Algebraic Structure of the Iterates of χ

Björn Kriepke Gohar Kyureghyan

University of Rostock, Germany

CRYPTO 2024, August 19

Kriepke, Kyureghyan [Algebraic Structure of the Iterates of](#page-43-0) χ CRYPTO 2024 1/24

- First introduced by Daemen¹.
- χ is a permutation on \emph{n} bits if and only if \emph{n} is odd 1 .
- \bullet x is shift-invariant.
- \bullet x is quadratic, i.e. algebraic degree 2.
- χ^{-1} has algebraic degree $(n+1)/2.$
- An explicit formula for the inverse is known 2 .

¹ Joan Daemen. "Cipher and hash function design strategies based on linear and differential cryptanalysis". PhD thesis. Doctoral Dissertation, March 1995, KU Leuven, 1995.

²Fukang Liu, Santanu Sarkar, Willi Meier, and Takanori Isobe. "The inverse of χ and its applications to rasta-like ciphers". In: Journal of Cryp[tol](#page-0-0)[ogy](#page-2-0) [35.](#page-1-0)[4](#page-2-0) [\(2](#page-0-0)[02](#page-43-0)[2\),](#page-0-0) [p.](#page-43-0) [28](#page-0-0)[.](#page-43-0) QQ

重

 299

イロト イ部 トメ ヨ トメ ヨト

Let n be odd. **Definition.** $\chi : \mathbb{F}_2^n \to \mathbb{F}_2^n$, $x \mapsto y = \chi(x)$ given by

$$
y_i = x_i + (x_{i+1}+1)x_{i+2}
$$

where the indices are taken modulo n.

4 0 8

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

Let n be odd. **Definition.** $\chi : \mathbb{F}_2^n \to \mathbb{F}_2^n$, $x \mapsto y = \chi(x)$ given by

$$
y_i = x_i + (x_{i+1} + 1)x_{i+2}
$$

where the indices are taken modulo n.

$$
y_i = x_i + 1 \iff (x_{i+1} + 1)x_{i+2} = 1 \iff (x_{i+1}, x_{i+2}) = (0, 1).
$$

\$\leadsto \chi\$ flips the bit x_i if and only if x_i is followed by the pattern 01.

4 0 8

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

Let n be odd. **Definition.** $\chi : \mathbb{F}_2^n \to \mathbb{F}_2^n$, $x \mapsto y = \chi(x)$ given by

$$
y_i = x_i + (x_{i+1} + 1)x_{i+2}
$$

where the indices are taken modulo n.

$$
y_i = x_i + 1 \iff (x_{i+1} + 1)x_{i+2} = 1 \iff (x_{i+1}, x_{i+2}) = (0, 1).
$$

\$\rightsquigarrow \chi\$ flips the bit x_i if and only if x_i is followed by the pattern 01.

Equivalent Definition. χ is given by the complementing landscape $*01$.

 Ω

← ロ ⊁ → 何 ▶ → ヨ ▶ →

$x = 1 1 0 1 1 0 1 0 0$ $\chi(x)$ =

Э× 造

×.

4 ロト 4 母 ト 4

$$
x = 1 1 0 1 1 0 1 0 0
$$

$$
\chi(x) = 1
$$

Kriepke, Kyureghyan [Algebraic Structure of the Iterates of](#page-0-0) χ CRYPTO 2024 5 / 24

Э× \mathcal{A}

重

$$
x = 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0
$$

$$
\chi(x) = 1 \quad 0
$$

Э× \mathcal{A}

重

$$
\begin{array}{rcl}\nx & = & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\downarrow & & & & & & \downarrow & & & \\
\chi(x) & = & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1\n\end{array}
$$

Kriepke, Kyureghyan [Algebraic Structure of the Iterates of](#page-0-0) χ CRYPTO 2024 5 / 24

Э× \mathcal{A}

重

$$
x = 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0
$$

$$
\chi(x) = 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0
$$

Kriepke, Kyureghyan [Algebraic Structure of the Iterates of](#page-0-0) χ CRYPTO 2024 5 / 24

Э× \mathcal{A}

重

We are interested in the iterates of χ , i.e. what is

$$
\chi^j(x) = \chi(\chi(\ldots \chi(x) \ldots))
$$

for $j \geq 1$.

4日下

∢ 伺 ▶

活

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(j)} = \chi^j(x^{(0)})$. Then $x_i^{(0)} = x_i$

K ロ > K @ → K 할 > K 할 > 1 할 | K 9 Q @

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(j)} = \chi^j(x^{(0)})$. Then

$$
x_i^{(0)} = x_i
$$

\n
$$
x_i^{(1)} = \chi(x)_i = x_i + (x_{i+1} + 1)x_{i+2}
$$

4 ロト 4 母 ト 4

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(j)} = \chi^j(x^{(0)})$. Then

$$
x_i^{(0)} = x_i
$$

\n
$$
x_i^{(1)} = \chi(x)_i = x_i + (x_{i+1} + 1)x_{i+2}
$$

\n
$$
x_i^{(2)} = \chi(x^{(1)})_i = x_i^{(1)} + (x_{i+1}^{(1)} + 1)x_{i+2}^{(1)}
$$

4 ロト 4 母 ト 4

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(j)} = \chi^j(x^{(0)})$. Then

$$
x_i^{(0)} = x_i
$$

\n
$$
x_i^{(1)} = \chi(x)_i = x_i + (x_{i+1} + 1)x_{i+2}
$$

\n
$$
x_i^{(2)} = \chi(x^{(1)})_i = x_i^{(1)} + (x_{i+1}^{(1)} + 1)x_{i+2}^{(1)}
$$

\n
$$
= x_i + (1 + x_{i+1}) \cdot x_{i+2}
$$

\n
$$
+ (x_{i+1} + (1 + x_{i+2}) \cdot x_{i+3} + 1)
$$

\n
$$
\cdot (x_{i+2} + (1 + x_{i+3}) \cdot x_{i+4})
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(j)} = \chi^j(x^{(0)})$. Then

$$
x_i^{(0)} = x_i
$$

\n
$$
x_i^{(1)} = \chi(x)_i = x_i + (x_{i+1} + 1)x_{i+2}
$$

\n
$$
x_i^{(2)} = \chi(x^{(1)})_i = x_i^{(1)} + (x_{i+1}^{(1)} + 1)x_{i+2}^{(1)}
$$

\n
$$
= x_i + (1 + x_{i+1}) \cdot x_{i+2}
$$

\n
$$
+ (x_{i+1} + (1 + x_{i+2}) \cdot x_{i+3} + 1)
$$

\n
$$
\cdot (x_{i+2} + (1 + x_{i+3}) \cdot x_{i+4})
$$

\n
$$
= \dots
$$

\n
$$
= x_i + x_{i+4} \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}).
$$

Similarly,

$$
x_i^{(3)} = x_i + x_{i+2} \cdot (1 + x_{i+1})
$$

+ x_{i+4} \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1})
+ x_{i+6} \cdot (1 + x_{i+5}) \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1})

重

 299

イロト イ部 トメ ヨ トメ ヨト

Similarly,

$$
x_i^{(3)} = x_i + x_{i+2} \cdot (1 + x_{i+1})
$$

+ x_{i+4} \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1})
+ x_{i+6} \cdot (1 + x_{i+5}) \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1})

and

$$
x_i^{(4)} = x_i + x_{i+8} \cdot (1 + x_{i+7}) \cdot (1 + x_{i+5}) \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}).
$$

 299

경기 重

э \mathbf{p} \rightarrow

K ロ ▶ K 倒 ▶ K

We define $\gamma_{2k}:\mathbb{F}_2^n \to \mathbb{F}_2^n$ given by

$$
\gamma_{2k}(x)_i = x_{i+2k} \cdot (1 + x_{i+2k-1}) \cdot (1 + x_{i+2k-3}) \cdots (1 + x_{i+1}).
$$

 \mathbf{p}

K ロ ▶ K 何 ▶ K 日

We define $\gamma_{2k}:\mathbb{F}_2^n \to \mathbb{F}_2^n$ given by

$$
\gamma_{2k}(x)_i = x_{i+2k} \cdot (1 + x_{i+2k-1}) \cdot (1 + x_{i+2k-3}) \cdots (1 + x_{i+1}).
$$

With that notation we have

$$
\chi^{0}(x) = x
$$

\n
$$
\chi^{1}(x) = x + \gamma_{2}(x)
$$

\n
$$
\chi^{2}(x) = x + \gamma_{4}(x)
$$

\n
$$
\chi^{3}(x) = x + \gamma_{2}(x) + \gamma_{4}(x) + \gamma_{6}(x)
$$

\n
$$
\chi^{4}(x) = x + \gamma_{8}(x).
$$

What is the general pattern?

4日下

●▶

÷

Our previous notation is ill-suited for our purposes. For example

$$
x_{i+1}\circ (x_{i+2}\cdot (1+x_{i+1}))=x_{i+3}\cdot (1+x_{i+2}).
$$

 \rightsquigarrow We want notation that is better suited for compositions.

4 **D** F

We introduce the cyclic left-shift operator $\mathcal{S}:\mathbb{F}_2^n\to\mathbb{F}_2^n$ given by

$$
S(x_1,\ldots,x_n)=(x_2,x_3,\ldots,x_n,x_1)
$$

and the Hadamard-product ⊙ given by

$$
\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \odot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1y_1 \\ x_2y_2 \\ \vdots \\ x_ny_n \end{pmatrix}
$$

.

 \leftarrow \Box

Remember, χ is given by

$$
\chi(x)_i = x_i + x_{i+2}(1 + x_{i+1}).
$$

This can also be written as

$$
\chi(x) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} x_3 \\ x_4 \\ x_5 \\ \vdots \\ x_2 \end{pmatrix} \odot \left[\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_1 \end{pmatrix} \right]
$$

← ロ ▶ → イ 同 ▶

э

Now we can write it as

$$
\chi = \mathsf{id} + S^2 \odot (\mathbb{1} + S) = \gamma_0 + \gamma_2
$$

where id is the identity function and $\mathbb{1}=(1,1,\ldots,1)\in\mathbb{F}_2^n$. Furthermore,

$$
\gamma_{2k}=S^{2k}\odot(\mathbb{1}+S^{2k-1})\odot(\mathbb{1}+S^{2k-3})\odot\ldots\odot(\mathbb{1}+S)
$$

and $\gamma_0 := id$.

4 **D** F

4 何 ▶ - 4

This notation is better suited for our purposes, for example

$$
S \circ (S^2 \odot (\mathbb{1} + S)) = S(S^2 \odot (\mathbb{1} + S)) = S^3 \odot (\mathbb{1} + S^2)
$$

compared to

$$
x_{i+1}\circ (x_{i+2}\cdot (1+x_{i+1}))=x_{i+3}\cdot (1+x_{i+2}).
$$

 \leftarrow \Box

 \mathcal{A} . ← 中

Goal:

- **Study** how the composition of the functions γ_{2k} and their linear combination works.
- Apply the results to $\chi = \gamma_0 + \gamma_2$.

Key Lemma. It holds that

$$
\gamma_{2m}\left(\gamma_0+\sum_{i=1}^k a_i\gamma_{2i}\right)=\sum_{i=0}^k a_i\gamma_{2i+2m}.
$$

It is very surprising that such a composition is again a linear combination of the functions γ_{2k}

Key Lemma. It holds that

$$
\gamma_{2m}\left(\gamma_0+\sum_{i=1}^k a_i\gamma_{2i}\right)=\sum_{i=0}^k a_i\gamma_{2i+2m}.
$$

It is very surprising that such a composition is again a linear combination of the functions γ_{2k} .

If γ_0 is not included, then the result does not hold. For example

$$
\gamma_2\circ\gamma_2=S^4\odot(\mathbb{1}+S^3)
$$

is not a linear combination of γ_{2k} .

∽≏∩

Definition. Let G denote the set

$$
G=\gamma_0+\text{span}\{\gamma_2,\gamma_4,\ldots,\gamma_{n-1}\}.
$$

Note that $\chi = \gamma_0 + \gamma_2 \in G$. We call the maps in G generalized χ -maps.

4 **D** F

つひひ

Key Lemma, Example.

$$
\gamma_2 \circ (\gamma_0 + \gamma_4) = \gamma_2 + \gamma_6
$$

$$
\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}.
$$

 \leftarrow \Box

← 中

Key Lemma, Example.

$$
\gamma_2 \circ (\gamma_0 + \gamma_4) = \gamma_2 + \gamma_6
$$

$$
\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}.
$$

This looks like polynomial multiplication!

 \leftarrow \Box

This looks like polynomial multiplication!

$$
\gamma_2\circ(\gamma_0+\gamma_4)=\gamma_2+\gamma_6\\ X\cdot(1+X^2)=X+X^3
$$

and

$$
\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}
$$

$$
X^2 \cdot (1 + X + X^3) = X^2 + X^3 + X^5.
$$

€ □ }

4 同 下

э

This looks like polynomial multiplication!

$$
\gamma_2\circ(\gamma_0+\gamma_4)=\gamma_2+\gamma_6\\ X\cdot(1+X^2)=X+X^3
$$

and

$$
\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}
$$

$$
X^2 \cdot (1 + X + X^3) = X^2 + X^3 + X^5.
$$

Observation: γ_{2k} seems to behave like $X^k.$

 \leftarrow \Box

 γ_{n+1} is the zero map, so $X^{(n+1)/2}$ should also be zero.

 \leftarrow \Box

 γ_{n+1} is the zero map, so $X^{(n+1)/2}$ should also be zero.

 \rightsquigarrow Consider the polynomials modulo $X^{(n+1)/2}$, i.e. in the quotient ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$

 γ_{n+1} is the zero map, so $X^{(n+1)/2}$ should also be zero.

 \rightsquigarrow Consider the polynomials modulo $X^{(n+1)/2}$, i.e. in the quotient ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$

Lemma. The composition of functions in G behaves exactly like polynomial multiplication for polynomials of the form $1+\sum_{i=1}^k a_iX^i$ in the ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$.

Lemma. The composition of functions in G behaves exactly like polynomial multiplication for polynomials of the form $1+\sum_{i=1}^k a_iX^i$ in the ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$.

Lemma. The composition of functions in G behaves exactly like polynomial multiplication for polynomials of the form $1+\sum_{i=1}^k a_iX^i$ in the ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$.

The polynomials of the form $1 + \sum_{i=1}^k a_i X^i$ are all multiplicatively invertible in R , in fact they form the unit group of R . Furthermore, clearly polynomial multiplication is commutative.

Lemma. The composition of functions in G behaves exactly like polynomial multiplication for polynomials of the form $1+\sum_{i=1}^k a_iX^i$ in the ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$.

The polynomials of the form $1 + \sum_{i=1}^k a_i X^i$ are all multiplicatively invertible in R , in fact they form the unit group of R . Furthermore, clearly polynomial multiplication is commutative.

Theorem. G is an Abelian group under composition, in particular every function in G is a permutation.

We can now apply these results to $\chi = \gamma_0 + \gamma_2$, which behaves like $1 + X$.

Composition of χ corresponds to exponentiation of $1 + X$.

Iterates of χ

We saw previously:

$$
\chi^{0}(x) = x
$$

\n
$$
\chi^{1}(x) = x + \gamma_{2}(x)
$$

\n
$$
\chi^{2}(x) = x + \gamma_{4}(x)
$$

\n
$$
\chi^{3}(x) = x + \gamma_{2}(x) + \gamma_{4}(x) + \gamma_{6}(x)
$$

\n
$$
\chi^{4}(x) = x + \gamma_{8}(x).
$$

Þк

4 ロ ト 4 何 ト

 \mathcal{A}

Iterates of χ

We saw previously:

$$
\chi^{0}(x) = x
$$

\n
$$
\chi^{1}(x) = x + \gamma_{2}(x)
$$

\n
$$
\chi^{2}(x) = x + \gamma_{4}(x)
$$

\n
$$
\chi^{3}(x) = x + \gamma_{2}(x) + \gamma_{4}(x) + \gamma_{6}(x)
$$

\n
$$
\chi^{4}(x) = x + \gamma_{8}(x).
$$

We now have the explanation:

$$
(1 + X)0 = 1
$$

\n
$$
(1 + X)1 = 1 + X
$$

\n
$$
(1 + X)2 = 1 + X2
$$

\n
$$
(1 + X)3 = 1 + X + X2 + X3
$$

\n
$$
(1 + X)4 = 1 + X4.
$$

4日下

 \mathcal{A} . ← 中 ъ

э

Thank you for your attention.

∍ þ.

← ロ ▶ → イ 同 ▶