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Our Result, on the Negative side

In this work, we show:

1. Any “natural” signature scheme S is not NR.

2. ∀S and (sufficiently compressing) hash function H:

BUFF[S,H] is not NR.

Contradicting claimed BUFF security in [CDF+21]!

A claim “random oracle is Φ-non-malleable” is false:

3. For any “sufficiently compressing” hash function H,

∃ attack that breaks Φ-non-malleability.

All of the above applies to both plain model and (Q)ROM.
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Positive and More Negative Results

We then introduce a weakened notion:

4. NR⊥ in (Q)ROM where generic attacks no longer apply

still meaningful for intended applications

To achieve NR⊥, we propose a salted variant $-BUFF.

5. Under statistical entropy requirement:

∀S: $-BUFF[S,H] is NR⊥ in (Q)ROM.

6. Under HILL entropy requirement: assuming CDH,

∃S: $-BUFF[S,H] is not NR⊥ in (Q)ROM.

In fact neither is BUFF[S,H]!

Addendum: responding to our work, [CDF+21] was updated to
[CDF+23], but the security reasoning remains flawed.

Take-away: non-resignability is brittle...
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Non-resignability

Formally modelled via a two-staged game.

Case 1. m
eff.← (pk, σ) ⇒ S is trivially not NR

Case 2. H∞(m | pk, σ) ≥ high
⇒ entropy cond. is satisfied ⇒ the NR attack is valid
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Wait a Minute...1

Claimed BUFF Security [CDF+21] →← Generic NR attack

1
Meme from https://emoji.gg/emoji/3803_Thonking with basic license.

https://emoji.gg/emoji/3803_Thonking


What’s Wrong?

[CDF+21, Theorem 5.5] showed:

H is Φ-non-malleable (for suitable Φ)⇒ BUFF[S,H] is NR .

[BFS11, CDF+21] claimed Φ-non-malleability of RO.
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Properly Re-define NR

Observation: side-info typically doesn’t contain hashes.

a weakening NR⊥ with restricted side-info in the (Q)ROM

The NR⊥ game:

1: m← AH
0 (pk)

2: σ ← SignH(sk,m)
3: (pk′, σ′)← AH

1 (pk, σ, aux
�ZH(m, pk))

4: return VerH(pk,m, σ′) ∧ pk ̸= pk′

Definition 1. A signature is NR⊥, if ∀(A0,A1, aux) under the
(statistical/computational) entropy requirement Pr[1← NR⊥] ≤ small .

The generic attack no longer applies to NR⊥:

aux(m, pk) :=������XXXXXXSignH(sk′,m) .
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Redeeming NR⊥

Does BUFF provide NR⊥?

it’s not clear.

Instead, we consider a salted variant $-BUFF:
σ :=

(
Sign(sk, ys), ys , s

)
, where s ← {0, 1}ℓ and ys := H(m, pk, s)

Under statistical entropy requirement: $-BUFF[S,H] is NR⊥ ∀S.

Under only HILL entropy requirement:

▶ Assuming CDH, there is a strongly unforgeable signature S,
for which $-BUFF[S,H] is not NR⊥.

▶ The same insecurity also applies to BUFF.
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$-BUFF[S,H] is NR⊥

Under Statistical Entropy Requirement

Following the proof strategy as in [CDF+21]:

▶ Define $-Φ-NM: a tailored variant of Φ-NM

▶ H is $-Φ-NM ⇒ $-BUFF[S,H] is NR⊥

▶ Prove that the random oracle H is $-Φ-NM.

↑ the tricky part, previously undealt

Sophisticated quantum argumentation:

▶ one-way-to-hiding lemma [AHU19]

▶ adaptive-reprogramming lemma [GHHM21]

▶ measure-and-reprogram technique [DFM20] but enhanced
with a “stingy” simulator

See our paper for more detail!
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Under HILL Entropy Requirement

Following the proof strategy as in [CDF+21]:
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Conclusion

Defining/achieving non-resignability is much
more subtle than what’s believed.



Follow-up Questions

We’ve analyzed salted BUFF, what about the unsalted one?

▶ Is BUFF[S,H] NR⊥ under statistical entropy requirement?

▶ Does BUFF[S,H] satisfy any notion of NR computationally?

A follow-up work [DFH+24]: Yes (to both)!

We’ve modelled the hash function as a RO:

▶ What about real-world hash functions, e.g. Sponge and/or
Merkle-Damgard constructions?
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That’s It

Thank you for listening.

Eprint: ia.cr/2023/1634

ia.cr/2023/1634
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