𝑖
∗ 

“need to replace encryptions 

of 𝑎 with encryptions of 𝑏.”

Let 𝑓𝑎𝐻
≡ 𝑓𝑏𝐻

. Goal: 



Moving To 𝑖𝑂: Second Problem (simplified)

𝑖𝑂 Hybrids

⇒
𝑖𝑂 𝐏 , 𝐸𝑖

∗ 𝑎𝑖, 𝑔𝑖
∗ , ∑𝑖∈𝐻 𝑔𝑖

∗ 
≈𝑐

𝑖𝑂 𝐏 , 𝐸𝑖
∗ 𝑏𝑖, 𝑔𝑖

∗ , ∑𝑖∈𝐻 𝑔𝑖
∗ 

“need to replace encryptions 

of 𝑎 with encryptions of 𝑏.”

Let 𝑓𝑎𝐻
≡ 𝑓𝑏𝐻

. Goal: 

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:

 𝑥𝑖 , 𝑔𝑖  = 𝑎𝑖 , 𝑔𝑖
∗ 

Dec & Sum-check & Compute

𝐏′(𝐸1, … , 𝐸𝑘 , 𝑔)

For every 𝑖 ∈ 𝐻 s.t. 𝐸𝑖 = 𝐸𝑖
∗:
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Moving To 𝑖𝑂: Second Problem (simplified)

𝑖𝑂 Hybrids

⇒
𝑖𝑂 𝐏 , 𝐸𝑖

∗ 𝑎𝑖, 𝑔𝑖
∗ , ∑𝑖∈𝐻 𝑔𝑖

∗ 
≈𝑐

𝑖𝑂 𝐏 , 𝐸𝑖
∗ 𝑏𝑖, 𝑔𝑖

∗ , ∑𝑖∈𝐻 𝑔𝑖
∗ 

“need to replace encryptions 

of 𝑎 with encryptions of 𝑏.”

Let 𝑓𝑎𝐻
≡ 𝑓𝑏𝐻

. Goal: 
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≡?

Problem:

If ∃ subset 𝐹 ⊊ 𝐻: 𝑓 Ԧ𝑎𝐹, ⋅  ≢  𝑓 𝑏𝐹, ⋅

⇒ 

different functionalities (might be hard to find).



Solution: Pseudo-non-linear-codes

Replace group elements 𝑔𝑖 with PNLC encodings ො𝑔𝑖.

1. Homomorphicly additive ⇒ can do sum-check stage.

2. Admits fake-encodings, for which subset sums fail sum-check stage. 

The fake-encodings are ≈𝑐 from valid encodings.

3. Can construct from wither LWE or DDH

More details in the paper…
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Future Direction - ARE

1. Simpler public parameters? no setup at all?

2. Assumptions lighter then 𝒊𝑶 for limited classes of functions.

Improving RARE

1. Does statistically secure ARE for all efficient functions exist?

2. What assumptions imply computational ARE? Post-quantum? PK cryptography needed?

(non-robust) ARE
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