Polymath:
Groth16 Is Not The Limit

Helger Lipmaa, University of Tartu, Estonia

Crypto 2024 Presentation

ZK-SNARKs

Computation: f Computation: f
Public input (statement) X Public input (statement) X
Private input (witness) W

ZK-SNARKs

Computation: f
Public input (statement) X

Computation: f
Public input (statement) X
Private input (witness) W

SI'S SI'S

ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1

ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1

« Completeness

ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1

« Completeness

 Knowledge-soundness

ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1

« Completeness

 Knowledge-soundness
o Zero-knowledge

ZK-SNARKs

Computation: f

Computation: f
Public input (statement) X Public input (statement) X

Private input (withess) W

SI'S SI'S

Proof 7 that f(OX, W) =1

« Completeness

 Knowledge-soundness
o Zero-knowledge
e Succinct arguments

Landscape

Landscape

|Good for Prover|

Tensor-code-based
(Brakedown, Binius,

Landscape

|Good for Prover|

Tensor-code-based
(Brakedown, Binius,

Landscape

(Good for Prover|

'Good for Both:

'Good for Verifier|

N

Tensor-code-based !

(Brakedown, Binius,

Composition:
e GKR + Groth16

e Brakedown + Groth16
* FRI + Groth16

Huge progress in zk-SNARK land in last 5 years

Groth16 still lands supreme after 8 years
Landscape * Shortest argument

e Fastest verifier

Good for Prover S Good for Both

Good for Verifier!

Tensor-code-based
(Brakedown, Binius,

Composition:

e GKR + Groth16
e Brakedown + Groth16
e FRI + Groth16

Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)

Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)

» (3, are additive abelian groups of large prime order p

Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)
» (3, are additive abelian groups of large prime order p
» | 1];is a generator of i,

Pairings
For Muggles

* pp = (P, Gy, Gy, Gy, [1]4, [1]5, €)
» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
» ¢: (G, X G, - G,is abilinear map

Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)

» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.

» ¢: (G, X G, - G,is abilinear map

. e(laly, [b),) = lab]pfora,b & F,

Pairings
For Muggles

° pp — (p9 Gl? 629 GT? [1]19 [1]29 é)

» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
» ¢: (G, X, - G;is abilinear map
. e(laly, [b),) = lab]pfora,b & F,
o “Standard” curve for 128-bit security level: BLS12-381

Pairings
For Muggles

* pp = (P, Gy, Gy, Gy, [1]4, [1], €)
» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
e : (; X, = Gis abilinear map
. e(laly, [b),) = lab]pfora,b & F,
o “Standard” curve for 128-bit security level: BLS12-381
Al _) = 256, () = 384, £(G,) = 768 (bits)

Pairings
For Muggles

* pp = (P, Gy, Gy, Gy, [1]4, [1], €)
» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
e : (; X, = Gis abilinear map
. e(laly, [b),) = lab]pfora,b & F,
o “Standard” curve for 128-bit security level: BLS12-381
Al _) = 256, () = 384, £(G,) = 768 (bits)

. Curves for 192-bit security level:

Pairings
For Muggles

* pp = (P, Gy, Gy, Gy, [1]4, [1], €)
» (3, are additive abelian groups of large prime order p
» | 1].is a generator of (.
e : (; X, = Gis abilinear map
. e(laly, [b),) = lab]pfora,b & F,
o “Standard” curve for 128-bit security level: BLS12-381
Al _) = 256, () = 384, £(G,) = 768 (bits)

. Curves for 192-bit security level:

. £(F) = 256, £(G,) = 512, £(G,) = 2048 (bits)

Computation: f A Computation: f
Public input (statement) X N Public input (statement) X
Private input (

SRS depends on the circuit

Computation: f A Computation: f
Public input (statement) X N Public input (statement) X
Private input (witness) W N—/

‘/yw‘

w = (lal;, by, [cly)

SRS depends on the circuit

 Argument length: only 3 group elements

Computation: f A Computation: f
Public input (statement) X N Public input (statement) X
Private input (witness) W N—/

‘/yw‘

w = (lal;, by, [cly)

.....

SRS depends on the circuit

 Argument length: only 3 group elements
» Verifier executes three pairings and | X | group ops

_
N 1
4 \'Q n q
7z - Q 0
; @ - | ‘
9 —
s

= (lal, [bly, [c]y) f N

On Optimality

* (Groth16 has three group elements

_ =
) |
. - N 0
4 ‘

On Optimality

o |
g/ :
*«f
L

T = ([Cl]l, [b]za [6]1)

* (Groth16 has three group elements
| ower bound [Groth, EC16]:

On Optimality

* Groth16 has three group elements
| ower bound [Groth, EC16]:
* At least two group elements needed

On Optimality

* (Groth16 has three group elements
| ower bound [Groth, EC16]:

* At least two group elements needed
» One of them has to be in (5,

On Optimality

* (Groth16 has three group elements
| ower bound [Groth, EC16]:

* At least two group elements needed
» One of them has to be in (5,

* Using a different arithmetization, one can have two group elements

On Optimality

* (Groth16 has three group elements
| ower bound [Groth, EC16]:

* At least two group elements needed
» One of them has to be in (5,

* Using a different arithmetization, one can have two group elements
 SAP (Square Arithmetic Programming) instead of R1CS

On Optimality

* Groth16 has three group elements
| ower bound [Groth, EC16]:
* At least two group elements needed

» One of them has to be in (5,

* Using a different arithmetization, one can have two group elements
 SAP (Square Arithmetic Programming) instead of R1CS
 However, then one relies on symmetric pairings

On Optimality

* Groth16 has three group elements
| ower bound [Groth, EC16]:
* At least two group elements needed

» One of them has to be in (5,

* Using a different arithmetization, one can have two group elements
 SAP (Square Arithmetic Programming) instead of R1CS
 However, then one relies on symmetric pairings
* Group elements will be considerably longer => worse in practice

On Optimality

* Groth16 has three group elements
| ower bound [Groth, EC16]:
* At least two group elements needed

» One of them has to be in (5,

* Using a different arithmetization, one can have two group elements
 SAP (Square Arithmetic Programming) instead of R1CS
 However, then one relies on symmetric pairings
* Group elements will be considerably longer => worse in practice

 The lower bound works in the standard model (no RO)

On Optimality

* Groth16 has three group elements
| ower bound [Groth, EC16]:
* At least two group elements needed

» One of them has to be in (5,

* Using a different arithmetization, one can have two group elements
 SAP (Square Arithmetic Programming) instead of R1CS
 However, then one relies on symmetric pairings
* Group elements will be considerably longer => worse in practice

 The lower bound works in the standard model (no RO)

|t talks about #group elements, not bit-length

w = (lal;, 0]y, [c]y) W p

Scenic Route to Polymath) TR <.

For non-muggles

- Problem: (5, elements are long

Scenic Route to Polymath) TR <.

For non-muggles

- Problem: (5, elements are long
» |b], = [b],, but how?

Scenic Route to Polymath 7= (al. (b,]

For non-muggles

- Problem: (5, elements are long

» |b], = [b],, but how?
* (Groth16 uses pairings to do quadratic checks

Scenic Route to Polymath '

For non-muggles

» Problem: (3, elements are long

» |b], = [b],, but how?
* (Groth16 uses pairings to do quadratic checks
» We can KZG-open the polynomial commitment [b], to some b and do

quadratic checks by using b

= ‘ / ,,“ |
Scenic Route to Polymath O

For non-muggles

- Problem: (5, elements are long

» |b], = [b],, but how?
* (Groth16 uses pairings to do quadratic checks

» We can KZG-open the polynomial commitment [b], to some b and do
quadratic checks by using b

» KZG opening is shorter than a (3, element

Scenic Route to Polymath o

For non-muggles

- Problem: (5, elements are long

» |b], = [b],, but how?
* (Groth16 uses pairings to do quadratic checks

We can KZG-open the polynomial commitment [5], to some b and do
quadratic checks by using b

» KZG opening is shorter than a (5, element

. (afield element b and a G, element [/1])

Scenic Route to Polymath

For non-muggles

. Problem: (5, elements are long

» |b], = [b],, but how?
* (Groth16 uses pairings to do quadratic checks

We can KZG-open the polynomial commitment [5], to some b and do
quadratic checks by using b

» KZG opening is shorter than a (5, element

. (a field element b and a (3, element [/1],)

Problem:
- we still have [b]; in the argument!

. Z([b],) < £([b])) + £(b) + £([h],) in 128-bit level

Scenic Route to Polymath

If we use SAP instead of R1CS, we get ||, = |a],

r=(al g [l b D)

Scenic Route to Polymath

If we use SAP instead of R1CS, we get ||, = |a],

e No need to send it!

ey

r=(al W [B)

Scenic Route to Polymath <

If we use SAP instead of R1CS, we get ||, = |a],

e No need to send it!

» Cost: circuit ~ 2 longer => slower prover

T = ([a]pNv [c], b, [A];) "/

Scenic Route to Polymath o«

If we use SAP instead of R1CS, we get ||, = |a],

e No need to send it!

» Cost: circuit ~ 2 longer => slower prover

 Multiplication gates => squaring gates

Scenic Route to Polymath '

If we use SAP instead of R1CS, we get ||, = |a],

e No need to send it!

e Cost: circuit ~ 2 longer => slower prover

 Multiplication gates => squaring gates

Problem:
 Groth16 has five trapdoors, KZG is univariate

* Not clear how to use KZG

Scenic Route to Polymath

e Univariatization:

z = ([al, [c], b, [h])

Scenic Route to Polymath ™} |

e Univariatization:

 Replace each trapdoor with x' for some i and a single trapdoor x

Scenic Route to Polymath ™ <

* Univariatization:
 Replace each trapdoor with x' for some i and a single trapdoor x

» Also done in [Lipmaa, PKC 2022] who used exhaustive search to find i's

Scenic Route to Polymath B cem

* Univariatization:
 Replace each trapdoor with x' for some i and a single trapdoor x

» Also done in [Lipmaa, PKC 2022] who used exhaustive search to find i's

Problem;
» even after exhaustive search, the exponents 1 are quite large

« KZG prover time £2(polynomial degree)
 => Results in high prover complexity

Scenic Route to Polymath

 Observation 1: Groth16 for SAP has -1 trapdoor

Scenic Route to Polymath ™ <

 Observation 1: Groth16 for SAP has -1 trapdoor
» Observation 2:

Scenic Route to Polymath <

 Observation 1: Groth16 for SAP has -1 trapdoor
» Observation 2:

* One trapdoor in Groth16 is only needed to mask SRS elements
corresponding to the statement

Scenic Route to Polymath ™ %

 Observation 1: Groth16 for SAP has -1 trapdoor
» Observation 2:

* One trapdoor in Groth16 is only needed to mask SRS elements
corresponding to the statement

* We use a different verification algorithm, getting rid of "statement” trapdoor

Scenic Route to Polymath <

 Observation 1: Groth16 for SAP has -1 trapdoor
» Observation 2:

* One trapdoor in Groth16 is only needed to mask SRS elements
corresponding to the statement

* We use a different verification algorithm, getting rid of "statement” trapdoor

e \erifier becomes faster

Scenic Route to Polymath <

 Observation 1: Groth16 for SAP has -1 trapdoor
» Observation 2:

* One trapdoor in Groth16 is only needed to mask SRS elements
corresponding to the statement

* We use a different verification algorithm, getting rid of "statement” trapdoor

e \erifier becomes faster

« In Polymath, V interpolates a polynomial in I]:p of degree | X |

Scenic Route to Polymath ™ <

 Observation 1: Groth16 for SAP has -1 trapdoor
» Observation 2:

* One trapdoor in Groth16 is only needed to mask SRS elements
corresponding to the statement

* We use a different verification algorithm, getting rid of "statement” trapdoor

e \erifier becomes faster

« In Polymath, V interpolates a polynomial in I]:p of degree | X |

» Instead of doing | X | -long MSM in Groth16

Scenic Route to Polymath

* We only have three trapdoors

n = (laly, [c]y, b, h]) T

Scenic Route to Polymath ™} |

* We only have three trapdoors
* |t is easier to choose “good” exponents!

Scenic Route to Polymath <

* We only have three trapdoors
* |t is easier to choose “good” exponents!

We replace two trapdoors with y“ and y’, where y = x°

Scenic Route to Polymath <

* We only have three trapdoors
* |t is easier to choose “good” exponents!

We replace two trapdoors with y“ and y’, where y = x°
* X Is real trapdoor, a, v, o are field elements

Scenic Route to Polymath ™ <

* We only have three trapdoors
* |t is easier to choose “good” exponents!

We replace two trapdoors with y“ and y’, where y = x°

* X Is real trapdoor, a, v, o are field elements

 Exhaustive search to find small exponents that result in knowledge-
soundness

Scenic Route to Polymath ¥

* We only have three trapdoors
* |t is easier to choose “good” exponents!

We replace two trapdoors with y“ and y’, where y = x°

* X Is real trapdoor, a, v, o are field elements

 Exhaustive search to find small exponents that result in knowledge-

soundness
" ’
« Kameksaithra=3,y=—-5,0=n+3 ‘

T = ([Cl] |E [C] |E ba [h] 1) ’

Scenic Route to Polymath

* We only have three trapdoors
* |t is easier to choose “good” exponents!

We replace two trapdoors with y“ and y’, where y = x°

» x Is real trapdoor, @, 7, o are field elements

* Exhaustive search to find small exponents that result in knowledge-
soundness ¢

« Kameksaithha=3,y=—-5,0=n+3

Problem:
SRS is circuit-dependent

» It does not contain enough elements to compute [/],

Scenic Route to Polymath <

We add another trapdoor |z], that is only used to compute KZG opening

 This adds elements to the SRS

Scenic Route to Polymath

We add another trapdoor |z], that is only used to compute KZG opening

 This adds elements to the SRS

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages
1. Groth16 itself has a complicated proof

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages
1. Groth16 itself has a complicated proof

2. Using virtual trapdoors x! instead of independent trapdoors makes proof
more complicated

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages
1. Groth16 itself has a complicated proof

2. Using virtual trapdoors x! instead of independent trapdoors makes proof
more complicated

3. To get tight security after Fiat-Shamir, we prove special-soundness

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages
1. Groth16 itself has a complicated proof

2. Using virtual trapdoors x! instead of independent trapdoors makes proof
more complicated
3. To get tight security after Fiat-Shamir, we prove special-soundness

4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages
1. Groth16 itself has a complicated proof

2. Using virtual trapdoors x! instead of independent trapdoors makes proof
more complicated
3. To get tight security after Fiat-Shamir, we prove special-soundness
4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
o |LPS23 noted that KZG is often used wrongly

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages
1. Groth16 itself has a complicated proof

2. Using virtual trapdoors x! instead of independent trapdoors makes proof
more complicated
3. To get tight security after Fiat-Shamir, we prove special-soundness
4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
o |LPS23 noted that KZG is often used wrongly
* Constructions are secure in AGM but not when adversary can do o.s.

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages
1. Groth16 itself has a complicated proof

2. Using virtual trapdoors x! instead of independent trapdoors makes proof
more complicated
3. To get tight security after Fiat-Shamir, we prove special-soundness

4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
o |LPS23 noted that KZG is often used wrongly
* Constructions are secure in AGM but not when adversary can do o.s.

e And o.s. Is for free!

On Security Proofs

 Completeness and zero-knowledge proofs are short and standard
* Soundness proof is seven pages
1. Groth16 itself has a complicated proof

2. Using virtual trapdoors x! instead of iIndependent trapdoors makes proof
more complicated
3. To get tight security after Fiat-Shamir, we prove special-soundness

4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
o |LPS23 noted that KZG is often used wrongly
* Constructions are secure in AGM but not when adversary can do o.s.

e And o.s. Is for free!

Part of Polymath’s proof is machine-checked

Final Words

* First improvement on Groth16 since 2016

Final Words

* First improvement on Groth16 since 2016
 Hopefully encourages other researchers to improve Groth16 even further

Final Words

* First improvement on Groth16 since 2016
 Hopefully encourages other researchers to improve Groth16 even further
* Pros:

Final Words

* First improvement on Groth16 since 2016
* Hopefully encourages other researchers to improve Groth16 even further
Pros:

Smaller arguments (more prominent in 192/256-bit security level)

Final Words

* First improvement on Groth16 since 2016

 Hopefully encourages other researchers to improve Groth16 even further
* Pros:

 Smaller arguments (more prominent in 192/256-bit security level)
» No adversarially created (5, elements — good for batching

Final Words

* First improvement on Groth16 since 2016

 Hopefully encourages other researchers to improve Groth16 even further
* Pros:

 Smaller arguments (more prominent in 192/256-bit security level)

» No adversarially created (5, elements — good for batching
» \erifier is potentially faster for a short public input

Final Words

* First improvement on Groth16 since 2016

 Hopefully encourages other researchers to improve Groth16 even further
* Pros:

 Smaller arguments (more prominent in 192/256-bit security level)
» No adversarially created (5, elements — good for batching

» \erifier is potentially faster for a short public input
* And definitely faster for a long public input

Final Words

* First improvement on Groth16 since 2016
 Hopefully encourages other researchers to improve Groth16 even further
* Pros:
 Smaller arguments (more prominent in 192/256-bit security level)

» No adversarially created (5, elements — good for batching

» \erifier is potentially faster for a short public input
* And definitely faster for a long public input
 Cons:

e Mitigated in SNARK composition when used as a final SNARK

Final Words

* First improvement on Groth16 since 2016
 Hopefully encourages other researchers to improve Groth16 even further
* Pros:
 Smaller arguments (more prominent in 192/256-bit security level)

» No adversarially created (5, elements — good for batching

» \erifier is potentially faster for a short public input
* And definitely faster for a long public input
 Cons:
 Prover is slower

e Mitigated in SNARK composition when used as a final SNARK

® Prover’s input is shorter => prover speed less important

Final Words

* First improvement on Groth16 since 2016
 Hopefully encourages other researchers to improve Groth16 even further

* Pros:
 Smaller arguments (more prominent in 192/256-bit security level)

» No adversarially created (5, elements — good for batching
» \erifier is potentially faster for a short public input
* And definitely faster for a long public input

 Cons:
 Prover is slower
e Uses random oracle model on top of AGM(OS)

e Mitigated in SNARK composition when used as a final SNARK

® Prover’s input is shorter => prover speed less important
e Any known reasonable initial SNARK candidate uses ROM

