
Marian Dietz
ETH Zürich

Fully Malicious Authenticated PIR

1Work done while at University of Washington*

Stefano Tessaro
University of Washington*

Conventional PIR

x ∈ {0,1}N

Server

i ∈ [N]

Client

2

wants: xi

[CGKS95]

Conventional PIR

x ∈ {0,1}N

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)q

2

wants: xi

[CGKS95]

Conventional PIR

x ∈ {0,1}N

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)

a ← 𝙰𝚗𝚜𝚠𝚎𝚛(x, q)
a

q

2

wants: xi

[CGKS95]

Conventional PIR

x ∈ {0,1}N

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)

a ← 𝙰𝚗𝚜𝚠𝚎𝚛(x, q)
a

xi ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, a)

q

2[CGKS95]

Conventional PIR

x ∈ {0,1}N

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)

a ← 𝙰𝚗𝚜𝚠𝚎𝚛(x, q)
a

xi ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, a)

q

2

Privacy: reveals nothing about q i

[CGKS95]

Conventional PIR

x ∈ {0,1}N

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)

a ← 𝙰𝚗𝚜𝚠𝚎𝚛(x, q)
a

xi ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, a)

q

3[CGKS95], [CNCWF23]

This has no integrity guarantees!

Conventional PIR

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)

a′￼

xi ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, a)

q

4

This has no integrity guarantees!

a′￼b

[CGKS95], [CNCWF23]

😈

x ∈ {0,1}N

Conventional PIR

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)

a′￼

xi ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, a)

q

4

This has no integrity guarantees!

a′￼b

Example: If is a public-key directory, server may inject arbitrary keysx
[CGKS95], [CNCWF23]

😈

x ∈ {0,1}N

Authenticated PIR

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)

xi ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, d, a)

q

5[CNCWF23]

a

d

a ← 𝙰𝚗𝚜𝚠𝚎𝚛(x, q)

d ← 𝙳𝚒𝚐𝚎𝚜𝚝(x)

d

x ∈ {0,1}N

Authenticated PIR

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)

xi ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, d, a)

q

5[CNCWF23]

a

d

a ← 𝙰𝚗𝚜𝚠𝚎𝚛(x, q)

d ← 𝙳𝚒𝚐𝚎𝚜𝚝(x)

d

Commitment of the database

x ∈ {0,1}N

Authenticated PIR

Server

i ∈ [N]

Client

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)

xi ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, d, a)

q

5[CNCWF23]

a

d

a ← 𝙰𝚗𝚜𝚠𝚎𝚛(x, q)

d ← 𝙳𝚒𝚐𝚎𝚜𝚝(x)

d

May output 0, 1, or abort ()⊥

Commitment of the database

x ∈ {0,1}N

Integrity game

Authenticated PIR

Server

q0, st0 ← 𝚀𝚞𝚎𝚛𝚢(i)

b0 ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st0, d, a0)

q0, q1

6[CNCWF23]

a0, a1

d

q1, st1 ← 𝚀𝚞𝚎𝚛𝚢(i)

b1 ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st1, d, a1)

Win if & b0 = 0 b1 = 1

😈

😈

Challenger
i ∈ [N]

Privacy game

Authenticated PIR

Server

7[CNCWF23]

d

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)q

😈

(insufficient)

Challenger
i ∈ [N]

Privacy game

Authenticated PIR

Server

7[CNCWF23]

d

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)q

Server must be able to simulate .q

/ q̃

😈

(insufficient)

Challenger
i ∈ [N]

Privacy game

Authenticated PIR

Server

7[CNCWF23]

d

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)q

Vulnerable to selective-failure attacks:
[KO97]

😈

(insufficient)

Challenger
i ∈ [N]

Privacy game

Authenticated PIR

Server

7[CNCWF23]

d

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)q

b ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, d, a)
a

If :b = ⊥
“I received an error”

😈

Vulnerable to selective-failure attacks:
[KO97]

😈

(insufficient)

Challenger
i ∈ [N]

Privacy with abort game

Authenticated PIR

Server

8

d

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)q

b ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, d, a)
a😈

b ?= ⊥

/ q̃

/ ãbort

😈

[CNCWF23]

Challenger
i ∈ [N]

Privacy with abort game

Authenticated PIR

Server

9

d

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)q

b ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, d, a)
a😈

b ?= ⊥

x ∈ {0,1}N

/ q̃

/ ãbort

d ← 𝙳𝚒𝚐𝚎𝚜𝚝(x)

Prior work [CNCWF23]:
Honest-digest assumption

Challenger
i ∈ [N]

Privacy with abort game

Authenticated PIR

Server

10

d

q, st ← 𝚀𝚞𝚎𝚛𝚢(i)q

b ← 𝚁𝚎𝚌𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝(st, d, a)
a😈

b ?= ⊥

x ∈ {0,1}N

/ q̃

/ ãbort

Prior work [CNCWF23]:
Honest-digest assumption

😈

This work:
Malicious-digest privacy

Challenger
i ∈ [N]

Authenticated PIR

11

Prior work [CNCWF23]:
Honest-digest assumption

This work:
Malicious-digest privacy

Applications:

• Password breach database

• Certificate Transparency

• Streaming service

Main Contributions

12

Authenticated PIR [CNCWF23] with
Honest-digest assumption

(1) Concrete attack
if malicious digests
are allowed

Main Contributions

12

Authenticated PIR [CNCWF23] with
Honest-digest assumption

Authenticated PIR with
Malicious-digest privacy

(2) Lightweight
“digest validation”

(1) Concrete attack
if malicious digests
are allowed

Main Contributions

12

Authenticated PIR [CNCWF23] with
Honest-digest assumption

Authenticated PIR with
Malicious-digest privacy

(2) Lightweight
“digest validation”

(1) Concrete attack
if malicious digests
are allowed

Everything is based on DDH!

Transforming [CNCWF23] into a malicious-digest version

Baselines

13

Prove validity of digest using:d

Transforming [CNCWF23] into a malicious-digest version

Baselines

13

Cannot do so with plain DDH [GW11]

• SNARKs

Prove validity of digest using:d

Transforming [CNCWF23] into a malicious-digest version

Baselines

13

Cannot do so with plain DDH [GW11]

Requires non-black-box techniques

• SNARKs

• Interactive protocols (e.g. Kilian’s 4-round protocol [Kilian94])

Prove validity of digest using:d

Transforming [CNCWF23] into a malicious-digest version

Baselines

13

Cannot do so with plain DDH [GW11]

Requires non-black-box techniques

Linear verification time

• SNARKs

• Interactive protocols (e.g. Kilian’s 4-round protocol [Kilian94])

• Bulletproof-like techniques [BBBPWM17]

Prove validity of digest using:d

Concurrent work: VeriSimplePIR [dCL24]

SimplePIR [HHCMV23] VeriSimplePIR
SIS-based proofs

14

Concurrent work: VeriSimplePIR [dCL24]

SimplePIR [HHCMV23] VeriSimplePIR
SIS-based proofs

• Lower computation in practice

• More client storage

• ROM
14

Honest-digest Authenticated PIR [CNCWF23]

15

i ∈ [N]x ∈ {0,1}N

Server
Client

Honest-digest Authenticated PIR [CNCWF23]

h = (h1, …, hN) ∈ 𝔾NPublic:

15

i ∈ [N]x ∈ {0,1}N

Server
Client

Honest-digest Authenticated PIR [CNCWF23]

h = (h1, …, hN) ∈ 𝔾NPublic:

d = ∏
j∈[N]

hxj
j

15

i ∈ [N]
d

x ∈ {0,1}N “non-hiding vector Pedersen commitment”

Server
Client

r ← ℤq α ← ℤ*qsample ,

Honest-digest Authenticated PIR [CNCWF23]

h = (h1, …, hN) ∈ 𝔾NPublic:

d = ∏
j∈[N]

hxj
j

15

q := hr ∘ (gα)ei

i ∈ [N]

q

d
x ∈ {0,1}N

Server
Client

r ← ℤq α ← ℤ*qsample ,

Honest-digest Authenticated PIR [CNCWF23]

h = (h1, …, hN) ∈ 𝔾NPublic:

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

15

q := hr ∘ (gα)ei

i ∈ [N]

q

d
x ∈ {0,1}N

a
Server

Client

b :=
0 if a = dr

1 if a = dr ⋅ gα

⊥ otherwise

r ← ℤq α ← ℤ*qsample ,

Honest-digest Authenticated PIR [CNCWF23]

h = (h1, …, hN) ∈ 𝔾NPublic:

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

15

q := hr ∘ (gα)ei

i ∈ [N]

q

d
x ∈ {0,1}N

a
Server

Client

b :=
0 if a = dr

1 if a = dr ⋅ gα

⊥ otherwise

Honest-digest Authenticated PIR [CNCWF23]

a =

d =
x = (1,0,1)

h1 ⋅ h3

(hr
1 ⋅ gα, hr

2, hr
3)

dr ⋅ gα

i = 1

16

q =

Server
Client

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)ei

Simulation for
privacy with abort

17

Honest-digest Authenticated PIR [CNCWF23]

Server

q

d
x ∈ {0,1}N

a😈

d = ∏
j∈[N]

hxj
j

b ?= ⊥

Challenger
i ∈ [N]

b :=
0 if a = dr

1 if a = dr ⋅ gα

⊥ otherwise

Privacy with abort game

q := hr ∘ (gα)ei

q̃ ← 𝔾N

Simulation for
privacy with abort

17

Honest-digest Authenticated PIR [CNCWF23]

Server

q

d
x ∈ {0,1}N

a😈

d = ∏
j∈[N]

hxj
j

b ?= ⊥

Challenger
i ∈ [N]

b :=
0 if a = dr

1 if a = dr ⋅ gα

⊥ otherwise

Privacy with abort game

q := hr ∘ (gα)ei

ãbort := a
?
≠ ∏

j∈[N]

qxj
j

q̃ ← 𝔾N

Simulation for
privacy with abort

17

Honest-digest Authenticated PIR [CNCWF23]

Server

q

d
x ∈ {0,1}N

a😈

d = ∏
j∈[N]

hxj
j

b ?= ⊥

Challenger
i ∈ [N]

b :=
0 if a = dr

1 if a = dr ⋅ gα

⊥ otherwise

Privacy with abort game

q := hr ∘ (gα)ei

Communication Complexity

Honest-digest Authenticated PIR [CNCWF23]

• Digest:

• Query:
 upload
 download

O(1)

O(N)
O(1)

• Digest:

• Query:
 upload

 download

O(1)

O(N)
O(N)

After rebalancing

18[CNCWF23], [KO97]

Is there an attack on [CNCWF23]
when the digest is malicious?

19

Malicious-digest attack on [CNCWF23]

x = (1,0,1)

20

Server

Challenger

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j h1 ⋅ h3

q := hr ∘ (gα)ei

a ∈ {dr, dr ⋅ gα}

a =

q

d =

Privacy with abort game

dr ⋅ (gα)xi

 if dr ⋅ gα i = 1
 if dr i = 2

 if dr ⋅ gα i = 3

i ∈ [N]

Malicious-digest attack on [CNCWF23]

x = (1,0,1)

20

Server

Challenger

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j h1 ⋅ h3

q := hr ∘ (gα)ei

a ∈ {dr, dr ⋅ gα}

a =

q

d =

These formulas would even
allow non-binary xi ∉ {0,1}

Privacy with abort game

dr ⋅ (gα)xi

 if dr ⋅ gα i = 1
 if dr i = 2

 if dr ⋅ gα i = 3

i ∈ [N]

Malicious-digest attack on [CNCWF23]

x = (1,0,1)

21

Server

Challenger

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j h1 ⋅ h3

q := hr ∘ (gα)ei

a ∈ {dr, dr ⋅ gα}

a =

q

d =

Privacy with abort game

dr ⋅ (gα)xi

2

2

 if dr ⋅ g2α i = 1
 if dr i = 2

 if dr ⋅ gα i = 3

2

i ∈ [N]

Malicious-digest attack on [CNCWF23]

x = (1,0,1)

21

Server

Challenger

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j h1 ⋅ h3

q := hr ∘ (gα)ei

a ∈ {dr, dr ⋅ gα}

a =

q

d =

Privacy with abort game

dr ⋅ (gα)xi

2

2

 if dr ⋅ g2α i = 1
 if dr i = 2

 if dr ⋅ gα i = 3

2

⇔ i ∈ {2,3}

i ∈ [N]

Malicious-digest attack on [CNCWF23]

x = (1,0,1)

21

Server

Challenger

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j h1 ⋅ h3

q := hr ∘ (gα)ei

a ∈ {dr, dr ⋅ gα}

a =

q

d =

Privacy with abort game

dr ⋅ (gα)xi

2

2

 if dr ⋅ g2α i = 1
 if dr i = 2

 if dr ⋅ gα i = 3

2

⇔ i ∈ {2,3}

Server learns whether a non-binary entry was queried!

i ∈ [N]

Can we make [CNCWF23] secure
against malicious-digests?

22

Validating the digest

23

d = ∏
j∈[N]

hxj
j d

i ∈ [N]

Client
Server

x ∈ ℤN
q

For now: “honest-digest assumption”,
except that may be non-binaryx

Validating the digest

23

d = ∏
j∈[N]

hxj
j d

i ∈ [N]

Client
Server

x ∈ ℤN
q

For now: “honest-digest assumption”,
except that may be non-binaryx

Goal: protocol to ensure that was generated from a binary d x

Validating the digest

24

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)ei

a

q

d

i ∈ [N]

Client
Server

x ∈ ℤN
q

Query Protocol (same as before)

Expected: (d−r ⋅ a)1/α = gxi

Validating the digest

24

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)ei

a

q

d

i ∈ [N]

Client
Server

x ∈ ℤN
q

What happens if we “query a vector”
that differs from the unit vector ?ei

Query Protocol (same as before)

Expected: (d−r ⋅ a)1/α = gxi

Validating the digest

25

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)ei

a

q

d

Client

s ∈ ℤN
q

Server

x ∈ ℤN
q

s

Generalized Query Protocol

Expected: (d−r ⋅ a)1/α = g⟨x,s⟩⟨x, s⟩

Validating the digest

25

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)ei

a

q

d

Client

s ∈ ℤN
q

Server

x ∈ ℤN
q

s

Generalized Query Protocol

Expected: (d−r ⋅ a)1/α = g⟨x,s⟩⟨x, s⟩

Client can ask for arbitrary inner products of !x

Validating the digest

Expected:

26

(d−r ⋅ a)1/α = g⟨x,s⟩

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)s

a

q

d

Client
Server

x ∈ ℤN
q

Inner Product Test

s ← {0,1}N

Validating the digest

Expected:

26

(d−r ⋅ a)1/α = g⟨x,s⟩

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)s

a

q

d

Client
Server

x ∈ ℤN
q

Inner Product Test

s ← {0,1}N

if is binary, output is in x {1,g1, …, gN}

Validating the digest

Expected:

26

(d−r ⋅ a)1/α = g⟨x,s⟩

a = ∏
j∈[N]

qxj
j

d = ∏
j∈[N]

hxj
j

q := hr ∘ (gα)s

a

q

d

Client
Server

x ∈ ℤN
q

Inner Product Test

s ← {0,1}N

if , then w.p. , output is not in xj ∉ {−N, …, N} ≥
1
2

{1,g1, …, gN}

if is binary, output is in x {1,g1, …, gN}

Validating the digest

27

Validation

(d−r(i) ⋅ a(i))1/α(i) ∈ {1,g1, …, gN}Pass if for all :i

a(i) = ∏
j∈[N]

(q(i)
j)xj

Server Client

x ∈ ℤN
q q(i) := hr(i) ∘ (gα(i))s(i)

q(1), …, q(λ)

a(1), …, a(λ)

 independent inner product testsλ

Validating the digest

if for some , then with probability , validation failsxj ∉ {−N, …, N} j ≥ 1 −
1
2λ

− 𝗇𝖾𝗀𝗅(λ)
27

Validation

(d−r(i) ⋅ a(i))1/α(i) ∈ {1,g1, …, gN}Pass if for all :i

a(i) = ∏
j∈[N]

(q(i)
j)xj

Server Client

x ∈ ℤN
q q(i) := hr(i) ∘ (gα(i))s(i)

q(1), …, q(λ)

a(1), …, a(λ)

 independent inner product testsλ

Validation

Validating the digest

(d−r(i) ⋅ a(i))1/α(i) ∈ {1,g1, …, gN}Pass if for all :i

28

a(i) = ∏
j∈[N]

(q(i)
j)xj

Server Client

x ∈ ℤN
q q(i) := hr(i) ∘ (gα(i))s(i)

q(1), …, q(λ)

a(1), …, a(λ)

rebalancing
Communication cost:
 upload
 download

O(N ⋅ λ)
O(λ)

 upload

 download

O(N ⋅ λ)
O(N ⋅ λ)

 independent inner product testsλ

Server

i ∈ [N]

Client

29

x ∈ ℤN
q

(d−r ⋅ a)1/α ∈ {g−N, …, g−1, g1, …, gN}b :=
0 if (d−r ⋅ a)1/α = 1
1 if
⊥ otherwise

a = ∏
j∈[N]

qxj
j

q := hr ∘ (gα)ei

q

a

Validating the digest

Necessary, since validation only ensures !x ∈ {−N, …, N}N

Modified Query Protocol
(Assuming that digest was validated successfully)

Server

30

x ∈ ℤN
q

q

a

Security Proof
Privacy with abort game

d

😈

abort

d = ∏
j∈[N]

hxj
j

successful validation

…
…

Challenger
i ∈ [N]

Server

30

x ∈ ℤN
q

q

a

Security Proof
Privacy with abort game

d

😈

abort

d = ∏
j∈[N]

hxj
j

successful validation

…
…

Challenger
i ∈ [N]

ãbort := a
?
≠ ∏

j∈[N]

qxj
j

q̃ ← 𝔾N

Simulation for
privacy with abort

Server

30

x ∈ ℤN
q

q

a

Security Proof
Privacy with abort game

d

😈

abort

d = ∏
j∈[N]

hxj
j

successful validation

…
…

Challenger
i ∈ [N]

ãbort := a
?
≠ ∏

j∈[N]

qxj
j

q̃ ← 𝔾N

Simulation for
privacy with abort

Simulation requires knowing
database that matches x d

Server

31

x ∈ ℤN
q

Security Proof

Simulation for
privacy with abort ???

q

a

d

😈

abort

successful validation

…
…

Privacy with abort game

😈

Challenger
i ∈ [N]

q̃ ← 𝔾N

Server

31

x ∈ ℤN
q

Security Proof

Simulation for
privacy with abort ???

q

a

d

😈

abort

successful validation

…
…

Privacy with abort game

😈

Challenger
i ∈ [N]

q̃ ← 𝔾N

As long as the adversary can find
some answer that will not abort, we

could simulate

a′￼

ãbort := [a
?
≠ a′￼]

Security Proof

Answer Extraction: the (malicious) server
always has a way of answering any query
without the client aborting

32

Security Proof

Integrity Standard Privacy

Answer Extraction: the (malicious) server
always has a way of answering any query
without the client aborting

Privacy with abort
32

Security Proof

Integrity Standard Privacy

Answer Extraction: the (malicious) server
always has a way of answering any query
without the client aborting

Privacy with abort

1-time successful validation step

32

“probability amplification”

Security Proof

Integrity Standard Privacy

Answer Extraction: the (malicious) server
always has a way of answering any query
without the client aborting

Privacy with abort

1-time successful validation step

32

“probability amplification”

Non-trivial, because we still need a
way of picking a “good” answer from
a large pool of options!

Open Problems

• Adaptation towards lattice-based schemes

• Reduce overhead compared to plain PIR schemes

33

Open Problems

• Adaptation towards lattice-based schemes

• Reduce overhead compared to plain PIR schemes

33
ePrint: 2023/1804

Thank you!

