

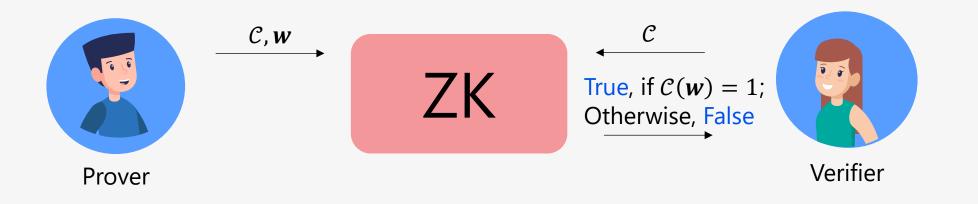
More Efficient Zero-Knowledge Protocols over \mathbb{Z}_{2^k} via Galois Rings

Fuchun Lin, Chaoping Xing, and Yizhou Yao

Shanghai Jiao Tong University

22/8/2024 – Crypto2024

饮水思源•爱国荣



Completeness: Verifier always accepts a valid proof.

Knowledge Soundness: if Verifier accepts a proof, then Prover must know a valid witness *w*.

Zero-Knowledge: Verifier learns nothing about w except C(w) = 1.

In particular, we consider C is over rings \mathbb{Z}_{2^k} , e.g. $\mathbb{Z}_{2^{32}}$, $\mathbb{Z}_{2^{64}}$.

Typical advantages of ZK protocols for \mathbb{Z}_{2^k}

1. \mathbb{Z}_{2^k} is more compatible with binary operations.

2. Easier to convert computer programs to circuits, avoiding the efficiency gap of emulating \mathbb{Z}_{2^k} computations by large field operations.

But "Bad" for protocol designers!

- 1. A half of zero-divisors.
- 2. At most two points can be used for Lagrange interpolation.
- 3. More complicated security analysis.

Typical advantages of ZK protocols for \mathbb{Z}_{2^k}

1. \mathbb{Z}_{2^k} is more compatible with binary operations.

2. Easier to convert computer programs to circuits, avoiding the efficiency gap of emulating \mathbb{Z}_{2^k} computations by large field operations.

But "Bad" for protocol designers!

- 1. A half of zero-divisors.
- 2. At most two points can be used for Lagrange interpolation.
- 3. More complicated security analysis.

There are numerous efficient ZK protocols for fields, e.g., Pinocchio[PHGR16], Limbo[DOT21], Virgo[ZXZS20], Marlin[CHM+20], Breakdown[GLS+23], Quicksilver[YSWW21], AntMan[WYY+22].....

But current state of ZK protocols over rings Z_{2^k} leaves too much to be desired. Rinocchio[GNS23], ZK-for-Z2K[BDJ+23], A2B[BBM+21], MozZarella[BBMS22].

1. A more efficient ZK protocols for \mathbb{Z}_{2^k} compared to the state-of-the-art MozZarella [BBMS22]

-Optimal O(1) computational overhead, communication of 1.5 - 3 elements of \mathbb{Z}_{2^k} per gate, constant-round, small memory (streaming Prover & Verifier), public-coin, UC-security.

-Compatible with the VOLEitH [BBD+23] technique, yielding publicly verifiable NIZK for \mathbb{Z}_{2^k} .

k	κ	$Moz\mathbb{Z}_{2^k}$ arella		This work $(\Pi_{ZK}^{m,n,t})$	
		Comm.	$\mathbb R$	Comm.	\mathbb{R}
32	40	179	Z ₂₁₃₀	93	$GR(2^{32}, 45)$
	80	302	$\mathbb{Z}_{2^{212}}$	104	$GR(2^{32}, 85)$
64	40	211	$\mathbb{Z}_{2^{162}}$	183	$GR(2^{64}, 45)$
	80	334	Z2244	205	$GR(2^{64}, 85)$

1. A more efficient ZK protocols for \mathbb{Z}_{2^k} compared to the state-of-the-art MozZarella [BBMS22]

-Optimal O(1) computational overhead, communication of 1.5 - 3 elements of \mathbb{Z}_{2^k} per gate, constant-round, small memory (streaming Prover & Verifier), public-coin, UC-security.

-Compatible with the VOLEitH [BBD+23] technique, yielding publicly verifiable NIZK for \mathbb{Z}_{2^k} .

k	κ	$Moz\mathbb{Z}_{2^k}$ arella		This work $(\Pi_{ZK}^{m,n,t})$	
		Comm.	\mathbb{R}	Comm.	\mathbb{R}
32	40	179	Z ₂₁₃₀	93	$GR(2^{32}, 45)$
	80	302	$\mathbb{Z}_{2^{212}}$	104	$GR(2^{32}, 85)$
64	40	211	$\mathbb{Z}_{2^{162}}$	183	$GR(2^{64}, 45)$
	80	334	$\mathbb{Z}_{2^{244}}$	205	$GR(2^{64}, 85)$

2. A designated verifier ZK for \mathbb{Z}_{2^k} with *sublinear* communication and *quasilinear* computation.

Recap: VOLE-ZK

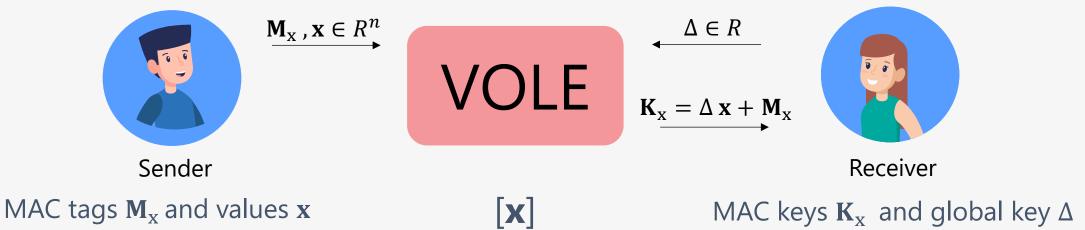
Linearly homomorphic commitment from VOLE:

Linear homomorphism:

Given $[\mathbf{x}], [\mathbf{y}]$, then $[\mathbf{z}] \coloneqq [\alpha \mathbf{x} + \mathbf{y}]$ is obtained by

$$\underbrace{\left(\alpha\mathbf{K}_{x}+\mathbf{K}_{y}\right)}_{\mathbf{K}_{z}}=\Delta\cdot\underbrace{\left(\alpha\mathbf{x}+\mathbf{y}\right)}_{\mathbf{z}}+\underbrace{\left(\alpha\mathbf{M}_{x}+\mathbf{M}_{y}\right)}_{\mathbf{M}_{z}}$$

Linearly homomorphic commitment from VOLE:



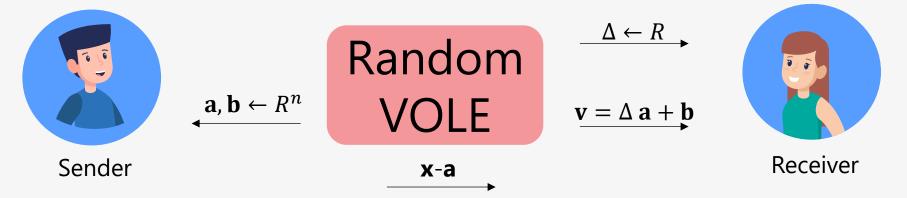
"Commit-and-prove" paradigm:

- 1. Prover first commits all intermediate wire values via VOLE.
- 2. Then proves to Verifier values underneath the commitments satisfy the circuit topology.

What we need:

Procedures for *Open*, *CheckZero*, *CheckMultiplication*.

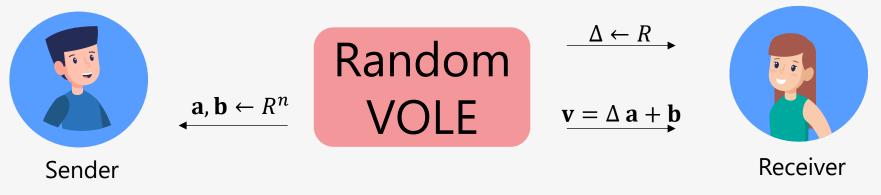
Reduction of chosen input VOLE to random VOLE:



$$\underbrace{\mathbf{v} + \Delta \cdot (\mathbf{x} - \mathbf{a})}_{\mathbf{K}_{\mathbf{x}}} = \Delta \cdot \underbrace{(\mathbf{a} + \mathbf{x} - \mathbf{a})}_{\mathbf{x}} + \underbrace{(\mathbf{b})}_{\mathbf{M}_{\mathbf{x}}}$$

MTTSJTUN

Offline-phase: generate random VOLE correlation.

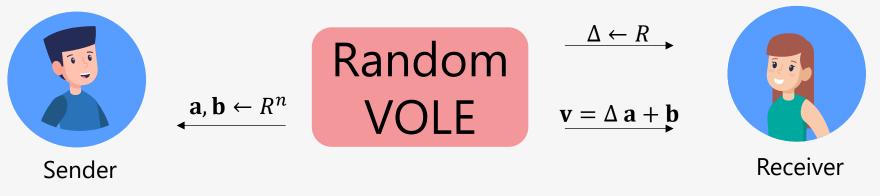


Online-phase:

They collectively evaluate the circuit in an authenticated way, consuming random VOLE.

MT SJTUN

Offline-phase: generate random VOLE correlation.



Online-phase:

They collectively evaluate the circuit in an authenticated way, consuming random VOLE.

Things are easier compared to general MPC:

Additions are *free* to evaluate.

It suffices to *verify* multiplications, rather than to evaluate them.

www.sjtu.edu.cn

Inspired by [EXY22], to construct MPC/ZK for $\mathbb{F}_p/\mathbb{Z}_{2^k}$,

- 1. Realize a MPC/ZK protocol over its extension (i.e., Galois field/ring).
- 2. Transform it into a protocol for $\mathbb{F}_p/\mathbb{Z}_{2^k}$ via reverse multiplicative friendly embedding (<u>RMFE</u>).
- 3. Deal with the case that malicious parties can deviate from RMFE encoding.

	[EXY22]	This work	MozZarella
Setting	n-party MPC	2-party ZK	2-party ZK
Corruption	Dishonest majority	Dishonest majority	Dishonest majority
SS Scheme	SPDZ-like	VOLE	VOLE
Technique	Quintuple	Re-embedding pair	$SPDZ_{2^k}-VOLE$
Ring	$GR(2^k, d)$	$GR(2^k, d)$	$\mathbb{Z}_{2^{k+s}}$

Technique Details

Galois Ring

Definition (Galois ring)

Let p be a prime, and $k, d \ge 1$ be integers. Let $f(X) \in \mathbb{Z}_{p^k}[X]$ be a monic polynomial of degree d such that $\overline{f(X)} := f(X) \mod p$ is irreducible over \mathbb{F}_p . A Galois ring over \mathbb{Z}_{p^k} of degree d denoted by $\operatorname{GR}(p^k, d)$ is a ring extension $\mathbb{Z}_{p^k}[X]/(f(X))$ of \mathbb{Z}_{p^k} .

Basic algebraic properties:

1. if d = 1, GR(
$$p^k$$
, d) = \mathbb{Z}_{p^k} ; if k = 1, GR(p^k , d) = \mathbb{F}_{p^d}

2. $GR(p^k, d)/(p) \cong \mathbb{F}_{p^d}$

3. "Schwartz-Zipple" Lemma for Galois ring:

for any non-zero degree- r polynomial f(x) over $GR(p^k, d)$, $Pr[f(\alpha) = 0 | \alpha \leftarrow GR(p^k, d)] \le rp^{-d}$

(1)

Definition (RMFE)

Let p be a prime, $k, r, m, d \ge 1$ be integers. A pair (ϕ, ψ) is called an (m, d)-RMFE over $GR(p^k, r)$ if $\phi : GR(p^k, r)^m \to GR(p^k, rd)$ and $\psi : GR(p^k, rd) \to GR(p^k, r)^m$ are two $GR(p^k, r)$ -linear maps such that

$$\psi(\phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_2)) = \mathbf{x}_1 * \mathbf{x}_2$$

for all $x_1, x_2 \in GR(p^k, r)^m$, where * denotes the entry-wise multiplication.

Nice properties [CCXY18,CRX21,EHL+23]:

1. We can assume $\phi(\mathbf{1}) = 1$.

2. Given an RMFE (ϕ, ψ) with $\phi(\mathbf{1}) = 1$, we have $GR(p^k, rd) = Ker(\psi) \oplus Im(\phi)$.

3. There exists a family of (m, d) RMFEs over \mathbb{Z}_{2^k} for all $k \ge 1$ with $\lim_{m \to \infty} \frac{d}{m} = 4.92$.

- 1. Construct a Galois ring analogue of Quicksilver [YSWW21].
- 2. Convert it to a ZK protocol for \mathbb{Z}_{2^k} via RMFE:
 - i). Suppose all MACed values are in $Im(\phi)$.
 - ii). It is reduced to a verification problem in the ZK setting, i.e., give [x], [y], [z] related to a multiplication gate, check $\psi(x \cdot y) = \psi(z) \Leftrightarrow x * y = z$, where $x = \phi(x)$, $y = \phi(y)$, $z = \phi(z)$.

iii). Design an efficient approach to check the above relation. 🛨 Multiplication Check

3. Design an efficient approach that guarantees all MACed values are in $Im(\phi)$. The second second

Main Obstacle: RMFE only preserves one time multiplication.

Concretely, $z = x \cdot y$ might not belong to $\text{Im}(\phi)$, for $x, y \in \text{Im}(\phi)$.

Our Observation: $GR(2^k, d) = Ker(\psi) \oplus Im(\phi)$, and $\psi: Im(\phi) \to \mathbb{Z}_{2^k}^m$ is a bijection. Given $[z], z \in GR(2^k, d)$, we can

i). Re-embed [z] to $[\tau(z)]$, where $\tau := \phi \circ \psi$, $[\tau(z)] := [z] + \tau(z) - z$, by sending $\tau(z) - z$ to Verifier.

Main Obstacle: RMFE only preserves one time multiplication.

Concretely, $z = x \cdot y$ might not belong to $\text{Im}(\phi)$, for $x, y \in \text{Im}(\phi)$.

Our Observation: $GR(2^k, d) = Ker(\psi) \oplus Im(\phi)$, and $\psi: Im(\phi) \to \mathbb{Z}_{2^k}^m$ is a bijection. Given $[z], z \in GR(2^k, d)$, we can

i). Re-embed [z] to $[\tau(z)]$, where $\tau := \phi \circ \psi$, $[\tau(z)] := [z] + \tau(z) - z$, by sending $\tau(z) - z$ to Verifier.

ii). However, this might leak information about x, y.

iii). To this end, we introduce re-embedding pairs: ([a], $[\tau(a)]$).

So that $[\tau(z)] \coloneqq [\tau(a)] + \tau(z - a)$.

Guarantee a MACed x belongs to $Im(\phi)$, via re-embedding pair:

Goal: given re-embedding pairs ([a], $[\tau(a)]$), obtain [x] with $x \in \text{Im}(\phi)$.

Our observation: let $\delta \coloneqq x - a$,

$$x \in \text{Im}(\phi) \Leftrightarrow x = \tau(x) \Leftrightarrow a + \delta = \tau(a) + \tau(\delta)$$

Protocol specification:

1. Prover sends $\delta \coloneqq x - a$ to Verifier.

2. Prover and Verifier compute $[\tau(x)] \coloneqq [\tau(a)] + \tau(x - a)$.

Verify Multiplication gates: our observation Goal: given [x], [y], [z], check $\psi(x) * \psi(y) = \psi(z)$, where $x, y, z \in \text{Im}(\phi)$. It is equivalent to check $\tau(x \cdot y) = z$.

Goal': given [x], [y], [z'], check $x \cdot y = z'$, and re-embed z' to $z \coloneqq \tau(z')$.

Evaluate & Verify Multiplication gates via re-embedding pair: **Goal**: given $[x], [y], [a], [\tau(a)]$, obtain $[\tau(z)]$, such that $z = x \cdot y$, where $x, y \in \text{Im}(\phi)$.

We incorporate re-embedding pair with the check mechanism of QuickSilver [YSWW21].

Protocol specification:

- 1. Prover sends $\delta \coloneqq x \cdot y a$ to Verifier.
- 2. They compute $[z] \coloneqq [a] + \delta$ and $[\tau(z)] \coloneqq [\tau(a)] + \tau(\delta)$.
- 3. They check the following:

$$B \coloneqq K_x \cdot K_y - K_z \cdot \Delta$$

= $(M_x + \Delta \cdot x)(M_y + \Delta \cdot y) - (M_z + z \cdot \Delta) \cdot \Delta$
= $\underbrace{(M_x \cdot M_y)}_{A_0} + \underbrace{(x \cdot M_y + y \cdot M_x - M_z)}_{A_1} \cdot \Delta + \underbrace{(x \cdot y - z)}_{0} \cdot \Delta^2$

Soundness: $2/2^d$.

饮水思源 爱国荣校

Offline phase: preparing re-embedding pairs

A construction via "construct and sacrifice".

- -First construct $n + \kappa$ re-embedding pairs.
- -Then sacrifice last κ pairs through masking random linear combinations of first n pairs.
- **Communication**: $n + \kappa$ Galois ring elements in addition to preparing random VOLE.

Soundness: $\frac{1}{2^{\kappa}} + \frac{1}{2^{d}}$.

1. PCG instantiations from primal-LPN and dual-LPN.

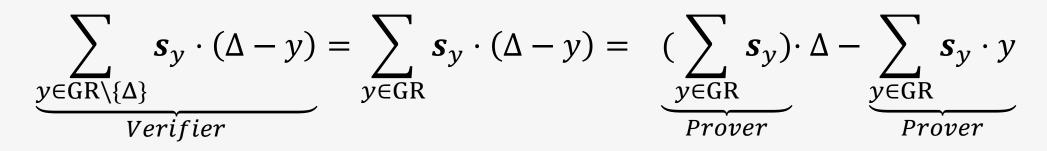
- -We adapt constructions from Wolverine [WYKW21] and LPZK [DIO21].
- -We analyze security of LPN over Galois ring via approaches of [LWYY24].

2. A SoftSpokenOT [Roy22]-like instantiation from (N-1)-out-of-N OT.

Offline phase: VOLE instantiations

-So that we can apply VOLEitH [BBD+23] to make it a publicly verifiable NIZK.

-A naïve adaption:



Computation: $O(2^{kd})$ Galois ring operations!

2. A SoftSpokenOT [Roy22]-like instantiation from (N-1)-out-of-N OT.

Offline phase: VOLE instantiations

-So that we can apply VOLEitH [BBD+23] to make it a publicly verifiable NIZK.

-Our optimization:

$$\mathbf{K} = \sum_{y \in \mathbb{F}_{2^d} \setminus \{\Delta\}} \mathbf{s}_y \cdot (\Delta - y) = (\sum_{y \in \mathbb{F}_{2^d}} \mathbf{s}_y) \cdot \Delta - \sum_{y \in \mathbb{F}_{2^d}} \mathbf{s}_y \cdot y = \mathbf{x} \cdot \Delta + \mathbf{M}$$

Computation: $O(2^d)$ cheaper Galois ring operations.

-Concrete parameter choice: For 80-bit security, we set d = 15, and repeat online phase protocol 6 times, where we can use a (6,15)-RMFE.

1. How to achieve ZK with *linear prover* computation and *sublinear communication* for \mathbb{Z}_{2^k} ?

2. How to achieve VOLE-based ZK with *sublinear communication* and *sublinear online verifier computation*?

Fast Implementation.

-Computations over Galois ring: lack of hardware/algorithm optimizations, e.g., inverse algorithms.

