

Time-Lock Puzzles from Lattices

Shweta Agrawal¹ Giulio Malavolta^{2, 3} Tianwei Zhang ^{3, 4}

1 IIT Madras

² Bocconi University

³Max Planck Institute for Security and Privacy

⁴Ruhr University Bochum

Crypto 2024, August 17, 2024

Outline

1 [Introduction](#page-2-0)

- 2 [TLP from SRE for Repeated Circuits](#page-5-0)
- **3** [TLP with Setup](#page-9-0)
- 4 [Sublinear Randomized Encoding](#page-11-0)

5 [Conclusion](#page-15-0)

Time-Lock Puzzles

$$
\text{Puzzle(m)} \xrightarrow{\text{Takes time } \mathsf{T}} m
$$

- **F** Fast puzzle generation Time to generate Puzzle (m) is much shorter than time T (sublinear).
- **Puzzle opening takes a long time The circuit that opens** Puzzle(m) has depth at least T. Parallelism shouldn't help.

Applications

Encrypt to the future!

- Sealed Bid Auctions
- **Non-Malleable Commitments**
- **Miner extractable value prevention**
- **More: Blockchain front running prevention, fair contract** signing, cryptocurrency payments, distributed consensus

- (Preprocessing Model) TLP with (one-time, public-coin) Setup T, puzzle generation log T.
- (Plain Model) TLP, puzzle generation time and the puzzle (Piain Model) TLP, puzzle generation time and trainers of \sqrt{T} , the first lattice-based TLP construction.
- Succinct randomized encoding (SRE) for repeated circuit computations. New Application: Sublinear Garbled RAM. Prior solution was based on iO [BGJ+16].
- Introduce the notion of range puncturable PRF.

Definition of SRE for Repeated Circuits

Definition (SRE for Repeated Circuits)

$$
(\tilde{C}_T, \tilde{x}) \leftarrow \text{SRE}.\text{Enc}(1^{\lambda}, C, x, T): \text{ Takes time sublinear in } T.\\ C_T(x) = C(\dots C(x)) \leftarrow \text{SRE}.\text{Eval}(\tilde{C}_T, \tilde{x}): \text{ Takes time } T.\\ T-\text{times}
$$

Security: no further information other than $C_T(x)$ is revealed about x.

TLP Circuit

The TLP circuit
$$
C_f(b, x, m, z, i)
$$
:
\nIf $i = T + 1$:
\nif $b = 0$, return m ;
\nif $b = 1$, return $x \oplus z$.
\nOtherwise, return $(b, f(x), m, z, i + 1)$.

We denote $\mathcal{C}_{f,\, \mathcal{T}}$ the $\, \mathcal{T}\,$ -fold repetition of \mathcal{C}_{f} , where f is a $\, \mathcal{T}\,$ -folded sequential function.

TLP from SRE for Repeated Circuits

PGen(T, s): Sample x, m, r ← {0, 1}^
$$
^
$$
 randomly, compute $(\tilde{C}_{f,T}, \tilde{x})$ ← SRE.Enc $(1^{\lambda}, C_f, (0, x, m, 0^{\lambda}, 1), T)$, return Z = $(\tilde{x}, r, r \cdot m \oplus s)$.

 $\mathsf{PSolve}(Z)$: Compute SRE.Eval $(\tilde{\mathcal{C}}_{f, \mathcal{T}}, \tilde{\mathsf{x}}) \cdot r$ to unmask $s.$

Correctness:

$$
C_{f,T}(0,x,m,0,1)=m.
$$

Security of TLP

Security:

$$
(\tilde{C}_{f,T}, \tilde{x}) = \text{Encode}(C_f, (0, x, m, 0, 1))
$$

\n
$$
\equiv \text{Encode}(C_f, (0, x, m \oplus f_T(x), 0, 1))
$$

\n
$$
\approx \text{Encode}(C_f, (0, x, m \oplus f_T(x), m, 1))
$$

\n
$$
\approx \text{Encode}(C_f, (1, x, m \oplus f_T(x), m, 1))
$$

\n
$$
\approx \text{Encode}(C_f, (1, x, 0, m, 1))
$$
 (encoding $f_T(x) \oplus m$)

Therefore any adversary that is able to output m in time less than T will also compute $f_T(x)$, thus violating the sequentiality of f.

Apply the depth-preserving Goldreich-Levin theorem in the reduction.

Depth-Independent Reusable Garbled Circuit

Circular small-secret LWE \Rightarrow rGC [HLL23] + LFE [QWW18] \implies Depth-Independent Reusable GC: $(\tilde{\mathcal{C}},\mathsf{pk}) \leftarrow \mathsf{rGC}.\mathsf{Garble}\left(1^\lambda,\mathcal{C}\right),\ |\mathsf{pk}| = \mathsf{poly}(\lambda),\ \mathsf{takes}$ time poly $(\lambda) \cdot |C|$ $\tilde{x} \leftarrow rGC.Enc(pk, x)$, takes time poly $(\lambda) \cdot |x| \cdot |y|$ $C(x) \leftarrow$ rGC.Eval $(\tilde{C}, C, \tilde{x})$, takes time poly $(\lambda) \cdot |C|$

Security: $\mathcal{A}(\tilde{C},pk,\tilde{x}) \approx \mathcal{A}(\tilde{C},pk,\mathsf{Sim}(1^{\lambda},C,pk,C(x)))$

TLP with Setup

PSetup(1<sup>$$
\lambda
$$</sup>, T):
Compute ($\tilde{C}_{f,T}$, pk) \leftarrow rGC.Garble (1 ^{λ} , $C_{f,T}$).

PGen(pp, *s*):
Sample *x*, *m*, *r* ← {0, 1}^λ randomly, compute

$$
\tilde{x}
$$
 ← rGC.Enc(pk, (0, *x*, *m*, 0^λ, 1)), return *Z* = (\tilde{x} , *r*, *r* · *m*⊕ *s*).

$$
\text{PSolve}(Z) \text{: } \\ \text{Compute rGC.Eval}\left(\tilde{\mathcal{C}}_{f,\mathcal{T}},\mathcal{C}_{f,\mathcal{T}},\tilde{x}\right)\cdot r \text{ to unmask } s.
$$

Tianwei Zhang MPISP, RUB [TLP from Lattices](#page-0-0)

Attempt to construct SRE for Repeated Circuits

Idea: Reuse the preprocessing to amortize the work.

Circuit $F_{\sqrt{\mathcal{T}}}(x,i)$: If $i = T + 1$ return x; else compute $\displaystyle{y=f_{\sqrt{\mathcal{T}}}(x)}$, output an *encoding* of $\displaystyle{\left(y,i+\right)}$ √ T).

"SRE.Encode": $\mathsf{Compute}\ (\tilde{\mathsf{F}}_{\sqrt{\mathcal{T}}}, \mathsf{pk}) \leftarrow \mathsf{rGC}.\mathsf{Garble}(1^\lambda, F_{\sqrt{\mathcal{T}}}).$ output $rGC.Enc(pk, (x, 1))$.

"SRE.Decode": encoding of $(x,1)\to$ encoding of $(f_{\sqrt{\mathcal{T}}}(x),$ √ $T+1\rightarrow \cdots \rightarrow f_T(x)$

Problem with the attempt

Problem

However, the size of an encoding in [HLL23] depends on the output size of the circuit, which means that it grows exponentially with the number of repetitions!

To fix this, we use split-FHE [BDGM23]: when evaluating $Enc(m) \rightarrow Enc(g(m))$, one can compute a small hint $h_{g,m}$ ($|h_{g,m}|$ is independent of $|g(m)|$ that allows one to decrypt the evaluated ciphertext.

Construction of SRE for Repeated Circuits

Modify $F_{\sqrt{\frac{T}{n}}}$ to output the hint of the split-FHE computation: If $i = \sqrt{T} + 1$: Return x. Otherwise, compute $c \leftarrow$ split-FHE.Eval($\Gamma_{i,\overline{pk}}(\cdot)$, c_i). Return a masked small hint h_i of c.

The circuit
$$
\Gamma_{i, \bar{p}k}(x, K\{i+1\})
$$
:

Compute
$$
y = f_{\sqrt{T}}(x)
$$
.

Return FHE ciphertext c_{i+1} of $(y, K\{i+2\})$ and rGC encoding e_{i+1} of $(y, i+1, p\vec{k}, c_{i+1})$.

Construction of SRE for Repeated Circuits Continued

$\mathsf{SRE}.\mathsf{Enc}(1^\lambda,\mathsf{f},\mathsf{x},\mathsf{T})$

Output

the garbled circuit: $(\tilde{\mathsf{F}}_{\sqrt{\mathcal{T}}}, \mathsf{pk}) \leftarrow \mathsf{rGC}.\mathsf{Garble}\left(1^\lambda, \mathsf{F}_{\sqrt{\mathcal{T}}}\right)$, the garbled input: a FHE ciphertext c_1 of x and a rGC encoding e_1 of $(\mathsf{pk}_1, x, 1, \mathsf{pk}, c_1)$.

SRE Dec(1^λ, f, x)
\n■ For
$$
i = 1, ..., \sqrt{T}
$$
:
\nCompute $c \leftarrow$ FHE.Eval(pk_i, Γ_{i,pk}, c_i).
\nDecode $h_i \leftarrow$ rGC.Eval($\tilde{F}_{\sqrt{T}}, F_{\sqrt{T}}, e_i$).
\nGet (c_{i+1}, e_{i+1}) by decrypting h_i and c .
\n■ Output rGC.Eval ($\tilde{F}_{\sqrt{T}}, F_{\sqrt{T}}, e_{\sqrt{T}+1}$).

Conclusion

- **TLP** with Setup T, puzzle generation $log T$. TLP: puzzle TLP with setup
generation \sqrt{T} .
- Introduce range puncturable PRF and SRE along the way.
- **Heuristic Fully Efficient SRE, hence TLP with log T puzzle** generation time.

Open Problems

- **E** lattice-based fully efficient SRE, hence TLP with $log T$ puzzle generation time.
- I lattice-based homomorphic TLPs.
- lattice-based batch-solving TLPs.

Thank you for your attention! Questions?