
Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Time-Lock Puzzles from Lattices

Shweta Agrawal1 Giulio Malavolta2, 3 Tianwei Zhang 3, 4

1IIT Madras

2Bocconi University

3Max Planck Institute for Security and Privacy

4Ruhr University Bochum

Crypto 2024, August 17, 2024

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Outline

1 Introduction

2 TLP from SRE for Repeated Circuits

3 TLP with Setup

4 Sublinear Randomized Encoding

5 Conclusion

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Time-Lock Puzzles

Puzzle(m)
Takes time T−−−−−−−−→ m

Fast puzzle generation - Time to generate Puzzle(m) is much
shorter than time T (sublinear).

Puzzle opening takes a long time - The circuit that opens
Puzzle(m) has depth at least T . Parallelism shouldn’t help.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Applications

Encrypt to the future!
Sealed Bid Auctions

Non-Malleable Commitments

Miner extractable value prevention

More: Blockchain front running prevention, fair contract
signing, cryptocurrency payments, distributed consensus

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Our Results

(Preprocessing Model) TLP with (one-time, public-coin)
Setup T , puzzle generation logT .

(Plain Model) TLP, puzzle generation time and the puzzle
size
√
T , the first lattice-based TLP construction.

Succinct randomized encoding (SRE) for repeated circuit
computations. New Application: Sublinear Garbled RAM.
Prior solution was based on iO [BGJ+16].

Introduce the notion of range puncturable PRF.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Definition of SRE for Repeated Circuits

Definition (SRE for Repeated Circuits)

(C̃T , x̃)← SRE.Enc(1λ,C , x ,T): Takes time sublinear in T .
CT (x) = C (. . .C︸ ︷︷ ︸

T−times

(x))← SRE.Eval(C̃T , x̃): Takes time T .

Security: no further information other than CT (x) is revealed
about x .

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

TLP Circuit

The TLP circuit Cf (b, x ,m, z , i):
If i = T + 1:
if b = 0, return m;
if b = 1, return x ⊕ z .

Otherwise, return (b, f (x),m, z , i + 1).

We denote Cf ,T the T -fold repetition of Cf , where f is a T -folded
sequential function.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

TLP from SRE for Repeated Circuits

PGen(T , s): Sample x ,m, r ← {0, 1}λ randomly, compute
(C̃f ,T , x̃) ← SRE.Enc(1λ,Cf , (0, x ,m, 0λ, 1),T), return Z =
(x̃ , r , r ·m ⊕ s).

PSolve(Z): Compute SRE.Eval(C̃f ,T , x̃) · r to unmask s.

Correctness:
Cf ,T (0, x ,m, 0, 1) = m.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Security of TLP

Security:

(C̃f ,T , x̃) = Encode(Cf , (0, x ,m, 0, 1))

≡ Encode(Cf , (0, x ,m ⊕ fT (x), 0, 1))

≈ Encode(Cf , (0, x ,m ⊕ fT (x),m, 1))

≈ Encode(Cf , (1, x ,m ⊕ fT (x),m, 1))

≈ Encode(Cf , (1, x , 0,m, 1)) (encoding fT (x)⊕m)

Therefore any adversary that is able to output m in time less than
T will also compute fT (x), thus violating the sequentiality of f .

Apply the depth-preserving Goldreich-Levin theorem in the
reduction.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Depth-Independent Reusable Garbled Circuit

Circular small-secret LWE
=⇒ rGC [HLL23] + LFE [QWW18]
=⇒ Depth-Independent Reusable GC:

(C̃ , pk)← rGC.Garble
(
1λ,C

)
, |pk| = poly(λ), takes

time poly(λ) · |C |
x̃ ← rGC.Enc(pk, x), takes time poly(λ) · |x | · |y |
C (x)← rGC.Eval

(
C̃ ,C , x̃

)
, takes time poly(λ) · |C |

Security: A(C̃ , pk, x̃) ≈ A(C̃ , pk,Sim(1λ,C , pk,C (x)))

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

TLP with Setup

PSetup(1λ,T):
Compute (C̃f ,T , pk)← rGC.Garble

(
1λ,Cf ,T

)
.

PGen(pp, s):
Sample x ,m, r ← {0, 1}λ randomly, compute
x̃ ← rGC.Enc(pk, (0, x ,m, 0λ, 1)), return Z = (x̃ , r , r ·m⊕s).

PSolve(Z):

Compute rGC.Eval
(
C̃f ,T ,Cf ,T , x̃

)
· r to unmask s.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Attempt to construct SRE for Repeated Circuits

Idea: Reuse the preprocessing to amortize the work.

Circuit F√T (x , i):
If i = T + 1 return x ;
else compute y = f√T (x), output an encoding of (y , i+

√
T).

“SRE.Encode”:
Compute (F̃√T , pk)← rGC.Garble(1λ,F√T),
output rGC.Enc(pk, (x, 1)).

“SRE.Decode”:
encoding of (x , 1)→ encoding of (f√T (x),

√
T +1)→ · · · → fT (x)

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Problem with the attempt

Problem

However, the size of an encoding in [HLL23] depends on the
output size of the circuit, which means that it grows exponentially
with the number of repetitions!

To fix this, we use split-FHE [BDGM23]: when evaluating
Enc(m)→ Enc(g(m)), one can compute a small hint hg ,m (|hg ,m|
is independent of |g(m)|) that allows one to decrypt the evaluated
ciphertext.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Construction of SRE for Repeated Circuits

Modify F√T to output the hint of the split-FHE computation:

If i =
√
T + 1: Return x .

Otherwise, compute c ← split-FHE.Eval(Γi,p̄k(·), ci).
Return a masked small hint hi of c .

The circuit Γi ,p̄k(x ,K{i + 1}):
Compute y = f√T (x).

Return FHE ciphertext ci+1 of (y ,K{i + 2}) and rGC
encoding ei+1 of (y , i + 1, p̄k, ci+1).

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Construction of SRE for Repeated Circuits Continued

SRE.Enc(1λ, f, x,T)
Output

the garbled circuit: (F̃√T , pk)← rGC.Garble
(
1λ,F√T

)
,

the garbled input: a FHE ciphertext c1 of x and a rGC
encoding e1 of (pk1, x , 1, pk, c1).

SRE.Dec(1λ, f, x)

For i = 1, . . . ,
√
T :

Compute c ← FHE.Eval(pki , Γi ,pk, ci).
Decode hi ← rGC.Eval(F̃√T ,F

√
T , ei).

Get (ci+1, ei+1) by decrypting hi and c .

Output rGC.Eval
(
F̃√T ,F

√
T , e

√
T+1

)
.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Conclusion

TLP with Setup T , puzzle generation logT . TLP: puzzle
generation

√
T .

Introduce range puncturable PRF and SRE along the way.

Heuristic Fully Efficient SRE, hence TLP with logT puzzle
generation time.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Open Problems

lattice-based fully efficient SRE, hence TLP with logT puzzle
generation time.

lattice-based homomorphic TLPs.

lattice-based batch-solving TLPs.

Tianwei Zhang MPISP, RUB

TLP from Lattices

Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

Questions?

Thank you for your attention!

Questions?

Tianwei Zhang MPISP, RUB

TLP from Lattices

	Introduction
	TLP from SRE for Repeated Circuits
	TLP with Setup
	Sublinear Randomized Encoding
	Conclusion

