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Time-Lock Puzzles

Puzzle(m)
Takes time T−−−−−−−−→ m

Fast puzzle generation - Time to generate Puzzle(m) is much
shorter than time T (sublinear).

Puzzle opening takes a long time - The circuit that opens
Puzzle(m) has depth at least T . Parallelism shouldn’t help.
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Applications

Encrypt to the future!
Sealed Bid Auctions

Non-Malleable Commitments

Miner extractable value prevention

More: Blockchain front running prevention, fair contract
signing, cryptocurrency payments, distributed consensus
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Our Results

(Preprocessing Model) TLP with (one-time, public-coin)
Setup T , puzzle generation logT .

(Plain Model) TLP, puzzle generation time and the puzzle
size
√
T , the first lattice-based TLP construction.

Succinct randomized encoding (SRE) for repeated circuit
computations. New Application: Sublinear Garbled RAM.
Prior solution was based on iO [BGJ+16].

Introduce the notion of range puncturable PRF.
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Definition of SRE for Repeated Circuits

Definition (SRE for Repeated Circuits)

(C̃T , x̃)← SRE.Enc(1λ,C , x ,T ): Takes time sublinear in T .
CT (x) = C (. . .C︸ ︷︷ ︸

T−times

(x))← SRE.Eval(C̃T , x̃): Takes time T .

Security: no further information other than CT (x) is revealed
about x .

Tianwei Zhang MPISP, RUB

TLP from Lattices



Introduction TLP from SRE for Repeated Circuits TLP with Setup Sublinear Randomized Encoding Conclusion

TLP Circuit

The TLP circuit Cf (b, x ,m, z , i):
If i = T + 1:
if b = 0, return m;
if b = 1, return x ⊕ z .

Otherwise, return (b, f (x),m, z , i + 1).

We denote Cf ,T the T -fold repetition of Cf , where f is a T -folded
sequential function.
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TLP from SRE for Repeated Circuits

PGen(T , s): Sample x ,m, r ← {0, 1}λ randomly, compute
(C̃f ,T , x̃) ← SRE.Enc(1λ,Cf , (0, x ,m, 0λ, 1),T ), return Z =
(x̃ , r , r ·m ⊕ s).

PSolve(Z ): Compute SRE.Eval(C̃f ,T , x̃) · r to unmask s.

Correctness:
Cf ,T (0, x ,m, 0, 1) = m.

Tianwei Zhang MPISP, RUB
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Security of TLP

Security:

(C̃f ,T , x̃) = Encode(Cf , (0, x ,m, 0, 1))

≡ Encode(Cf , (0, x ,m ⊕ fT (x), 0, 1))

≈ Encode(Cf , (0, x ,m ⊕ fT (x),m, 1))

≈ Encode(Cf , (1, x ,m ⊕ fT (x),m, 1))

≈ Encode(Cf , (1, x , 0,m, 1)) (encoding fT (x)⊕m)

Therefore any adversary that is able to output m in time less than
T will also compute fT (x), thus violating the sequentiality of f .

Apply the depth-preserving Goldreich-Levin theorem in the
reduction.
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Depth-Independent Reusable Garbled Circuit

Circular small-secret LWE
=⇒ rGC [HLL23] + LFE [QWW18]
=⇒ Depth-Independent Reusable GC:

(C̃ , pk)← rGC.Garble
(
1λ,C

)
, |pk| = poly(λ), takes

time poly(λ) · |C |
x̃ ← rGC.Enc(pk, x), takes time poly(λ) · |x | · |y |
C (x)← rGC.Eval

(
C̃ ,C , x̃

)
, takes time poly(λ) · |C |

Security: A(C̃ , pk, x̃) ≈ A(C̃ , pk,Sim(1λ,C , pk,C (x)))
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TLP with Setup

PSetup(1λ,T ):
Compute (C̃f ,T , pk)← rGC.Garble

(
1λ,Cf ,T

)
.

PGen(pp, s):
Sample x ,m, r ← {0, 1}λ randomly, compute
x̃ ← rGC.Enc(pk, (0, x ,m, 0λ, 1)), return Z = (x̃ , r , r ·m⊕s).

PSolve(Z ):

Compute rGC.Eval
(
C̃f ,T ,Cf ,T , x̃

)
· r to unmask s.
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Attempt to construct SRE for Repeated Circuits

Idea: Reuse the preprocessing to amortize the work.

Circuit F√T (x , i):
If i = T + 1 return x ;
else compute y = f√T (x), output an encoding of (y , i+

√
T ).

“SRE.Encode”:
Compute (F̃√T , pk)← rGC.Garble(1λ,F√T ),
output rGC.Enc(pk, (x, 1)).

“SRE.Decode”:
encoding of (x , 1)→ encoding of (f√T (x),

√
T +1)→ · · · → fT (x)

Tianwei Zhang MPISP, RUB
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Problem with the attempt

Problem

However, the size of an encoding in [HLL23] depends on the
output size of the circuit, which means that it grows exponentially
with the number of repetitions!

To fix this, we use split-FHE [BDGM23]: when evaluating
Enc(m)→ Enc(g(m)), one can compute a small hint hg ,m (|hg ,m|
is independent of |g(m)|) that allows one to decrypt the evaluated
ciphertext.

Tianwei Zhang MPISP, RUB
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Construction of SRE for Repeated Circuits

Modify F√T to output the hint of the split-FHE computation:

If i =
√
T + 1: Return x .

Otherwise, compute c ← split-FHE.Eval(Γi,p̄k(·), ci).
Return a masked small hint hi of c .

The circuit Γi ,p̄k(x ,K{i + 1}):
Compute y = f√T (x).

Return FHE ciphertext ci+1 of (y ,K{i + 2}) and rGC
encoding ei+1 of (y , i + 1, p̄k, ci+1).

Tianwei Zhang MPISP, RUB
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Construction of SRE for Repeated Circuits Continued

SRE.Enc(1λ, f, x,T)
Output

the garbled circuit: (F̃√T , pk)← rGC.Garble
(
1λ,F√T

)
,

the garbled input: a FHE ciphertext c1 of x and a rGC
encoding e1 of (pk1, x , 1, pk, c1).

SRE.Dec(1λ, f, x)

For i = 1, . . . ,
√
T :

Compute c ← FHE.Eval(pki , Γi ,pk, ci ).
Decode hi ← rGC.Eval(F̃√T ,F

√
T , ei ).

Get (ci+1, ei+1) by decrypting hi and c .

Output rGC.Eval
(
F̃√T ,F

√
T , e

√
T+1

)
.
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Conclusion

TLP with Setup T , puzzle generation logT . TLP: puzzle
generation

√
T .

Introduce range puncturable PRF and SRE along the way.

Heuristic Fully Efficient SRE, hence TLP with logT puzzle
generation time.
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Open Problems

lattice-based fully efficient SRE, hence TLP with logT puzzle
generation time.

lattice-based homomorphic TLPs.

lattice-based batch-solving TLPs.
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Questions?

Thank you for your attention!

Questions?
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