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/ ãbort

😈

[CNCWF23]

Challenger
i ∈ [N]



Privacy with abort game

Authenticated PIR

Server

9

d

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)q

b ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, d, a)
a😈

b ?= ⊥

x ∈ {0,1}N

/ q̃
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Prior work [CNCWF23]: 
Honest-digest assumption

This work: 
Malicious-digest privacy

Applications: 

• Password breach database 

• Certificate Transparency 

• Streaming service
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Authenticated PIR [CNCWF23] with 
Honest-digest assumption

Authenticated PIR with 
Malicious-digest privacy

(2) Lightweight 
“digest validation”

(1) Concrete attack 
if malicious digests 
are allowed

Everything is based on DDH!
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Transforming [CNCWF23] into a malicious-digest version

Baselines

13

Cannot do so with plain DDH [GW11]

Requires non-black-box techniques

Linear verification time

• SNARKs

• Interactive protocols (e.g. Kilian’s 4-round protocol [Kilian94])

• Bulletproof-like techniques [BBBPWM17]

Prove validity of digest  using:d
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Concurrent work: VeriSimplePIR [dCL24]

SimplePIR [HHCMV23] VeriSimplePIR
SIS-based proofs

• Lower computation in practice 

• More client storage 

• ROM
14
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b :=
0 if a = dr

1 if a = dr ⋅ gα

⊥ otherwise

Honest-digest Authenticated PIR [CNCWF23]

a =

d =
x = (1,0,1)

h1 ⋅ h3

(hr
1 ⋅ gα, hr

2, hr
3)

dr ⋅ gα

i = 1

16

q =

Server
Client

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)ei
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Communication Complexity

Honest-digest Authenticated PIR [CNCWF23]

• Digest:  

• Query: 
      upload 
      download

O(1)

O(N)
O(1)

• Digest:  

• Query: 
      upload 

      download

O(1)

O( N)
O( N)

After rebalancing

18[CNCWF23], [KO97]
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Malicious-digest attack on [CNCWF23]

x = (1,0,1)
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a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j h1 ⋅ h3

q := hr ∘ (gα)ei
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Privacy with abort game

dr ⋅ (gα)xi

2

2

  if  dr ⋅ g2α i = 1
  if  dr i = 2

    if  dr ⋅ gα i = 3

2

⇔ i ∈ {2,3}

Server learns whether a non-binary entry was queried!

i ∈ [N]



Can we make [CNCWF23] secure 
against malicious-digests?
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Validating the digest
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d = ∏
j∈[N]

hxj
j d

i ∈ [N]

Client
Server

x ∈ ℤN
q

For now: “honest-digest assumption”, 
except that  may be non-binaryx

Goal: protocol to ensure that  was generated from a binary d x
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a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)ei

a

q

d

i ∈ [N]

Client
Server

x ∈ ℤN
q

What happens if we “query a vector” 
that differs from the unit vector ?ei

Query Protocol (same as before)

Expected: (d−r ⋅ a)1/α = gxi
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a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)ei

a

q

d

Client

s ∈ ℤN
q

Server

x ∈ ℤN
q

s

Generalized Query Protocol

Expected: (d−r ⋅ a)1/α = g⟨x,s⟩⟨x, s⟩

Client can ask for arbitrary inner products of !x
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26

(d−r ⋅ a)1/α = g⟨x,s⟩

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)s

a

q

d

Client
Server

x ∈ ℤN
q

Inner Product Test

s ← {0,1}N

if , then w.p. , output is not in xj ∉ {−N, …, N} ≥
1
2

{1,g1, …, gN}

if  is binary, output is in x {1,g1, …, gN}



Validating the digest

27

Validation

(d−r(i) ⋅ a(i))1/α(i) ∈ {1,g1, …, gN}Pass if for all :i

a(i) = ∏
j∈[N]

(q(i)
j )xj

Server Client

x ∈ ℤN
q q(i) := hr(i) ∘ (gα(i))s(i)

q(1), …, q(λ)

a(1), …, a(λ)

 independent inner product testsλ



Validating the digest

if  for some , then with probability , validation failsxj ∉ {−N, …, N} j ≥ 1 −
1
2λ

− 𝗇𝖾𝗀𝗅(λ)
27
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Validation

Validating the digest

(d−r(i) ⋅ a(i))1/α(i) ∈ {1,g1, …, gN}Pass if for all :i

28

a(i) = ∏
j∈[N]

(q(i)
j )xj

Server Client

x ∈ ℤN
q q(i) := hr(i) ∘ (gα(i))s(i)

q(1), …, q(λ)

a(1), …, a(λ)

rebalancing
Communication cost: 
      upload 
      download

O(N ⋅ λ)
O(λ)

 
      upload 

      download

O( N ⋅ λ)
O( N ⋅ λ)

 independent inner product testsλ



Server

i ∈ [N]

Client

29

x ∈ ℤN
q

(d−r ⋅ a)1/α ∈ {g−N, …, g−1, g1, …, gN}b :=
0 if (d−r ⋅ a)1/α = 1
1 if
⊥ otherwise

a = ∏
j∈[N]

qxj
j

q := hr ∘ (gα)ei

q

a

Validating the digest

Necessary, since validation only ensures !x ∈ {−N, …, N}N

Modified Query Protocol
(Assuming that digest was validated successfully)
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x ∈ ℤN
q

q

a

Security Proof
Privacy with abort game

d

😈

abort

d = ∏
j∈[N]

hxj
j

successful validation

…
…

Challenger
i ∈ [N]
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d = ∏
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…
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ãbort := a
?
≠ ∏

j∈[N]

qxj
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q̃ ← 𝔾N
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x ∈ ℤN
q

q

a

Security Proof
Privacy with abort game

d

😈

abort

d = ∏
j∈[N]

hxj
j

successful validation

…
…

Challenger
i ∈ [N]

ãbort := a
?
≠ ∏

j∈[N]

qxj
j

q̃ ← 𝔾N

Simulation for 
privacy with abort

Simulation requires knowing 
database  that matches x d
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x ∈ ℤN
q

Security Proof

Simulation for 
privacy with abort ???

q

a

d

😈

abort

successful validation

…
…

Privacy with abort game

😈

Challenger
i ∈ [N]

q̃ ← 𝔾N
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x ∈ ℤN
q

Security Proof

Simulation for 
privacy with abort ???

q

a

d

😈

abort

successful validation

…
…

Privacy with abort game

😈

Challenger
i ∈ [N]

q̃ ← 𝔾N

As long as the adversary can find 
some answer  that will not abort, we 

could simulate 

a′￼

ãbort := [a
?
≠ a′￼]
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Answer Extraction: the (malicious) server 
always has a way of answering any query 
without the client aborting
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Answer Extraction: the (malicious) server 
always has a way of answering any query 
without the client aborting

Privacy with abort

1-time successful validation step

32

“probability amplification”

Non-trivial, because we still need a 
way of picking a “good” answer from 
a large pool of options!
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Thank you!


