On the (In)Security of the BUFF Transform

Jelle Don Serge Fehr Yu-Hsuan Huang Patrick Struck

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Konstanz

NIST Competition

COMPLITER SECURITY	RESOURCE CENTER	
OM OTER SECORT	RESOURCE CENTER	
UPDATES 2023		
	dditional Digital Sid	matura Candidatas for the
IIST Announces A	dditional Digital Sig	gnature Candidates for the
IIST Announces A QC Standardizat	dditional Digital Siរ្ ion Process	gnature Candidates for the
IIST Announces A PQC Standardizat uly 17, 2023	dditional Digital Siរ្ ion Process	gnature Candidates for the
NIST Announces A PQC Standardizat uly 17, 2023	dditional Digital Sig ion Process	gnature Candidates for the
VIST Announces A PQC Standardizat uly 17, 2023 f • • response to a September 2022 annou condidates that met all submission r	dditional Digital Sig ion Process ncement calling for additional Post-Quantu equirements.	gnature Candidates for the
VIST Announces A PQC Standardizat uly 17, 2023 f S response to a September 2022 annou. 2 candidates that met all submission r ee the PDC: Digital Signature Schemes	dditional Digital Sig ion Process neement calling for additional Post-Quantu equirements. project for the list of algorithms and their s	gnature Candidates for the Im Cryptography (PQC) Digital Signature Schemes, NIST received ubmission details.
VIST Announces A PQC Standardizat uly 17, 2023 f • response to a September 2022 annou. 0 candidates that met all submission r are the PQC: Digital Signature Schemer his round of evaluation and analysis w andardization conference in April 202	dditional Digital Sig ion Process Incement calling for additional Post-Quantu equirements. 11 likely last several years. NIST invites feed 4.	gnature Candidates for the un Cryptography (PQC) Digital Signature Schemes, NIST received ubmission details. back on all 40 candidates. NIST anticipates holding the Fifth PQC

Figure: NIST Additional PQ Signature Competition

NIST asked for "additional desirable security properties":

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- exclusive ownership (S-CEO, S-DEO, M-S-UEO)
- message-bound signatures (MBS)
- non-resignability (NR)

NIST asked for "additional desirable security properties":

- exclusive ownership (S-CEO, S-DEO, M-S-UEO)
- message-bound signatures (MBS)
- non-resignability (NR)

side-info,
$$\sigma := \text{Sign}(\text{sk, m})$$
, pk \longrightarrow σ' , pk' \checkmark

$Pr[_{Ver(pk', m, \sigma') = 1}^{pk \neq pk'}] < small$

NIST asked for "additional desirable security properties":

- exclusive ownership (S-CEO, S-DEO, M-S-UEO)
- message-bound signatures (MBS)
- non-resignability (NR)

side-info,
$$\sigma := \text{Sign}(\text{sk, m})$$
, pk \longrightarrow σ' , pk' \checkmark

$$Pr[_{Ver(pk', m, \sigma') = 1}^{pk \neq pk'}] < small$$

uncertainty of *m* via **statistical/computational (HILL)** entropy $H_{\infty}(m \mid pk, side-info) \geq high$.

Remark. $m \not\leftarrow (pk, \sigma)$

NIST asked for "additional desirable security properties":

- exclusive ownership (S-CEO, S-DEO, M-S-UEO)
- message-bound signatures (MBS)
- non-resignability (NR)

BUFF transformation [CDF⁺21],

any signature $\mathcal{S}\mapsto\mathsf{BUFF}[\mathcal{S},H]$ with

$$\sigma := \left(\textit{Sign}(\textit{sk}, y), y \right), \text{ where } y := H(m, \textsf{pk})$$

claimed to give above securities

- explicitly referred to by NIST
- relevant to Dilithium, Falcon, SPHINCS⁺, HAWK and more.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

NIST asked for "additional desirable security properties":

- exclusive ownership (S-CEO, S-DEO, M-S-UEO)
- message-bound signatures (MBS)
- non-resignability (NR)

BUFF transformation [CDF⁺21],

any signature $\mathcal{S} \mapsto \mathsf{BUFF}[\mathcal{S}, H]$ with

$$\sigma := \left(\textit{Sign}(\textit{sk}, y), y \right), \text{ where } y := H(m, pk)$$

claimed to give above securities

- explicitly referred to by NIST
- relevant to Dilithium, Falcon, SPHINCS⁺, HAWK and more.

Plot-twist: NR as in [CDF⁺21] is basically un-achievable!

In this work, we show:

- 1. Any "natural" signature scheme ${\mathcal S}$ is ${\boldsymbol{\mathsf{not}}}$ NR.
- 2. $\forall S$ and (sufficiently compressing) hash function *H*: BUFF[S, *H*] is **not** NR.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In this work, we show:

- 1. Any "natural" signature scheme ${\mathcal S}$ is ${\boldsymbol{\mathsf{not}}}$ NR.
- 2. $\forall S$ and (sufficiently compressing) hash function H: BUFF[S, H] is **not** NR.

Contradicting claimed BUFF security in [CDF⁺21]!

In this work, we show:

- 1. Any "natural" signature scheme ${\cal S}$ is **not** NR.
- ∀S and (sufficiently compressing) hash function H: BUFF[S, H] is not NR.
 Contradicting claimed BUFF security in [CDF⁺21]!

A claim "random oracle is Φ-non-malleable" is false:
3. For any "sufficiently compressing" hash function H,
∃ attack that breaks Φ-non-malleability.

In this work, we show:

- 1. Any "natural" signature scheme \mathcal{S} is **not** NR.
- ∀S and (sufficiently compressing) hash function H: BUFF[S, H] is not NR.
 Contradicting claimed BUFF security in [CDF⁺21]!

A claim "random oracle is Φ-non-malleable" is false:
3. For any "sufficiently compressing" hash function H,
∃ attack that breaks Φ-non-malleability.

All of the above applies to both plain model and (Q)ROM.

We then introduce a weakened notion:

 NR[⊥] in (Q)ROM where generic attacks no longer apply still meaningful for intended applications

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We then introduce a weakened notion:

4. NR^{\perp} in (Q)ROM where generic attacks no longer apply still meaningful for intended applications

To achieve NR^{\perp}, we propose a **salted** variant **\$**-BUFF.

5. Under **statistical** entropy requirement:

 $\forall S$: **\$-BUFF**[S, H] is NR^{$\perp$} in (Q)ROM.

6. Under HILL entropy requirement: assuming CDH,

 $\exists S$: S-BUFF[S, H] is **not** NR^{\perp} in (Q)ROM.

We then introduce a weakened notion:

4. NR^{\perp} in (Q)ROM where generic attacks no longer apply still meaningful for intended applications

To achieve NR^{\perp}, we propose a **salted** variant **\$**-BUFF.

5. Under **statistical** entropy requirement:

 $\forall S$: S-BUFF[S, H] is NR^{\perp} in (Q)ROM.

6. Under **HILL** entropy requirement: assuming CDH,

 $\exists S$: S-BUFF[S, H] is **not** NR^{\perp} in (Q)ROM.

In fact **neither** is BUFF[S, H]!

Addendum: responding to our work, $[CDF^+21]$ was updated to $[CDF^+23]$, but the security reasoning remains flawed.

We then introduce a weakened notion:

4. NR^{\perp} in (Q)ROM where generic attacks no longer apply still meaningful for intended applications

To achieve NR^{\perp}, we propose a **salted** variant **\$**-BUFF.

5. Under **statistical** entropy requirement:

 $\forall S$: S-BUFF[S, H] is NR^{\perp} in (Q)ROM.

6. Under HILL entropy requirement: assuming CDH,
∃S: \$-BUFF[S, H] is not NR[⊥] in (Q)ROM.
In fact neither is BUFF[S, H]!

Addendum: responding to our work, $[CDF^+21]$ was updated to $[CDF^+23]$, but the security reasoning remains flawed.

Take-away: non-resignability is brittle ...

Overview

- Negative Results
- Positive (and More Negative) Results

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Conclusion

Non-resignability

Formally modelled via a two-staged game.

Non-resignability Attacked

Attackers can exploit side-info of *m*, while *m* remains hidden.

990

Non-resignability Attacked

Attackers can exploit side-info of *m*, while *m* remains hidden.

Case 1. $m \stackrel{\text{eff.}}{\leftarrow} (\mathsf{pk}, \sigma) \Rightarrow S$ is trivially **not** NR

Non-resignability Attacked

Attackers can exploit side-info of *m*, while *m* remains hidden.

 $\begin{array}{ll} \mathsf{Case 1.} & m \stackrel{\mathsf{eff.}}{\leftarrow} (\mathsf{pk}, \sigma) \Rightarrow \mathcal{S} \text{ is trivially } \mathbf{not} \ \mathsf{NR} \\ \mathsf{Case 2.} & \mathsf{H}_{\infty}(m \mid \mathsf{pk}, \sigma) \geq \mathsf{high} \\ & \Rightarrow \mathsf{entropy \ cond. \ is \ satisfied} \Rightarrow \mathsf{the \ NR} \ \mathsf{attack} \ \mathsf{is \ valid} \\ \end{array}$

Wait a Minute...¹

Claimed BUFF Security $[CDF^+21] \rightarrow \leftarrow$ Generic NR attack

¹ Meme from https://emoji.gg/emoji/3803_Thonking with basic license... > () +

[CDF⁺21, Theorem 5.5] showed:

H is Φ -non-malleable (for suitable Φ) \Rightarrow BUFF[S, *H*] is NR .

[CDF⁺21, Theorem 5.5] showed:

H is Φ -non-malleable (for suitable Φ) \Rightarrow BUFF[S, H] is NR.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[BFS11, CDF⁺21] claimed Φ -non-malleability of RO.

[CDF⁺21, Theorem 5.5] showed:

H is Φ -non-malleable (for suitable Φ) \Rightarrow BUFF[S, H] is NR.

[BFS11, CDF⁺21] claimed Φ -non-malleability of RO.

Any (sufficiently compressing) hash H is **not** Φ -non-malleable!

Overview

Negative Results

Positive (and More Negative) Results

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Conclusion

Observation: side-info typically doesn't contain hashes.

Observation: side-info typically doesn't contain hashes.

a weakening NR^\perp with restricted side-info in the (Q)ROM

- ロ ト - 4 目 ト - 4 目 ト - 1 - 9 へ ()

The NR^{$$\perp$$} game:
1: $m \leftarrow \mathcal{A}_0^H(pk)$
2: $\sigma \leftarrow \text{Sign}^H(sk, m)$
3: $(pk', \sigma') \leftarrow \mathcal{A}_1^H(pk, \sigma, aux^{(m, pk)})$
4: **return** Ver ^{H} $(pk, m, \sigma') \land pk \neq pk'$

Observation: side-info typically doesn't contain hashes.

a weakening NR^{\perp} with **restricted side-info** in the (Q)ROM

The NR^{$$\perp$$} game:
1: $m \leftarrow \mathcal{A}_0^H(pk)$
2: $\sigma \leftarrow \text{Sign}^H(sk, m)$
3: $(pk', \sigma') \leftarrow \mathcal{A}_1^H(pk, \sigma, aux^{H}(m, pk))$
4: **return** Ver^H $(pk, m, \sigma') \land pk \neq pk'$

Definition 1. A signature is NR[⊥], if $\forall (\mathcal{A}_0, \mathcal{A}_1, aux)$ under the (statistical/computational) entropy requirement $Pr[1 \leftarrow NR^{\bot}] \leq small$.

Observation: side-info typically doesn't contain hashes.

a weakening NR^{\perp} with **restricted side-info** in the (Q)ROM

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The NR^{$$\perp$$} game:
1: $m \leftarrow \mathcal{A}_0^H(pk)$
2: $\sigma \leftarrow \text{Sign}^H(sk, m)$
3: $(pk', \sigma') \leftarrow \mathcal{A}_1^H(pk, \sigma, aux^{(m, pk)})$
4: **return** Ver ^{H} $(pk, m, \sigma') \land pk \neq pk'$

The generic attack no longer applies to NR^{\perp}: aux(*m*, pk) := Sign^{*H*}(sk, *m*).

Redeeming NR^\perp

Does BUFF provide NR^{\perp}?

Redeeming NR^{\perp}

Does BUFF provide NR^{\perp}? it's not clear.

(ロ)、(型)、(E)、(E)、 E) の(()

Redeeming NR^{\perp}

Does BUFF provide NR^{\perp}? it's not clear.

Instead, we consider a **salted** variant \$-BUFF: $\sigma := (\text{Sign}(\text{sk}, y_s), y_s, s), \text{ where } s \leftarrow \{0, 1\}^{\ell} \text{ and } y_s := H(m, \text{pk}, s)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Redeeming NR^{\perp}

Does BUFF provide NR^{\perp}? it's not clear.

Instead, we consider a **salted** variant \$-BUFF: $\sigma := (\text{Sign}(\text{sk}, y_s), y_s, s), \text{ where } s \leftarrow \{0, 1\}^{\ell} \text{ and } y_s := H(m, \text{pk}, s)$

Under statistical entropy requirement: -BUFF[S, H] is $NR^{\perp} \forall S$.

A D N A 目 N A E N A E N A B N A C N

Redeeming NR[⊥]

Does BUFF provide NR^{\perp}? it's not clear.

Instead, we consider a **salted** variant \$-BUFF: $\sigma := (\text{Sign}(\text{sk}, y_s), y_s, s) , \text{ where } s \leftarrow \{0, 1\}^{\ell} \text{ and } y_s := H(m, \text{pk}, s)$

Under statistical entropy requirement: -BUFF[S, H] is NR^{\perp} $\forall S$.

Under only HILL entropy requirement:

Assuming CDH, there is a strongly unforgeable signature S, for which \$-BUFF[S, H] is not NR[⊥].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The same insecurity also applies to BUFF.

Under Statistical Entropy Requirement

Following the proof strategy as in [CDF⁺21]:

- Define \$-Φ-NM: a tailored variant of Φ-NM
- *H* is \$- Φ -NM \Rightarrow \$-BUFF[S, *H*] is NR^{\perp}
- Prove that the random oracle H is \$-Φ-NM.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Under Statistical Entropy Requirement

Following the proof strategy as in [CDF⁺21]:

- Define \$-Φ-NM: a tailored variant of Φ-NM
- *H* is \$- Φ -NM \Rightarrow \$-BUFF[S, *H*] is NR^{\perp}
- Prove that the random oracle H is $-\Phi$ -NM.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \uparrow the tricky part, previously undealt

Under Statistical Entropy Requirement

Following the proof strategy as in [CDF⁺21]:

- Define \$-Φ-NM: a tailored variant of Φ-NM
- *H* is \$- Φ -NM \Rightarrow \$-BUFF[S, *H*] is NR^{\perp}
- Prove that the random oracle H is $-\Phi$ -NM.

 \uparrow the tricky part, previously undealt

Sophisticated quantum argumentation:

- one-way-to-hiding lemma [AHU19]
- adaptive-reprogramming lemma [GHHM21]
- measure-and-reprogram technique [DFM20] but enhanced with a "stingy" simulator

Under Statistical Entropy Requirement

Following the proof strategy as in [CDF⁺21]:

- Define \$-Φ-NM: a tailored variant of Φ-NM
- *H* is \$- Φ -NM \Rightarrow \$-BUFF[S, *H*] is NR^{\perp}
- Prove that the random oracle H is $-\Phi$ -NM.

 \uparrow the tricky part, previously undealt

Sophisticated quantum argumentation:

- one-way-to-hiding lemma [AHU19]
- adaptive-reprogramming lemma [GHHM21]
- measure-and-reprogram technique [DFM20] but enhanced with a "stingy" simulator

See our paper for more detail!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Under HILL Entropy Requirement

Following the proof strategy as in $[CDF^+21]$:

- Define \$-Φ-NM: a tailored variant of Φ-NM
- ► *H* is \$- Φ -NM \Rightarrow \$-BUFF[S, *H*] is NR[⊥]
- Prove that the random oracle H is \$-Φ-NM.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Under HILL Entropy Requirement

Following the proof strategy as in [CDF⁺21]:

- Define \$-Φ-NM: a tailored variant of Φ-NM
- ► *H* is \$- Φ -NM \Rightarrow \$-BUFF[S, *H*] is NR[⊥]
- Prove that the random oracle H is $-\Phi$ -NM.

See full paper for simple CDH-based counterexample.

Overview

Negative Results

Positive (and More Negative) Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusion

Conclusion

Defining/achieving non-resignability is much more subtle than what's believed.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Follow-up Questions

We've analyzed salted BUFF, what about the unsalted one?

- ▶ Is BUFF[S, H] NR[⊥] under statistical entropy requirement?
- ▶ Does BUFF[S, H] satisfy any notion of NR computationally?

Follow-up Questions

We've analyzed salted BUFF, what about the unsalted one?

- ▶ Is BUFF[S, H] NR[⊥] under statistical entropy requirement?
- ▶ Does BUFF[S, H] satisfy any notion of NR computationally?

A follow-up work [DFH+24]: Yes (to both)!

Follow-up Questions

We've analyzed salted BUFF, what about the unsalted one?

- ▶ Is BUFF[S, H] NR[⊥] under statistical entropy requirement?
- ▶ Does BUFF[S, H] satisfy any notion of NR computationally?

A follow-up work [DFH⁺24]: Yes (to both)!

We've modelled the hash function as a RO:

What about real-world hash functions, e.g. Sponge and/or Merkle-Damgard constructions?

That's It

Thank you for listening.

Eprint: ia.cr/2023/1634

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

References I

- [AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, <u>Advances in Cryptology –</u> <u>CRYPTO 2019</u>, pages 269–295, Cham, 2019. Springer International Publishing.
- [BFS11] Paul Baecher, Marc Fischlin, and Dominique Schröder. Expedient non-malleability notions for hash functions. In Aggelos Kiayias, editor, <u>CT-RSA 2011</u>, volume 6558 of <u>LNCS</u>, pages 268–283. Springer, Heidelberg, February 2011.

References II

- [CDF⁺21] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson. BUFFing signature schemes beyond unforgeability and the case of post-quantum signatures. In <u>2021 IEEE Symposium on Security and Privacy</u>, pages 1696–1714. IEEE Computer Society Press, May 2021. Cryptology ePrint Archive version available at https://eprint.iacr. org/archive/2020/1525/20230116:141028 (Version 1.3).
- [CDF⁺23] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson. BUFFing signature schemes beyond unforgeability and the case of post-quantum signatures, 2023. An updated version (Version 1.4) of [CDF⁺21], available at https://eprint.iacr.org/archive/2020/1525/ 20231020:082812.

References III

[DFH⁺24] Jelle Don, Serge Fehr, Yu-Hsuan Huang, Jyun-Jie Liao, and Patrick Struck. Hide-and-seek and the non-resignability of the BUFF transform. Cryptology ePrint Archive, Paper 2024/793, 2024. https://eprint.iacr.org/2024/793.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more. In Daniele Micciancio and Thomas Ristenpart, editors, <u>Advances in Cryptology –</u> <u>CRYPTO 2020</u>, pages 602–631, Cham, 2020. Springer International Publishing.

References IV

[GHHM21] Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Tight adaptive reprogramming in the qrom. In Mehdi Tibouchi and Huaxiong Wang, editors, <u>Advances in Cryptology – ASIACRYPT 2021</u>, pages 637–667, Cham, 2021. Springer International Publishing.