Polymath:
Groth16 Is Not The Limit

Helger Lipmaa, University of Tartu, Estonia

Crypto 2024 Presentation




ZK-SNARKs

Computation: f Computation: f
Public input (statement) X Public input (statement) X
Private input (witness) W




ZK-SNARKs

Computation: f
Public input (statement) X

Computation: f
Public input (statement) X
Private input (witness) W

SI'S SI'S




ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1




ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1

« Completeness




ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1

« Completeness

 Knowledge-soundness




ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1

« Completeness

 Knowledge-soundness
o Zero-knowledge




ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1

« Completeness

 Knowledge-soundness
o Zero-knowledge
e Succinct arguments
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Huge progress in zk-SNARK land in last 5 years

Groth16 still lands supreme after 8 years
Landscape * Shortest argument

e Fastest verifier

Good for Prover S Good for Both

Good for Verifier!

Tensor-code-based
(Brakedown, Binius,

Composition:

e GKR + Groth16
e Brakedown + Groth16
e FRI + Groth16




Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)



Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)

» (3, are additive abelian groups of large prime order p



Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)
» (3, are additive abelian groups of large prime order p
» | 1];is a generator of i,



Pairings
For Muggles

* pp = (P, Gy, Gy, Gy, [1]4, [1]5, €)
» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
» ¢: (G, X G, - G,is abilinear map



Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)

» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.

» ¢: (G, X G, - G,is abilinear map

. e(laly, [b),) = lab]pfora,b & F,



Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)

» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
» ¢: (G, X, - G;is abilinear map
. e(laly, [b),) = lab]pfora,b & F,
o “Standard” curve for 128-bit security level: BLS12-381



Pairings
For Muggles

* pp = (P, Gy, Gy, Gy, [1]4, [ 1], €)
» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
e : (; X, = Gis abilinear map
. e(laly, [b),) = lab]pfora,b & F,
o “Standard” curve for 128-bit security level: BLS12-381
Al _) = 256, () = 384, £(G,) = 768 (bits)




Pairings
For Muggles

* pp = (P, Gy, Gy, Gy, [1]4, [ 1], €)
» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
e : (; X, = Gis abilinear map
. e(laly, [b),) = lab]pfora,b & F,
o “Standard” curve for 128-bit security level: BLS12-381
Al _) = 256, () = 384, £(G,) = 768 (bits)

. Curves for 192-bit security level:




Pairings
For Muggles

* pp = (P, Gy, Gy, Gy, [1]4, [ 1], €)
» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
e : (; X, = Gis abilinear map
. e(laly, [b),) = lab]pfora,b & F,
o “Standard” curve for 128-bit security level: BLS12-381
Al _) = 256, () = 384, £(G,) = 768 (bits)

. Curves for 192-bit security level:

. £(F) = 256, £(G,) = 512, £(G,) = 2048 (bits)
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Computation: f A Computation: f
Public input (statement) X N Public input (statement) X
Private input (witness) W N—/

‘/yw‘

w = (lal;, by, [cly)

.....

SRS depends on the circuit

 Argument length: only 3 group elements
» Verifier executes three pairings and | X | group ops
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On Optimality

* Groth16 has three group elements
| ower bound [Groth, EC16]:
* At least two group elements needed

» One of them has to be in (5,

* Using a different arithmetization, one can have two group elements
 SAP (Square Arithmetic Programming) instead of R1CS
 However, then one relies on symmetric pairings
* Group elements will be considerably longer => worse in practice

 The lower bound works in the standard model (no RO)

|t talks about #group elements, not bit-length

w = (lal;, 0]y, [c]y) W p
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For non-muggles

. Problem: (5, elements are long

» |b], = [b],, but how?
* (Groth16 uses pairings to do quadratic checks

We can KZG-open the polynomial commitment [5], to some b and do
quadratic checks by using b

» KZG opening is shorter than a (5, element

. (a field element b and a (3, element [/1],)

Problem:
- we still have [b]; in the argument!

. Z([b],) < £([b])) + £(b) + £([h],) in 128-bit level
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If we use SAP instead of R1CS, we get ||, = |a],

e No need to send it!

e Cost: circuit ~ 2 longer => slower prover

 Multiplication gates => squaring gates

Problem:
 Groth16 has five trapdoors, KZG is univariate

* Not clear how to use KZG
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* Univariatization:
 Replace each trapdoor with x' for some i and a single trapdoor x

» Also done in [Lipmaa, PKC 2022] who used exhaustive search to find i's

Problem;
» even after exhaustive search, the exponents 1 are quite large

« KZG prover time £2(polynomial degree)
 => Results in high prover complexity
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 Observation 1: Groth16 for SAP has -1 trapdoor
» Observation 2:

* One trapdoor in Groth16 is only needed to mask SRS elements
corresponding to the statement

* We use a different verification algorithm, getting rid of "statement” trapdoor

e \erifier becomes faster

« In Polymath, V interpolates a polynomial in I]:p of degree | X |

» Instead of doing | X | -long MSM in Groth16
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We replace two trapdoors with y“ and y’, where y = x°
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Scenic Route to Polymath

* We only have three trapdoors
* |t is easier to choose “good” exponents!

We replace two trapdoors with y“ and y’, where y = x°

» x Is real trapdoor, @, 7, o are field elements

* Exhaustive search to find small exponents that result in knowledge-
soundness ¢

« Kameksaithha=3,y=—-5,0=n+3

Problem:
SRS is circuit-dependent

» It does not contain enough elements to compute [/],
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We add another trapdoor |z ], that is only used to compute KZG opening

 This adds elements to the SRS
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On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages
1. Groth16 itself has a complicated proof

2. Using virtual trapdoors x! instead of iIndependent trapdoors makes proof
more complicated
3. To get tight security after Fiat-Shamir, we prove special-soundness

4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
o |LPS23 noted that KZG is often used wrongly
* Constructions are secure in AGM but not when adversary can do o.s.

e And o.s. Is for free!

Part of Polymath’s proof is machine-checked
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Final Words

* First improvement on Groth16 since 2016
 Hopefully encourages other researchers to improve Groth16 even further

* Pros:
 Smaller arguments (more prominent in 192/256-bit security level)

» No adversarially created (5, elements — good for batching
» \erifier is potentially faster for a short public input
* And definitely faster for a long public input

 Cons:
 Prover is slower
e Uses random oracle model on top of AGM(OS)

e Mitigated in SNARK composition when used as a final SNARK

® Prover’s input is shorter => prover speed less important
e Any known reasonable initial SNARK candidate uses ROM




