
FULLY SECURE MPC AND ZK-FLIOP OVER RINGS: NEW
CONSTRUCTIONS, IMPROVEMENTS AND EXTENSIONS
CRYPTO 2024

Anders Dalskov1 Daniel Escudero2 Ariel Nof3

August 21, 2024
1Partisia, Denmark

2J.P. Morgan AlgoCRYPT CoE + AI Research, U.S.A.

3Bar Ilan University, Israel

Secure Multiparty Computation

A set of n parties P1, . . . , Pn wish to compute an arithmetic circuit C on private
inputs x1, . . . , xn, in such a way that an adversary corrupting t out of the n parties
learns nothing about the honest parties’ inputs.

Our setting

• Honest majority (t < n/2)

• Active security

• (Mostly) statistical security

• Guaranteed output delivery

Our goal

Minimizing communication complexity of active security w.r.t. passively se-
cure protocols.

1

Known Results

A common paradigm in the design of actively secure protocols is to start from a
passive protocol and compile it to an actively secure one.

• [GMW87; IPS08; DPSZ12; BFO12; GIP15; CDESX18; FLNW17; LN17; Chi+18; FL19; GSZ20]

What is the cost in terms of communication?
Recent work by Boneh et al. [BBCGI19] introduced the notion of zero-knowledge
fully linear interactive oracle proofs (zk-FLIOP).

With this, a communication of passive+ O(log |C|) is achievable.

2

Multiple works instantiate this idea to achieve active security at the same
communication cost (asymptotically in |C|) as passive: [BGIN19; BGIN20; GSZ20;
GLOPS21].

Round Complexity1
What about the number of interaction rounds required to compute the circuit?

• Passive security: O(depth(C)) rounds

• Active security with abort: O(depth(C)) rounds

• Active security with G.O.D.: O(depth(C)) + O(log |C|) rounds

1We assume Fiat-Shamir. This round-count already takes this into consideration.

3

rounds

Active + GOD = passive+ O(log |C|)

There seems to be a gap between the efficiency (in terms of # rounds) of passive
MPC vs active MPC with GOD!

Not only relevant in theory: The extra O(log |C|) rounds can have detrimental
impact in the performance of the final protocol!

• High-latency settings (e.g. WAN networks or large # parties): number of rounds
affect runtimes more severely.

• “Shallow” circuits where log |C| ≫ depth(C): the extra term is not negligible

4

Can full security for an arbitrary number of parties be achieved while
incurring in the following additive overheads with respect to state-of-
the-art semi-honest protocols: (1) communication overhead that is
logarithmic in the circuit size, and (2) constant overhead in the round
complexity?

This, assuming Fiat-Shamir.

5

Our Results

We present an actively secure protocol with G.O.D., which has only a constant
number of additional rounds w.r.t the best passive protocol.

For ANY Secret-Sharing Scheme
A factor of n× more communication for the offline phase.
Same communication as passive security for the online phase.

For Replicated Secret-Sharing
Same communication as passive security.

6

(n, t) Additive Overhead Security Secret sharing
schemeCommunication

cost
No. of
Rounds

Boneh et al. [BBCGI19] (3,1) O(log |C|) O(1) with abort replicated
Boyle et al. [BGIN19] (3,1) O(log |C|) O(1) Full replicated

Boneh et al. [BBCGI19] (2t + 1, t) O(
√

|C|) O(1) with abort replicated
Boyle et al. [BGIN20] (2t + 1, t) O(log |C|) O(1) with abort Any linear scheme
Boyle et al. [BGIN20] (2t + 1, t) O(log2 |C|) O(log |C|) Full replicated
Goyal et al. [GSZ20] (2t + 1, t) O(log |C|) O(log |C|) Full Shamir

This work (2t + 1, t) O(log |C|) O(1) Full Any linear scheme,
O(n2|C|) preprocessing

This work (2t + 1, t) O(log |C|) O(1) Full replicated

Furukawa et al. [FL19] (3t + 1, t) O(1) O(|depth(C)|) with abort Shamir
Dalskov et al. [DEN22] (3t + 1, t) O(1) O(1) Full Replicated

This work (3t + 1, t) O(log(|C|)) O(1) Full Any linear scheme

7

Features of our approach

Works for any ring (even non-commutative!)
In particular, works for fields and the ring Z2k .
For example, we can compile the non-commutative protocol from [ES21].

Builds on zk-FLIOPs in a black-box way.
Improvements on zk-FLIOPs can be immediately be applied to our compiler.

8

Improvements on zk-FLIOPs for Galois Rings

Galois Rings
Ring extensions of Z2k .
Useful rings for multiple applications such as ML.
Extensions are useful for enabling polynomial interpolation.
zk-FLIOP over these rings is already known from the work of Boneh et al.
[BBCGI19].

We improve zk-FLIOPs over Galois Rings by making use of Reverse
Multiplication-Friendly Embeddings (RMFEs) [EHLXY23].

See the paper for further details on this front.

9

Challenges with Prior Works

zk-FLIOPs: A Recipe for Sublinear Overhead

zk-FLIOPs ([BBCGI19]) enable a prover to prove succinctly relations under the
following conditions:

• Relation is degree-2
• The values are “committed” in such a way that they can be “robustly opened”.

The authors note this can be used to compile passive MPC protocols into active
security at sublinear cost.

Two approaches:

• Single prover
• Distributed prover

10

Single prover approach

Each party proves to the others that the messages they sent during the protocol
execution are correct.

Works as long as:

• Messages sent by the parties are “degree-2”

• The values are “robustly-shared” among the parties

Instantiated for three parties and one corruption:

• [BBCGI19] for security with abort

• [BGIN19] for guaranteed output delivery

11

Crucial observation for three parties / one corruption:
Either the prover is corrupt and the (two) verifiers are honest,
or the prover is honest and one of the verifiers is corrupt.

⇒ For a corrupt prover, the values are trivially “robustly shared”.

For general t ≥ 2:
Security with abort is possible thanks to the robustness of (say) Shamir
secret-sharing in the honest majority regime [BGIN20].

G.O.D. remains challenging: not “robust enough”.

12

Distributed prover approach

The parties check that all secret-shared multiplications are correct, distributively
emulating the prover in the zk-FLIOP.

Boneh et al. [BBCGI19] use this to obtain an actively secure protocol with abort
for general n using replicated secret-sharing.

Challenge to get G.O.D. :
it is difficult to identify who cheated if the verification fails.

13

Solution in [BGIN20]:

• Perform binary search to first identify the exact multiplication that failed the
zk-FLIOP

• Develop an “expensive” (i.e. non-sublinear) method to detect who cheated in
this single multiplication

The extra log |C| rounds that we want to avoid come from the BINARY SEARCH!

Summary:

• Single-prover approach yields G.O.D. without extra rounds but only for n = 3

• Distributed-prover yields G.O.D. for general n but costs log |C| extra rounds.

14

Our Approach

General idea

We aim at extending the single-prover approach for general n.

15

Recap: DN07 protocol

Let [x] denote Shamir secret-sharing
Let ⟨x⟩ denote additive secret-sharing.

DN07 Multiplication ([DN07]):
Given two secret-shared inputs [x], [y], and a preprocessed ([r], ⟨r⟩):

• Compute locally ⟨xy+ r⟩ = [x] · [y] + ⟨r⟩
• Send the shares of ⟨xy+ r⟩ to P1, so that P1 reconstructs xy+ r
• P1 sends xy+ r to all parties
• Parties compute locally [xy] = (xy+ r)− ⟨r⟩.

FACT: Active security boils down to ensuring that these multiplications are
performed correctly.

16

Let {[xk], [yk], [zk]}
|C|
k=1 be the secret-shared multiplications after executing the

aforementioned protocol.

GOAL: Check that the parties sent the correct messages to each other.

Let x(i)k , y
(i)
k and r(i) be the shares of [x], [y] and ⟨r⟩ held by party Pi.

Let msg1(i)k be the message sent by Pi to P1 (should be equal to x
(i)
k y

(i)
k + r(i)k).

Let msg2(i)k be the message sent by P1 to Pi, (should be equal to
∑n

i′=1msg1
(i′)
k).

GOAL

Check that, for all k ∈ {1, . . . , |C|} and i ∈ {1, . . . ,n}:

msg1(i)k − (x(i)k y
(i)
k + r(i)k) = 0 and msg2(i)k −

n∑
i′=1

msg1(i
′)

k = 0

17

Compress via Random Linear Combinations

Sample γ1, . . . , γ|C| uniformly at random.

Let msg1(i) =
∑|C|

k=1 γk ·msg1
(i)
k , msg2

(i) =
∑|C|

k=1 γk ·msg2
(i)
k and r(i) =

∑|C|
k=1 γk · r

(i)
k

GOAL

Check that

msg1(i) − r(i) −
|C|∑
k=1

γk · x
(i)
k y

(i)
k = 0 and msg2(i) −

n∑
i′=1

msg1(i′) = 0

for all i ∈ {1, . . . ,n}

18

Let each party “commit” to their compressed messages by broadcasting them.

• Every Pi broadcasts msg1(i) and msg2(i).

• P1 broadcasts msg2(i) and msg1(i).

• Parties handle inconsistencies.a

aThis includes checking that ∀i : msg2(i) −
∑n

i′=1msg1
(i′) = 0.

Inconsistencies lead to semi-corrupt pairs.

Now the parties agreed on a “compressed transcript”, and they must check that

∀i ∈ {1, . . . ,n} : msg1(i) − r(i) −
|C|∑
k=1

γk · x
(i)
k y

(i)
k = 0

19

Applying zk-FLIOP in a Black-Box Way

∀i ∈ {1, . . . ,n} : msg1(i) − r(i) −
|C|∑
k=1

γk · x
(i)
k y

(i)
k = 0

zk-FLIOP requires (1) A degree-2 statement ✓, and
(2) Values must be robustly shared.

Observation:
[xk] is secret-shared, hence, the i-th share x

(i)
k itself is also secret-shared!

(potentially under a slightly different secret-sharing scheme).

Let us denote these sharings by [x(i)k |i] and [y(i)k |i].
msg1(i) is public and hence [msg1(i)|i] can be locally computed.

20

∀i ∈ {1, . . . ,n} : [msg1(i)|i]− r(i) −
|C|∑
k=1

γk · [x
(i)
k |i][y

(i)
k |i] = 0

Problem: the parties only have additive shares ⟨rk⟩ for k ∈ {1, . . . , |C|} (and hence
⟨r⟩ =

∑|C|
k=1 γk · ⟨rk⟩), but we need [r(i)|i].

We require a conversion protocol that transforms ⟨r⟩ into [r(i)|i].

IMPORTANT
This would take place during the preprocessing phase.

21

Converting ⟨r⟩ into [r(i)|i].

For Replicated Secret-Sharing
The PRSS methods to generate random sharings non-interactively already yield
the desired sharings! [DEN22].

For Other Schemes
Generate the pair ([rk], ⟨rk⟩) as follows:

• Each Pi samples r
(i)
k and secret-shares as [r(i)k] (quadratic communication!)

• The sampled values constitute ⟨rk⟩.

• Parties add [rk] =
∑n

i=1[r
(i)
k].

22

Recall that r(i) =
∑|C|

k=1 γk · r
(i)
k .

Recall the parties need [r(i)|i] for the zk-FLIOP.

The parties have [r(i)] (which is similar, but not the same).

SOLUTION:

• Let Pi distribute shares [r(i)|i].

• Check consistency∗ with respect to [r(i)].

Now the parties can apply the zk-FLIOP!

23

Other details in the paper

• Description for general secret-sharing schemes and general rings.

• Subtle details in using zk-FLIOP in our setting.

• Improvements for zk-FLIOPs in the concrete case of Galois Rings.

• Proofs and self-contained protocols.

24

References i

[BBCGI19] D. Boneh et al. “Zero-Knowledge Proofs on Secret-Shared Data via
Fully Linear PCPs”. In: CRYPTO. 2019.

[BFO12] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. “Near-Linear
Unconditionally-Secure Multiparty Computation with a Dishonest
Minority”. In: CRYPTO 2012. 2012.

[BGIN19] E. Boyle et al. “Practical Fully Secure Three-Party Computation via
Sublinear Distributed Zero-Knowledge Proofs”. In: ACM CCS. 2019.

[BGIN20] E. Boyle et al. “Efficient Fully Secure Computation via Distributed
Zero-Knowledge Proofs”. In: ASIACRYPT. 2020.

25

References ii

[CDESX18] R. Cramer et al. “SPDZ2k : Efficient MPC mod 2k for Dishonest Majority”.
In: CRYPTO 2018. 2018.

[Chi+18] K. Chida et al. “Fast Large-Scale Honest-Majority MPC for Malicious
Adversaries”. In: CRYPTO 2018. 2018.

[DEN22] A. P. K. Dalskov, D. Escudero, and A. Nof. “Fast Fully Secure Multi-Party
Computation over Any Ring with Two-Thirds Honest Majority”. In: ACM
CCS 2022. 2022.

[DN07] I. Damgård and J. B. Nielsen. “Scalable and Unconditionally Secure
Multiparty Computation”. In: CRYPTO. 2007.

26

References iii

[DPSZ12] I. Damgård et al. “Multiparty Computation from Somewhat
Homomorphic Encryption”. In: CRYPTO 2012. 2012.

[EHLXY23] D. Escudero et al. “Degree-D Reverse Multiplication-Friendly
Embeddings: Constructions and Applications”. In: ASIACRYPT 2023. 2023.

[ES21] D. Escudero and E. Soria-Vazquez. “Efficient information-theoretic
multi-party computation over non-commutative rings”. In: CRYPTO
2021. 2021.

[FL19] J. Furukawa and Y. Lindell. “Two-Thirds Honest-Majority MPC for
Malicious Adversaries at Almost the Cost of Semi-Honest”. In: ACM CCS
2019. 2019.

27

References iv

[FLNW17] J. Furukawa et al. “High-Throughput Secure Three-Party Computation
for Malicious Adversaries and an Honest Majority”. In: EUROCRYPT 2017.
2017.

[GIP15] D. Genkin, Y. Ishai, and A. Polychroniadou. “Efficient Multi-party
Computation: From Passive to Active Security via Secure SIMD
Circuits”. In: CRYPTO 2015. 2015.

[GLOPS21] V. Goyal et al. “ATLAS: Efficient and Scalable MPC in the Honest
Majority Setting”. In: CRYPTO. 2021.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest
Majority”. In: ACM STOC 1987. 1987.

28

References v

[GSZ20] V. Goyal, Y. Song, and C. Zhu. “Guaranteed Output Delivery Comes Free
in Honest Majority MPC”. In: CRYPTO 2020. 2020.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. “Founding Cryptography on
Oblivious Transfer - Efficiently”. In: CRYPTO 2008. 2008.

[LN17] Y. Lindell and A. Nof. “A Framework for Constructing Fast MPC over
Arithmetic Circuits with Malicious Adversaries and an
Honest-Majority”. In: ACM CCS 2017. 2017.

29

• Actively secure MPC with G.O.D. with the same round-count as semi-honest

• Same online communication as passive (asymptotically)

• Same offline communication as passive for replicated secret-sharing

• A factor of n more communication in the offline phase for other schemes
(can we improve this?)

• Works for general rings (even non-commutative).

• Improved zk-FLIOP constructions over Galois rings using RMFEs.

Thank you!

30

	Challenges with Prior Works
	Our Approach

