Polymath: Groth16 Is Not The Limit Helger Lipmaa, University of Tartu, Estonia

Crypto 2024 Presentation

Computation: fPublic input (statement) XPrivate input (witness) W

Computation: fPublic input (statement) X

Computation: *f* Public input (statement) XPrivate input (witness) W

Computation: fPublic input (statement) X

STS

Computation: *f* Public input (statement) XPrivate input (witness) W

Computation: fPublic input (statement) XPrivate input (witness) W

Computation: fPublic input (statement) XPrivate input (witness) W

STS

Completeness

Computation: *f* Public input (statement) XSTS Knowledge-soundness

Computation: fPublic input (statement) XPrivate input (witness) W

STS

Completeness Knowledge-soundness Zero-knowledge

Computation: *f* Public input (statement) XSTS

Computation: fPublic input (statement) XPrivate input (witness) W

STS

- Completeness
- Zero-knowledge

Knowledge-soundness • Succinct arguments

STS

Computation: f Public input (statement) X

Landscape

Landscape

Composition: • GKR + Groth16 • Brakedown + Groth16 • FRI + Groth16

Huge progress in zk-SNARK land in last 5 years Landscape Groth16 still lands supreme after 8 years • Shortest argument Shortest argument Fastest verifier

• $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - G_i are additive abelian groups of large prime order p

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - G_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - G_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - G_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T \text{ for } a, b \in \mathbb{F}_p$

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - G_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T$ for $a, b \in \mathbb{F}_p$
- "Standard" curve for 128-bit security level: BLS12-381

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - G_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T \text{ for } a, b \in \mathbb{F}_p$
- "Standard" curve for 128-bit security level: BLS12-381
 - $\ell(\mathbb{F}_p) = 256$, $\ell(\mathbb{G}_1) = 384$, $\ell(\mathbb{G}_2) = 768$ (bits)

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - G_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T \text{ for } a, b \in \mathbb{F}_p$
- "Standard" curve for 128-bit security level: BLS12-381
 - $\ell(\mathbb{F}_p) = 256, \, \ell(\mathbb{G}_1) = 384, \, \ell(\mathbb{G}_2) = 768 \, \text{(bits)}$
- Curves for 192-bit security level:

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - G_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T \text{ for } a, b \in \mathbb{F}_p$
- "Standard" curve for 128-bit security level: BLS12-381

• $\ell(\mathbb{F}_p) = 256, \, \ell(\mathbb{G}_1) = 384, \, \ell(\mathbb{G}_2) = 768 \, \text{(bits)}$

- Curves for 192-bit security level:
 - $\ell(\mathbb{F}_p) = 256, \ \ell(\mathbb{G}_1) = 512, \ \ell(\mathbb{G}_2) = 2048$ (bits)

Groth16: Bird's-Eye

 $\operatorname{srs}(f)$

Computation: fPublic input (statement) XPrivate input (witness) W

SRS depends on the circuit

View

 $\operatorname{srs}(f)$

Groth16: Bird's-Eye

Computation: fPublic input (statement) XPrivate input (witness) W

SRS depends on the circuit • Argument length: only 3 group elements

Groth16: Bird's-Eye

Computation: fPublic input (statement) XPrivate input (witness) W

- SRS depends on the circuit
- Argument length: only 3 group elements
- Verifier executes three pairings and X group ops

• Groth16 has three group elements

- Groth16 has three group elements
- Lower bound [Groth, EC16]:

- Groth16 has three group elements
- Lower bound [Groth, EC16]: lacksquare
 - At least two group elements needed

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_2

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_2
- Using a different arithmetization, one can have two group elements

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_{2}
- Using a different arithmetization, one can have two group elements
 - SAP (Square Arithmetic Programming) instead of R1CS

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_{2}
- Using a different arithmetization, one can have two group elements
 - SAP (Square Arithmetic Programming) instead of R1CS
 - However, then one relies on symmetric pairings

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_{2}
- Using a different arithmetization, one can have two group elements SAP (Square Arithmetic Programming) instead of R1CS • However, then one relies on symmetric pairings Group elements will be considerably longer => worse in practice

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_2
- Using a different arithmetization, one can have two group elements
 - SAP (Square Arithmetic Programming) instead of R1CS
 - However, then one relies on symmetric pairings
 - Group elements will be considerably longer => worse in practice

The lower bound works in the standard model (no RO)

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_{2}
- Using a different arithmetization, one can have two group elements
 - SAP (Square Arithmetic Programming) instead of R1CS
 - However, then one relies on symmetric pairings
 - Group elements will be considerably longer => worse in practice

It talks about **#group elements**, not **bit-length**

The lower bound works in the standard model (no RO)

Scenic Route to Polymath For non-muggles

• Problem: \mathbb{G}_2 elements are long

- Problem: \mathbb{G}_2 elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?

- Problem: \mathbb{G}_2 elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks

- Problem: \mathbb{G}_2 elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks
- We can KZG-open the polynomial commitment $[b]_1$ to some \overline{b} and do quadratic checks by using \overline{b}

tic checks commitment $[b]_1$ to some \overline{b} and do

- Problem: \mathbb{G}_2 elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks
- We can KZG-open the polynomial commitment $[b]_1$ to some b and do quadratic checks by using b
- KZG opening is shorter than a \mathbb{G}_{2} element

- Problem: \mathbb{G}_2 elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks We can KZG-open the polynomial commitment $[b]_1$ to some \bar{b} and do quadratic checks by using \bar{b}
 - KZG opening is shorter than a \mathbb{G}_2 element
 - (a field element \overline{b} and a \mathbb{G}_1 element $[h]_1$)

- Problem: \mathbb{G}_2 elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks We can KZG-open the polynomial commitment $[b]_1$ to some b and do quadratic checks by using b
 - KZG opening is shorter than a \mathbb{G}_2 element
 - (a field element \overline{b} and a \mathbb{G}_1 element $[h]_1$)

Problem:

- we still have $[b]_1$ in the argument!

• $\ell([b]_2) < \ell([b]_1) + \ell(\bar{b}) + \ell([h]_1)$ in 128-bit level

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

• No need to send it!

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

- No need to send it!
- **Cost:** circuit ≈ 2 longer => slower prover

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

- No need to send it!
- **Cost:** circuit ≈ 2 longer => slower prover \bullet
 - Multiplication gates => squaring gates

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

- No need to send it!
- **Cost:** circuit ≈ 2 longer => slower prover
 - Multiplication gates => squaring gates

Problem:

- Not clear how to use KZG

• Groth16 has five trapdoors, KZG is univariate

• Univariatization:

- Univariatization:
 - Replace each trapdoor with χ^i for some *i* and a single trapdoor χ

- Univariatization:
 - Replace each trapdoor with x^i for some *i* and a single trapdoor x
- Also done in [Lipmaa, PKC 2022] who used exhaustive search to find i's

- Univariatization:
 - Replace each trapdoor with χ^{i} for some *i* and a single trapdoor χ
- Also done in [Lipmaa, PKC 2022] who used exhaustive search to find i's

Problem:

- even after exhaustive search, the exponents i are quite large KZG prover time Ω (polynomial degree) => Results in high prover complexity

Observation 1: Groth16 for SAP has -1 trapdoor

Observation 1: Groth16 for SAP has -1 trapdoor
Observation 2:

- **Observation 1:** Groth16 for SAP has -1 trapdoor **Observation 2:**
 - One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement

- **Observation 1:** Groth16 for SAP has -1 trapdoor **Observation 2:**
 - One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement

- **Observation 1:** Groth16 for SAP has -1 trapdoor **Observation 2:**
 - One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement
 - - Verifier becomes faster

- **Observation 1:** Groth16 for SAP has -1 trapdoor **Observation 2:**
 - One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement

Verifier becomes faster

• In Polymath, V interpolates a polynomial in \mathbb{F}_p of degree \mathbb{X}

- **Observation 1:** Groth16 for SAP has -1 trapdoor **Observation 2:**
 - One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement

Verifier becomes faster

- In Polymath, V interpolates a polynomial in \mathbb{F}_p of degree \mathbb{X}
 - Instead of doing |X| -long MSM in Groth16

• We only have three trapdoors

- We only have three trapdoors
- It is easier to choose "good" exponents!

- We only have three trapdoors
- It is easier to choose "good" exponents! We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$

- We only have three trapdoors
- It is easier to choose "good" exponents! We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$
 - x is real trapdoor, α, γ, σ are field elements

- We only have three trapdoors
- It is easier to choose "good" exponents! We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$
 - x is real trapdoor, α, γ, σ are field elements
- Exhaustive search to find small exponents that result in knowledgesoundness

- We only have three trapdoors
- It is easier to choose "good" exponents! We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$
 - x is real trapdoor, α, γ, σ are field elements
- Exhaustive search to find small exponents that result in knowledgesoundness
- Kamek saith: $\alpha = 3$, $\gamma = -5$, $\sigma = n + 3$

- We only have three trapdoors
- It is easier to choose "good" exponents! We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$
 - x is real trapdoor, α, γ, σ are field elements
- Exhaustive search to find small exponents that result in knowledgesoundness
- Kamek saith: $\alpha = 3$, $\gamma = -5$, $\sigma = n + 3$

Problem:

- SRS is circuit-dependent
- It does not contain enough elements to compute $[h]_1$

This adds elements to the SRS

We add another trapdoor $[z]_1$ that is **only** used to compute KZG opening

This adds elements to the SRS

We add another trapdoor $[z]_1$ that is **only** used to compute KZG opening

Completeness and zero-knowledge proofs are short and standard

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors x^i instead of independent trapdoors makes proof more complicated

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors x^i instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness
- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors χ^{l} instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors χ^{l} instead of independent trapdoors makes proof more complicated
- LPS23 noted that KZG is often used wrongly
- 3. To get tight security after Fiat-Shamir, we prove special-soundness 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors χ^{l} instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023] LPS23 noted that KZG is often used wrongly
- - Constructions are secure in AGM but not when adversary can do o.s.

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors χ^{l} instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023] LPS23 noted that KZG is often used wrongly
- - Constructions are secure in AGM but not when adversary can do o.s.
 - And o.s. is for free!

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors χ^{l} instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023] LPS23 noted that KZG is often used wrongly
- - Constructions are secure in AGM but not when adversary can do o.s.
 - And o.s. is for free!

Part of Polymath's proof is machine-checked

• First improvement on Groth16 since 2016

- First improvement on Groth16 since 2016

Hopefully encourages other researchers to improve Groth16 even further

- First improvement on Groth16 since 2016
- Pros:

Hopefully encourages other researchers to improve Groth16 even further

- First improvement on Groth16 since 2016
- Pros:
 - Smaller arguments (more prominent in 192/256-bit security level)

- First improvement on Groth16 since 2016
- Pros:

 - Smaller arguments (more prominent in 192/256-bit security level) • No adversarially created \mathbb{G}_2 elements — good for batching

- First improvement on Groth16 since 2016
- Pros:

 - Smaller arguments (more prominent in 192/256-bit security level) • No adversarially created \mathbb{G}_2 elements — good for batching • Verifier is potentially faster for a short public input

- First improvement on Groth16 since 2016
- Pros:

 - Smaller arguments (more prominent in 192/256-bit security level) • No adversarially created \mathbb{G}_2 elements — good for batching • Verifier is potentially faster for a short public input
 - - And definitely faster for a long public input

- First improvement on Groth16 since 2016 Hopefully encourages other researchers to improve Groth16 even further
- Pros:

 - Smaller arguments (more prominent in 192/256-bit security level) • No adversarially created \mathbb{G}_2 elements — good for batching
 - Verifier is potentially faster for a short public input
 - And definitely faster for a long public input
- Cons:

Mitigated in SNARK composition when used as a final SNARK

- First improvement on Groth16 since 2016
 - Hopefully encourages other researchers to improve Groth16 even further
- Pros:

 - Smaller arguments (more prominent in 192/256-bit security level) • No adversarially created \mathbb{G}_2 elements — good for batching • Verifier is potentially faster for a short public input
- And definitely faster for a long public input
- Cons:
 - Prover is slower

 Mitigated in SNARK composition when used as a final SNARK • Prover's input is shorter => prover speed less important

- First improvement on Groth16 since 2016
- Pros:
 - Smaller arguments (more prominent in 192/256-bit security level)
 - No adversarially created \mathbb{G}_2 elements good for batching
 - Verifier is potentially faster for a short public input
 - And definitely faster for a long public input
- **Cons:**
 - Prover is slower
 - Uses random oracle model on top of AGM(OS)

 Mitigated in SNARK composition when used as a final SNARK • Prover's input is shorter => prover speed less important Any known reasonable initial SNARK candidate uses ROM

Hopefully encourages other researchers to improve Groth16 even further