
Crypto 2024 Presentation

Polymath:
Groth16 Is Not The Limit
Helger Lipmaa, University of Tartu, Estonia

ZK-SNARKs
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

ZK-SNARKs
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

srs srs

ZK-SNARKs
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

srs srs

Proof that π f(𝕏, 𝕎) = 1

ZK-SNARKs
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

srs srs

Proof that π f(𝕏, 𝕎) = 1

• Completeness

ZK-SNARKs
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

srs srs

Proof that π f(𝕏, 𝕎) = 1

• Completeness
• Knowledge-soundness

ZK-SNARKs
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

srs srs

Proof that π f(𝕏, 𝕎) = 1

• Completeness
• Knowledge-soundness
• Zero-knowledge

ZK-SNARKs
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

srs srs

Proof that π f(𝕏, 𝕎) = 1

• Completeness
• Knowledge-soundness
• Zero-knowledge
• Succinct arguments

Landscape

Landscape

Good for Prover

GKR

FRI

Tensor-code-based

(Brakedown, Binius,
…)

Landscape

Good for VerifierGood for Prover

GKR

FRI

Tensor-code-based

(Brakedown, Binius,
…)

Plonk Groth16…

Landscape

Good for VerifierGood for Prover

GKR

FRI

Tensor-code-based

(Brakedown, Binius,
…)

Plonk Groth16…

Good for Both

Composition:

• GKR + Groth16

• Brakedown + Groth16

• FRI + Groth16

• …

Landscape

Good for VerifierGood for Prover

GKR

FRI

Tensor-code-based

(Brakedown, Binius,
…)

Plonk Groth16

Huge progress in zk-SNARK land in last 5 years

Groth16 still lands supreme after 8 years

• Shortest argument

• Fastest verifier

…

Good for Both

Composition:

• GKR + Groth16

• Brakedown + Groth16

• FRI + Groth16

• …

Pairings
For Muggles

• pp = (p, 𝔾1, 𝔾2, 𝔾T, [1]1, [1]2, ̂e)

Pairings
For Muggles

• pp = (p, 𝔾1, 𝔾2, 𝔾T, [1]1, [1]2, ̂e)
• are additive abelian groups of large prime order 𝔾i p

Pairings
For Muggles

• pp = (p, 𝔾1, 𝔾2, 𝔾T, [1]1, [1]2, ̂e)
• are additive abelian groups of large prime order 𝔾i p
• is a generator of [1]i 𝔾i

Pairings
For Muggles

• pp = (p, 𝔾1, 𝔾2, 𝔾T, [1]1, [1]2, ̂e)
• are additive abelian groups of large prime order 𝔾i p
• is a generator of [1]i 𝔾i
• is a bilinear map̂e : 𝔾1 × 𝔾2 → 𝔾T

Pairings
For Muggles

• pp = (p, 𝔾1, 𝔾2, 𝔾T, [1]1, [1]2, ̂e)
• are additive abelian groups of large prime order 𝔾i p
• is a generator of [1]i 𝔾i
• is a bilinear map̂e : 𝔾1 × 𝔾2 → 𝔾T

• for ̂e([a]1, [b]2) = [ab]T a, b ∈ 𝔽p

Pairings
For Muggles

• pp = (p, 𝔾1, 𝔾2, 𝔾T, [1]1, [1]2, ̂e)
• are additive abelian groups of large prime order 𝔾i p
• is a generator of [1]i 𝔾i
• is a bilinear map̂e : 𝔾1 × 𝔾2 → 𝔾T

• for ̂e([a]1, [b]2) = [ab]T a, b ∈ 𝔽p
• “Standard” curve for 128-bit security level: BLS12-381

Pairings
For Muggles

• pp = (p, 𝔾1, 𝔾2, 𝔾T, [1]1, [1]2, ̂e)
• are additive abelian groups of large prime order 𝔾i p
• is a generator of [1]i 𝔾i
• is a bilinear map̂e : 𝔾1 × 𝔾2 → 𝔾T

• for ̂e([a]1, [b]2) = [ab]T a, b ∈ 𝔽p
• “Standard” curve for 128-bit security level: BLS12-381
• , , (bits)ℓ(𝔽p) = 256 ℓ(𝔾1) = 384 ℓ(𝔾2) = 768

Pairings
For Muggles

• pp = (p, 𝔾1, 𝔾2, 𝔾T, [1]1, [1]2, ̂e)
• are additive abelian groups of large prime order 𝔾i p
• is a generator of [1]i 𝔾i
• is a bilinear map̂e : 𝔾1 × 𝔾2 → 𝔾T

• for ̂e([a]1, [b]2) = [ab]T a, b ∈ 𝔽p
• “Standard” curve for 128-bit security level: BLS12-381
• , , (bits)ℓ(𝔽p) = 256 ℓ(𝔾1) = 384 ℓ(𝔾2) = 768

• Curves for 192-bit security level:

Pairings
For Muggles

• pp = (p, 𝔾1, 𝔾2, 𝔾T, [1]1, [1]2, ̂e)
• are additive abelian groups of large prime order 𝔾i p
• is a generator of [1]i 𝔾i
• is a bilinear map̂e : 𝔾1 × 𝔾2 → 𝔾T

• for ̂e([a]1, [b]2) = [ab]T a, b ∈ 𝔽p
• “Standard” curve for 128-bit security level: BLS12-381
• , , (bits)ℓ(𝔽p) = 256 ℓ(𝔾1) = 384 ℓ(𝔾2) = 768

• Curves for 192-bit security level:
• , , (bits)ℓ(𝔽p) = 256 ℓ(𝔾1) = 512 ℓ(𝔾2) = 2048

Groth16: Bird’s-Eye View
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

srs(f) srs(f)

• SRS depends on the circuit

Groth16: Bird’s-Eye View
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

srs(f) srs(f)

π = ([a]1, [b]2, [c]1)

• SRS depends on the circuit
• Argument length: only 3 group elements

Groth16: Bird’s-Eye View
Computation:

Public input (statement)

Private input (witness)

f
𝕏

𝕎

Computation:

Public input (statement)

f
𝕏

srs(f) srs(f)

π = ([a]1, [b]2, [c]1)

• SRS depends on the circuit
• Argument length: only 3 group elements
• Verifier executes three pairings and group ops|𝕏 |

On Optimality

• Groth16 has three group elements

π = ([a]1, [b]2, [c]1)

On Optimality

• Groth16 has three group elements
• Lower bound [Groth, EC16]:

π = ([a]1, [b]2, [c]1)

On Optimality

• Groth16 has three group elements
• Lower bound [Groth, EC16]:
• At least two group elements needed

π = ([a]1, [b]2, [c]1)

On Optimality

• Groth16 has three group elements
• Lower bound [Groth, EC16]:
• At least two group elements needed

• One of them has to be in 𝔾2

π = ([a]1, [b]2, [c]1)

On Optimality

• Groth16 has three group elements
• Lower bound [Groth, EC16]:
• At least two group elements needed

• One of them has to be in 𝔾2
• Using a different arithmetization, one can have two group elements

π = ([a]1, [b]2, [c]1)

On Optimality

• Groth16 has three group elements
• Lower bound [Groth, EC16]:
• At least two group elements needed

• One of them has to be in 𝔾2
• Using a different arithmetization, one can have two group elements
• SAP (Square Arithmetic Programming) instead of R1CS

π = ([a]1, [b]2, [c]1)

On Optimality

• Groth16 has three group elements
• Lower bound [Groth, EC16]:
• At least two group elements needed

• One of them has to be in 𝔾2
• Using a different arithmetization, one can have two group elements
• SAP (Square Arithmetic Programming) instead of R1CS
• However, then one relies on symmetric pairings

π = ([a]1, [b]2, [c]1)

On Optimality

• Groth16 has three group elements
• Lower bound [Groth, EC16]:
• At least two group elements needed

• One of them has to be in 𝔾2
• Using a different arithmetization, one can have two group elements
• SAP (Square Arithmetic Programming) instead of R1CS
• However, then one relies on symmetric pairings
• Group elements will be considerably longer => worse in practice

π = ([a]1, [b]2, [c]1)

On Optimality

• Groth16 has three group elements
• Lower bound [Groth, EC16]:
• At least two group elements needed

• One of them has to be in 𝔾2
• Using a different arithmetization, one can have two group elements
• SAP (Square Arithmetic Programming) instead of R1CS
• However, then one relies on symmetric pairings
• Group elements will be considerably longer => worse in practice

π = ([a]1, [b]2, [c]1)

• The lower bound works in the standard model (no RO)

On Optimality

• Groth16 has three group elements
• Lower bound [Groth, EC16]:
• At least two group elements needed

• One of them has to be in 𝔾2
• Using a different arithmetization, one can have two group elements
• SAP (Square Arithmetic Programming) instead of R1CS
• However, then one relies on symmetric pairings
• Group elements will be considerably longer => worse in practice

π = ([a]1, [b]2, [c]1)

• The lower bound works in the standard model (no RO)
• It talks about #group elements, not bit-length

Scenic Route to Polymath

• Problem: elements are long𝔾2

π = ([a]1, [b]2, [c]1)
For non-muggles

Scenic Route to Polymath

• Problem: elements are long𝔾2

• , but how?[b]2 ⟹ [b]1

π = ([a]1, [b]2, [c]1)
For non-muggles

Scenic Route to Polymath

• Problem: elements are long𝔾2

• , but how?[b]2 ⟹ [b]1
• Groth16 uses pairings to do quadratic checks

π = ([a]1, [b]2, [c]1)
For non-muggles

Scenic Route to Polymath

• Problem: elements are long𝔾2

• , but how?[b]2 ⟹ [b]1
• Groth16 uses pairings to do quadratic checks
• We can KZG-open the polynomial commitment to some and do

quadratic checks by using
[b]1 b̄

b̄

π = ([a]1, [b]2, [c]1)
For non-muggles

Scenic Route to Polymath

• Problem: elements are long𝔾2

• , but how?[b]2 ⟹ [b]1
• Groth16 uses pairings to do quadratic checks
• We can KZG-open the polynomial commitment to some and do

quadratic checks by using
[b]1 b̄

b̄
• KZG opening is shorter than a element𝔾2

π = ([a]1, [b]2, [c]1)
For non-muggles

Scenic Route to Polymath

• Problem: elements are long𝔾2

• , but how?[b]2 ⟹ [b]1
• Groth16 uses pairings to do quadratic checks
• We can KZG-open the polynomial commitment to some and do

quadratic checks by using
[b]1 b̄

b̄
• KZG opening is shorter than a element𝔾2

• (a field element and a element) b̄ 𝔾1 [h]1

π = ([a]1, [b]2, [c]1)
For non-muggles

Scenic Route to Polymath

• Problem: elements are long𝔾2

• , but how?[b]2 ⟹ [b]1
• Groth16 uses pairings to do quadratic checks
• We can KZG-open the polynomial commitment to some and do

quadratic checks by using
[b]1 b̄

b̄
• KZG opening is shorter than a element𝔾2

• (a field element and a element) b̄ 𝔾1 [h]1
Problem:

• we still have in the argument!

• in 128-bit level

[b]1
ℓ([b]2) < ℓ([b]1) + ℓ(b̄) + ℓ([h]1)

π = ([a]1, [b]2, [c]1)
For non-muggles

Scenic Route to Polymath

• If we use SAP instead of R1CS, we get [b]1 = [a]1

π = ([a]1, [b]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• If we use SAP instead of R1CS, we get [b]1 = [a]1

• No need to send it!

π = ([a]1, [b]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• If we use SAP instead of R1CS, we get [b]1 = [a]1

• No need to send it!

• Cost: circuit longer => slower prover≈ 2

π = ([a]1, [b]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• If we use SAP instead of R1CS, we get [b]1 = [a]1

• No need to send it!

• Cost: circuit longer => slower prover≈ 2

• Multiplication gates => squaring gates

π = ([a]1, [b]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• If we use SAP instead of R1CS, we get [b]1 = [a]1

• No need to send it!

• Cost: circuit longer => slower prover≈ 2

• Multiplication gates => squaring gates

Problem:

• Groth16 has five trapdoors, KZG is univariate

• Not clear how to use KZG

π = ([a]1, [b]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Univariatization:

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Univariatization:

• Replace each trapdoor with for some and a single trapdoor xi i x

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Univariatization:

• Replace each trapdoor with for some and a single trapdoor xi i x

• Also done in [Lipmaa, PKC 2022] who used exhaustive search to find 'si

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Univariatization:

• Replace each trapdoor with for some and a single trapdoor xi i x

• Also done in [Lipmaa, PKC 2022] who used exhaustive search to find 'si

Problem:

• even after exhaustive search, the exponents are quite large

• KZG prover time

• => Results in high prover complexity

i
Ω(polynomial degree)

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Observation 1: Groth16 for SAP has -1 trapdoor

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Observation 1: Groth16 for SAP has -1 trapdoor
• Observation 2:

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Observation 1: Groth16 for SAP has -1 trapdoor
• Observation 2:
• One trapdoor in Groth16 is only needed to mask SRS elements

corresponding to the statement

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Observation 1: Groth16 for SAP has -1 trapdoor
• Observation 2:
• One trapdoor in Groth16 is only needed to mask SRS elements

corresponding to the statement
• We use a different verification algorithm, getting rid of "statement" trapdoor

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Observation 1: Groth16 for SAP has -1 trapdoor
• Observation 2:
• One trapdoor in Groth16 is only needed to mask SRS elements

corresponding to the statement
• We use a different verification algorithm, getting rid of "statement" trapdoor
• Verifier becomes faster

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Observation 1: Groth16 for SAP has -1 trapdoor
• Observation 2:
• One trapdoor in Groth16 is only needed to mask SRS elements

corresponding to the statement
• We use a different verification algorithm, getting rid of "statement" trapdoor
• Verifier becomes faster

• In Polymath, V interpolates a polynomial in of degree 𝔽p |𝕏 |

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• Observation 1: Groth16 for SAP has -1 trapdoor
• Observation 2:
• One trapdoor in Groth16 is only needed to mask SRS elements

corresponding to the statement
• We use a different verification algorithm, getting rid of "statement" trapdoor
• Verifier becomes faster

• In Polymath, V interpolates a polynomial in of degree 𝔽p |𝕏 |

• Instead of doing -long MSM in Groth16|𝕏 |

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• We only have three trapdoors

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• We only have three trapdoors
• It is easier to choose “good” exponents!

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• We only have three trapdoors
• It is easier to choose “good” exponents!
• We replace two trapdoors with and , where yα yγ y = xσ

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• We only have three trapdoors
• It is easier to choose “good” exponents!
• We replace two trapdoors with and , where yα yγ y = xσ

• is real trapdoor, are field elementsx α, γ, σ

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• We only have three trapdoors
• It is easier to choose “good” exponents!
• We replace two trapdoors with and , where yα yγ y = xσ

• is real trapdoor, are field elementsx α, γ, σ
• Exhaustive search to find small exponents that result in knowledge-

soundness

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• We only have three trapdoors
• It is easier to choose “good” exponents!
• We replace two trapdoors with and , where yα yγ y = xσ

• is real trapdoor, are field elementsx α, γ, σ
• Exhaustive search to find small exponents that result in knowledge-

soundness
• Kamek saith: α = 3, γ = − 5, σ = n + 3

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• We only have three trapdoors
• It is easier to choose “good” exponents!
• We replace two trapdoors with and , where yα yγ y = xσ

• is real trapdoor, are field elementsx α, γ, σ
• Exhaustive search to find small exponents that result in knowledge-

soundness
• Kamek saith: α = 3, γ = − 5, σ = n + 3

Problem:

• SRS is circuit-dependent

• It does not contain enough elements to compute [h]1

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• We add another trapdoor that is only used to compute KZG opening

• This adds elements to the SRS

[z]1

π = ([a]1, [c]1, b̄, [h]1)

Scenic Route to Polymath

• We add another trapdoor that is only used to compute KZG opening

• This adds elements to the SRS

[z]1

Profit

π = ([a]1, [c]1, b̄, [h]1)

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard
• Soundness proof is seven pages

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard
• Soundness proof is seven pages
1. Groth16 itself has a complicated proof

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard
• Soundness proof is seven pages
1. Groth16 itself has a complicated proof
2. Using virtual trapdoors instead of independent trapdoors makes proof

more complicated
xi

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard
• Soundness proof is seven pages
1. Groth16 itself has a complicated proof
2. Using virtual trapdoors instead of independent trapdoors makes proof

more complicated
xi

3. To get tight security after Fiat-Shamir, we prove special-soundness

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard
• Soundness proof is seven pages
1. Groth16 itself has a complicated proof
2. Using virtual trapdoors instead of independent trapdoors makes proof

more complicated
xi

3. To get tight security after Fiat-Shamir, we prove special-soundness
4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard
• Soundness proof is seven pages
1. Groth16 itself has a complicated proof
2. Using virtual trapdoors instead of independent trapdoors makes proof

more complicated
xi

3. To get tight security after Fiat-Shamir, we prove special-soundness
4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
• LPS23 noted that KZG is often used wrongly

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard
• Soundness proof is seven pages
1. Groth16 itself has a complicated proof
2. Using virtual trapdoors instead of independent trapdoors makes proof

more complicated
xi

3. To get tight security after Fiat-Shamir, we prove special-soundness
4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
• LPS23 noted that KZG is often used wrongly
• Constructions are secure in AGM but not when adversary can do o.s.

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard
• Soundness proof is seven pages
1. Groth16 itself has a complicated proof
2. Using virtual trapdoors instead of independent trapdoors makes proof

more complicated
xi

3. To get tight security after Fiat-Shamir, we prove special-soundness
4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
• LPS23 noted that KZG is often used wrongly
• Constructions are secure in AGM but not when adversary can do o.s.
• And o.s. is for free!

On Security Proofs

• Completeness and zero-knowledge proofs are short and standard
• Soundness proof is seven pages
1. Groth16 itself has a complicated proof
2. Using virtual trapdoors instead of independent trapdoors makes proof

more complicated
xi

3. To get tight security after Fiat-Shamir, we prove special-soundness
4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
• LPS23 noted that KZG is often used wrongly
• Constructions are secure in AGM but not when adversary can do o.s.
• And o.s. is for free!

Part of Polymath’s proof is machine-checked

Final Words

• First improvement on Groth16 since 2016

Final Words

• First improvement on Groth16 since 2016
• Hopefully encourages other researchers to improve Groth16 even further

Final Words

• First improvement on Groth16 since 2016
• Hopefully encourages other researchers to improve Groth16 even further

• Pros:

Final Words

• First improvement on Groth16 since 2016
• Hopefully encourages other researchers to improve Groth16 even further

• Pros:
• Smaller arguments (more prominent in 192/256-bit security level)

Final Words

• First improvement on Groth16 since 2016
• Hopefully encourages other researchers to improve Groth16 even further

• Pros:
• Smaller arguments (more prominent in 192/256-bit security level)
• No adversarially created elements — good for batching𝔾2

Final Words

• First improvement on Groth16 since 2016
• Hopefully encourages other researchers to improve Groth16 even further

• Pros:
• Smaller arguments (more prominent in 192/256-bit security level)
• No adversarially created elements — good for batching𝔾2
• Verifier is potentially faster for a short public input

Final Words

• First improvement on Groth16 since 2016
• Hopefully encourages other researchers to improve Groth16 even further

• Pros:
• Smaller arguments (more prominent in 192/256-bit security level)
• No adversarially created elements — good for batching𝔾2
• Verifier is potentially faster for a short public input
• And definitely faster for a long public input

Final Words

• First improvement on Groth16 since 2016
• Hopefully encourages other researchers to improve Groth16 even further

• Pros:
• Smaller arguments (more prominent in 192/256-bit security level)
• No adversarially created elements — good for batching𝔾2
• Verifier is potentially faster for a short public input
• And definitely faster for a long public input

• Cons:

• Mitigated in SNARK composition when used as a final SNARK

Final Words

• First improvement on Groth16 since 2016
• Hopefully encourages other researchers to improve Groth16 even further

• Pros:
• Smaller arguments (more prominent in 192/256-bit security level)
• No adversarially created elements — good for batching𝔾2
• Verifier is potentially faster for a short public input
• And definitely faster for a long public input

• Cons:
• Prover is slower

• Mitigated in SNARK composition when used as a final SNARK
• Prover’s input is shorter => prover speed less important

Final Words

• First improvement on Groth16 since 2016
• Hopefully encourages other researchers to improve Groth16 even further

• Pros:
• Smaller arguments (more prominent in 192/256-bit security level)
• No adversarially created elements — good for batching𝔾2
• Verifier is potentially faster for a short public input
• And definitely faster for a long public input

• Cons:
• Prover is slower
• Uses random oracle model on top of AGM(OS)

• Mitigated in SNARK composition when used as a final SNARK
• Prover’s input is shorter => prover speed less important

• Any known reasonable initial SNARK candidate uses ROM

