Robust Additive Randomized Encodings From IO And Pseudo-non-linear-codes

NIR BITANSKY <u>SAPIR FREIZEIT</u>

Basic Paradigm In Secure Computation

[Yao82, BMR90, IK00, ...]

Reduce general secure computation to secure computation of simple functions.

Additive Randomized Encodings (ARE) [Halevi - Ishai - Kushilevitz - Rabin 23]

Additive Randomized Encodings (ARE)

[Halevi - Ishai - Kushilevitz - Rabin 23]

 $f: (x_1, \dots, x_k) \rightarrow \{0, 1\}^*, pp = public parameters$

Additive Randomized Encodings (ARE)

[Halevi - Ishai - Kushilevitz - Rabin 23]

 $f: (x_1, \dots, x_k) \rightarrow \{0,1\}^*, pp = public parameters$ Decoding Trusted \hat{x}_1 x_1 Encoder Server k $\hat{f}(\vec{x})$ y \hat{x}_i \hat{x}_{k-1} x_{k-1} i=1 \hat{x}_k x_k

*The summation is over some abelian group

Additive Randomized Encodings (ARE)

[Halevi - Ishai - Kushilevitz - Rabin 23]

 $f: (x_1, \dots, x_k) \to \{0,1\}^*, pp = \text{public parameters}$ $x_1 \longrightarrow \hat{x}_1 \longrightarrow \text{Trusted}_{\text{Encoder}}$ $\vdots \qquad k \qquad \hat{f}(\vec{x}) \qquad f(\vec{x}) \qquad f(\vec{x})$

 γ

Correctness	Security
$y = f(\vec{x})$	Decoder learns nothing, but $f(\vec{x})$

*The summation is over some abelian group

Addition Is Simple

• Simplest global encoder: addition

Addition Is Simple

- Simplest global encoder: addition
- Can be realized in the **shuffle model** (e.g., using annonymous communication) [Ishai Kushilevitz Ostrovsky Sahai 06]

Addition Is Simple

- Simplest global encoder: addition
- Can be realized in the **shuffle model** (e.g., using annonymous communication) [Ishai Kushilevitz Ostrovsky Sahai 06]

• Yields NI-MPC (in the shuffle model) w/o correlated-randomness, nor public-key-infrastructure.

ARE Security

• Security against corrupted decoder (can't learn additional info about parties' inputs).

ARE Security

- Security against corrupted decoder (can't learn additional info about parties' inputs).
- Intuitively: decoder's view $(\hat{f}(\vec{x}), pp)$ can be recovered from $f(\vec{x})$.

ARE Security

- Security against corrupted decoder (can't learn additional info about parties' inputs).
- Intuitively: decoder's view $(\hat{f}(\vec{x}), pp)$ can be recovered from $f(\vec{x})$.
- Simulation: $Sim(f(\vec{x})) \approx (\hat{f}(\vec{x}), pp)$ (perfect / statistical / computational).

Our Focus: Robust ARE (RARE) [HIKR23]

• Security against corrupted parties C who collude with the corrupted server .

Our Focus: Robust ARE (RARE) [HIKR23]

- Security against corrupted parties C who collude with the corrupted server.
- Inevitable attack: **residual function** of honest parties H: $f_{x_H}(x_C) \coloneqq f(x_H, x_C)$.

Our Focus: Robust ARE (RARE) [HIKR23]

- Security against corrupted parties C who collude with the corrupted server.
- Inevitable attack: **residual function** of honest parties $H: f_{x_H}(x_C) \coloneqq f(x_H, x_C)$.
- VBB simulation security, $Sim^{f_{x_H}}(f(x)) \approx (\hat{f}(x), pp)$

RARE implies Obfuscation

• 2-party simulation-secure RARE implies VBB Obfuscation \Rightarrow Impossible.

RARE implies Obfuscation

- 2-party simulation-secure RARE implies VBB Obfuscation ⇒ Impossible.
- Instead, indistinguishability security.

RARE implies Obfuscation

Our focus: Indistinguishability security:

For every \vec{x}_H, \vec{w}_H , with $f_{\vec{x}_H} \equiv f_{\vec{w}_H}$, $(pp, \hat{f}(\vec{x}_H)) \approx_c (pp, \hat{f}(\vec{w}_H))$

Implies *i0*

• 2-party simulation-secure RARE implies VBB Obfuscation \Rightarrow Impossible.

• Instead, indistinguishability security.

• Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).

- Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).
- Computational (non-robust) ARE for all efficient functions. (from standard assumptions in bilinear groups)

- Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).
- Computational (non-robust) ARE for all efficient functions. (from standard assumptions in bilinear groups)
- Simulation-based RARE for all efficient functions in the ideal-obfuscation model.

- Informtion-theoretic RARE for some functions (or, max, capped sum, etc.).
- Computational (non-robust) ARE for all efficient functions. (from standard assumptions in bilinear groups)
- Simulation-based RARE for all efficient functions in the ideal-obfuscation model.

Open question:

Can we construct **indistinguishability-based R**ARE for all efficient functions from IO and standard cryptographic assumptions? (in the plain model)

Our Results

Our Results

2. **PNLC** from either **LWE** or **DDH**.

Our Results

- I. Indistinguishability-based RARE from IO and (a new primitive we call) Pseudo Non Linear Codes (PNLC).
- 2. **PNLC** from either **LWE** or **DDH**.
- 3. Our **RARE** is **succinct** (more in next slide).

Split parties' encodings $\hat{x}_i = (\hat{z}_i, \hat{g}_i)$.

• \hat{g}_i group element, \hat{z}_i non-interactive part.

Split parties' encodings $\hat{x}_i = (\hat{z}_i, \hat{g}_i)$.

- \hat{g}_i group element, \hat{z}_i non-interactive part.
- Minimal communication complexity:
 - $|\hat{g}_i| \sim$ security parameter.
 - $|\hat{z}_i| \sim \text{size of the input } x_i$.
- Independent of k, |f|

Split parties' encodings $\hat{x}_i = (\hat{z}_i, \hat{g}_i)$.

- \hat{g}_i group element, \hat{z}_i non-interactive part.
- Minimal communication complexity:
 - $|\hat{g}_i| \sim$ security parameter.
 - $|\hat{z}_i| \sim \text{size of the input } x_i$.
- Independent of k, |f|
- Trusted computation is minimal.

And now, the construction

Problem: Can change subsets of the honest parties' inputs.

Moving To *i0*

$$f_1 \equiv f_2 \Longrightarrow iO(f_1) \approx_c iO(f_2)$$

• CCA2- PKE is not necessarily *i0* friendly.

- CCA2- PKE is not necessarily *iO* friendly.
- Has already been handled before (e.g, in io-based constructions of FE [GGH+13]).

- CCA2- PKE is not necessarily *i0* friendly.
- Has already been handled before (e.g, in io-based constructions of FE [GGH+13]).
- Solution: Naor-Yung **double** encryption with a Statistically-Simulation-Sound NIZK [Sah99]. $E(m) = (E_{left}(m), E_{right}(m), \Pi_{NIZK})$

Let $f_{\vec{a}_H} \equiv f_{\vec{b}_H}$. Goal: $iO(\mathbf{P}), E_i^*(a_i, g_i^*), \sum_{i \in H} g_i^*$ \approx_c $iO(\mathbf{P}), E_i^*(b_i, g_i^*), \sum_{i \in H} g_i^*$ "need to replace encryptions of *a* with encryptions of *b*."

Let
$$f_{\vec{a}_{H}} \equiv f_{\vec{b}_{H}}$$
. Goal:
 $i0(\mathbf{P}), E_{i}^{*}(a_{i}, g_{i}^{*}), \sum_{i \in H} g_{i}^{*}$
 \approx_{c}^{*}
 $i0(\mathbf{P}), E_{i}^{*}(b_{i}, g_{i}^{*}), \sum_{i \in H} g_{i}^{*}$
"need to replace encryptions
of *a* with encryptions of *b*."
 $i0$ Hybrids
 \Rightarrow
 $i0$ Hybrids
 $i0$ Hybrids
 \Rightarrow
 $i0$ Hybrids
 \Rightarrow
 $i0$ Hybrids
 $i0$ Hybrids
 $i0$ Hybrids
 $i0$ Hybrids
 \Rightarrow
 $i0$ Hybrids
 $i0$ Hybr

Dec & Sum-check & Compute

Problem: If \exists subset $F \subsetneq H: f(\vec{a}_F, \cdot) \not\equiv f(\vec{b}_F, \cdot)$ \Rightarrow different functionalities (might be hard to find).

Replace group elements g_i with PNLC encodings \hat{g}_i .

eudo Non Linear Codes	

Replace group elements g_i with PNLC encodings \hat{g}_i .

Pseudo Non Linear Codes

I. Homomorphicly additive \Rightarrow can do sum-check stage.

Replace group elements g_i with PNLC encodings \hat{g}_i .

Pseudo Non Linear Codes

- I. Homomorphicly additive \Rightarrow can do sum-check stage.
- 2. Admits fake-encodings, for which subset sums evade the code. The fake-encodings are \approx_c from valid encodings.

Replace group elements g_i with PNLC encodings \hat{g}_i .

Pseudo Non Linear Codes

- I. Homomorphicly additive \Rightarrow can do sum-check stage.
- 2. Admits fake-encodings, for which subset sums evade the code. The fake-encodings are \approx_c from valid encodings.
- 3. Can construct from wither LWE or DDH

More details in the paper...

Future Direction - ARE

Improving **R**ARE

- I. Simpler **public parameters**? no setup at all?
- 2. Assumptions **lighter then** *iO* for limited classes of functions.

(non-robust) ARE

- I. Does **statistically** secure ARE for all efficient functions exist?
- 2. What assumptions imply **computational** ARE? Post-quantum? PK cryptography needed?

Future Direction - ARE

Improving **R**ARE

- I. Simpler **public parameters**? no setup at all?
- 2. Assumptions **lighter then** *iO* for limited classes of functions.

(non-robust) ARE

- I. Does **statistically** secure ARE for all efficient functions exist?
- 2. What assumptions imply **computational** ARE? Post-quantum? PK cryptography needed?

