Marian Dietz ETH Zürich*

* Work done while at University of Washington

Fully Malicious Authenticated PIR

Stefano Tessaro University of Washington

2

 $q, st \leftarrow Query(i)$

9

2

 $a \leftarrow \operatorname{Answer}(\mathbf{x}, q)$

Client

wants: X_i

2

 $a \leftarrow \operatorname{Answer}(\mathbf{x}, q)$

2

Privacy: *q* reveals nothing about *i*

 $a \leftarrow \operatorname{Answer}(\mathbf{x}, q)$

2

 $a \leftarrow \operatorname{Answer}(\mathbf{x}, q)$

This has no integrity guarantees!

[CGKS95], [CNCWF23]

З

[CGKS95], [CNCWF23]

This has no integrity guarantees!

This has no integrity guarantees!

Example: If **x** is a public-key directory, server may inject arbitrary keys

[CGKS95], [CNCWF23]

4

 $d \leftarrow \text{Digest}(\mathbf{x})$

 $\mathbf{x} \in \{0,1\}^N$ Server

[CNCWF23]

5

 $d \leftarrow \texttt{Digest}(\mathbf{x})$

 $\mathbf{x} \in \{0,1\}^N$ Server

[CNCWF23]

5

 $d \leftarrow \texttt{Digest}(\mathbf{x})$

 $\mathbf{x} \in \{0,1\}^N$ Server

[CNCWF23]

5

Integrity game

Win if $b_0 = 0$ **&** $b_1 = 1$

6

(insufficient) **Privacy** game

 $q, st \leftarrow Query(i)$

$i \in [N]$ Challenger

7

(insufficient) **Privacy** game

Server must be able to simulate q.

 $i \in [N]$ Challenger

7

(insufficient) **Privacy** game

Vulnerable to selective-failure attacks: [KO97]

 $i \in [N]$ Challenger

7

(insufficient) **Privacy** game

$i \in [N]$ Challenger

Vulnerable to selective-failure attacks: [KO97]

If $b = \bot$:

"I received an error"

7

U

8

Prior work [CNCWF23]: Honest-digest assumption

U

Prior work [CNCWF23]: Honest-digest assumption

This work: Malicious-digest privacy

Applications:

- Password breach database
- Certificate Transparency
- Streaming service

Prior work [CNCWF23]: Honest-digest assumption

11

Main Contributions

(1) Concrete attackif malicious digestsare allowed

Authenticated PIR [CNCWF23] with **Honest-digest** assumption

Main Contributions

(1) Concrete attackif malicious digestsare allowed

Authenticated PIR [CNCWF23] with **Honest-digest** assumption

Authenticated PIR with Malicious-digest privacy

Main Contributions

(1) Concrete attackif malicious digestsare allowed

Authenticated PIR [CNCWF23] with **Honest-digest** assumption

Everything is based on DDH!

(2) Lightweight"digest validation"

Authenticated PIR with Malicious-digest privacy

Transforming [CNCWF23] into a malicious-digest version

Prove validity of digest *d* using:

Transforming [CNCWF23] into a malicious-digest version

Prove validity of digest d using:

• SNARKs

Cannot do so with plain DDH [GW11]

Transforming [CNCWF23] into a malicious-digest version

Prove validity of digest d using:

SNARKs

Cannot do so with plain DDH [GW11]

Interactive protocols (e.g. Kilian's 4-round protocol [Kilian94])

Requires non-black-box techniques

Transforming [CNCWF23] into a malicious-digest version

Prove validity of digest *d* using:

SNARKs

Cannot do so with plain DDH [GW11]

Interactive protocols (e.g. Kilian's 4-round protocol [Kilian94])

Requires non-black-box techniques

Bulletproof-like techniques [BBBPWM17] Linear verification time

Concurrent work: VeriSimplePIR [dCL24]

SimplePIR [HHCMV23]

SIS-based proofs

VeriSimplePIR

Concurrent work: VeriSimplePIR [dCL24]

SimplePIR [HHCMV23]

- Lower computation in practice •
- More client storage
- ROM

SIS-based proofs

VeriSimplePIR

1	5

Public: $\mathbf{h} = (\mathbf{h}_1, \dots, \mathbf{h}_N) \in \mathbb{G}^N$

1	5

Public: $\mathbf{h} = (\mathbf{h}_1, \dots, \mathbf{h}_N) \in \mathbb{G}^N$

"non-hiding vector Pedersen commitment"

1	5

Public: $\mathbf{h} = (\mathbf{h}_1, \dots, \mathbf{h}_N) \in \mathbb{G}^N$

1	5

Client

Public: $\mathbf{h} = (\mathbf{h}_1, \dots, \mathbf{h}_N) \in \mathbb{G}^N$

$$d = \prod_{j \in [N]} \mathbf{h}_j^{\mathbf{x}_j}$$

1	5

Public: $\mathbf{h} = (\mathbf{h}_1, \dots, \mathbf{h}_N) \in \mathbb{G}^N$

$$d = \prod_{j \in [N]} \mathbf{h}_j^{\mathbf{x}_j}$$

1	5

Privacy with abort game

 $d = \prod_{j} \mathbf{h}_{j}^{\mathbf{x}_{j}}$ $j \in [N]$

Simulation for privacy with abort

Privacy with abort game

 $d = \prod_{j} \mathbf{h}_{j}^{\mathbf{x}_{j}}$ $j \in [N]$

Simulation for privacy with abort

Privacy with abort game

 $d = \prod_{j} \mathbf{h}_{j}^{\mathbf{x}_{j}}$ $j \in [N]$

Simulation for privacy with abort

Honest-digest Authenticated PIR [CNCWF23] Communication Complexity

- Digest: O(1)
- Query:
 - O(N) upload O(1) download

[CNCWF23], [KO97]

After rebalancing

- Digest: O(1)
- Query: $O(\sqrt{N})$ upload $O(\sqrt{N})$ download

18

Is there an attack on [CNCWF23] when the digest is malicious?

Privacy with abort game

Server

 $a \in \{d^r, d^r \cdot g^\alpha\}$

Privacy with abort game

Privacy with abort game

 $a = \prod \mathbf{q}_{j}^{\mathbf{x}_{j}}$ $j \in [N]$

 $a \in \{d^r, d^r \cdot g^\alpha\}$

Privacy with abort game

 $a = \prod \mathbf{q}_{j}^{\mathbf{x}_{j}}$ $j \in [N]$

 $a \in \{d^r, d^r \cdot g^{\alpha}\} \Leftrightarrow i \in \{2,3\}$

Privacy with abort game

 $a = \prod \mathbf{q}_{j}^{\mathbf{x}_{j}}$ $j \in [N]$

Server learns whether a non-binary entry was queried!

Can we make [CNCWF23] secure against malicious-digests?

For now: "honest-digest assumption", except that **x** may be non-binary

23

For now: "honest-digest assumption", except that **x** may be non-binary

Goal: protocol to ensure that d was generated from a binary \mathbf{x}

23

24

Expected: $(d^{-r} \cdot a)^{1/\alpha} = g^{\mathbf{x}_i}$

24

Generalized Query Protocol

 $d = \prod_{j \in [N]} \mathbf{h}_j^{\mathbf{x}_j}$

25

Generalized Query Protocol

 $d = \prod_{j \in [N]} \mathbf{h}_j^{\mathbf{x}_j}$

 $a = \prod_{j \in [N]} \mathbf{q}_j^{\mathbf{x}_j}$

Client can ask for arbitrary inner products of **x**!

25

 $d = \prod \mathbf{h}_{i}^{\mathbf{x}_{j}}$ $j \in [N]$

26

 $d = \prod_{i} \mathbf{h}_{i}^{\mathbf{x}_{i}}$ $j \in [N]$

26

 $d = \prod_{i=1}^{k} \mathbf{h}_{i}^{\mathbf{x}_{i}}$ $j \in [N]$

26

Validation

Validation

if $\mathbf{x}_i \notin \{-N, \dots, N\}$ for some j, then with p

probability
$$\geq 1 - \frac{1}{2^{\lambda}} - \operatorname{negl}(\lambda)$$
, validation fails

Validation

Communication cost: $O(N \cdot \lambda)$ upload $O(\lambda)$ download

Pass if for all *i***:** $(d^{-r^{(i)}} \cdot a^{(i)})^{1/\alpha^{(i)}} \in \{1, g^1, ..., g^N\}$

 $O(\sqrt{N \cdot \lambda})$ upload $O(\sqrt{N} \cdot \lambda)$ download

Modified Query Protocol (Assuming that digest was validated successfully)

Privacy with abort game

 $i \in [N]$ Challenger

abort

30

Privacy with abort game

Simulation for privacy with abort

 $i \in [N]$ Challenger

30

Privacy with abort game

Simulation for privacy with abort

30

Simulation for privacy with abort

Privacy with abort game

 $i \in [N]$ Challenger

Simulation for privacy with abort

Privacy with abort game

As long as the adversary can find some answer a' that will not abort, we could simulate $\widetilde{\text{abort}} := \begin{bmatrix} ? \\ a \neq a' \end{bmatrix}$

 $i \in [N]$

Challenger

Answer Extraction: the (malicious) server always has a way of answering any query without the client aborting

32

Answer Extraction: the (malicious) server always has a way of answering any query without the client aborting

32

Answer Extraction: the (malicious) server always has a way of answering any query without the client aborting

1-time successful validation step

"probability amplification"

32

1-time successful validation step

Answer Extraction: the (malicious) server always has a way of answering any query without the client aborting

"probability amplification"

Non-trivial, because we still need a way of picking a "good" answer from a large pool of options!

Open Problems

- Adaptation towards lattice-based schemes
- Reduce overhead compared to plain PIR schemes

33

Open Problems

- Adaptation towards lattice-based schemes
- Reduce overhead compared to plain PIR schemes

Thank you!

33