Algebraic Structure of the Iterates of χ

Björn Kriepke Gohar Kyureghyan

University of Rostock, Germany

CRYPTO 2024, August 19

Kriepke, Kyureghyan

Algebraic Structure of the Iterates of χ

CRYPTO 2024 1 / 24

- First introduced by Daemen¹.
- χ is a permutation on *n* bits if and only if *n* is odd ¹.
- χ is shift-invariant.
- χ is quadratic, i.e. algebraic degree 2.
- χ^{-1} has algebraic degree (n+1)/2.
- An explicit formula for the inverse is known².

CRYPTO 2024

2 / 24

¹Joan Daemen. "Cipher and hash function design strategies based on linear and differential cryptanalysis". PhD thesis. Doctoral Dissertation, March 1995, KU Leuven, 1995.

²Fukang Liu, Santanu Sarkar, Willi Meier, and Takanori Isobe. "The inverse of χ and its applications to rasta-like ciphers". In: *Journal of Cryptology* 35.4 (2022), p_{2} 28 $-\infty \infty$

_	Cryptographic algorithm	Length
_	SHA-3 (Keccak)	<i>n</i> = 5
	ASCON	<i>n</i> = 5
	Subterranean	n = 257
_	Rasta/Dasta/Agrasta	several options for <i>n</i>

2

イロト イヨト イヨト イヨト

Let *n* be odd. **Definition.** $\chi : \mathbb{F}_2^n \to \mathbb{F}_2^n, x \mapsto y = \chi(x)$ given by

$$y_i = x_i + (x_{i+1} + 1)x_{i+2}$$

where the indices are taken modulo n.

< 4[™] > <

Let *n* be odd. Definition. $\chi: \mathbb{F}_2^n \to \mathbb{F}_2^n, x \mapsto y = \chi(x)$ given by

$$y_i = x_i + (x_{i+1} + 1)x_{i+2}$$

where the indices are taken modulo n.

$$y_i = x_i + 1 \iff (x_{i+1} + 1)x_{i+2} = 1 \iff (x_{i+1}, x_{i+2}) = (0, 1).$$

 $\rightsquigarrow \chi$ flips the bit x_i if and only if x_i is followed by the pattern 01.

< 4[™] > <

Let *n* be odd. Definition. $\chi : \mathbb{F}_2^n \to \mathbb{F}_2^n, x \mapsto y = \chi(x)$ given by

$$y_i = x_i + (x_{i+1} + 1)x_{i+2}$$

where the indices are taken modulo n.

$$y_i = x_i + 1 \iff (x_{i+1} + 1)x_{i+2} = 1 \iff (x_{i+1}, x_{i+2}) = (0, 1).$$

 $\rightsquigarrow \chi$ flips the bit x_i if and only if x_i is followed by the pattern 01.

Equivalent Definition. χ is given by the complementing landscape *01.

< A□ > < □ >

Example n = 9. = 1 1 0 1 1 0 1 0 0 х $\chi(x) =$

Kriepke, Kyureghyan

Algebraic Structure of the lterates of χ

∃ ⊳ **CRYPTO 2024** 5 / 24

3

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

We are interested in the iterates of χ , i.e. what is

$$\chi^j(x) = \chi(\chi(\ldots \chi(x) \ldots))$$

for $j \ge 1$.

э

< A 1

Let
$$x=x^{(0)}\in \mathbb{F}_2^n$$
 and denote $x^{(j)}=\chi^j(x^{(0)}).$ Then $x_i^{(0)}=x_i$

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(j)} = \chi^j(x^{(0)})$. Then

$$egin{aligned} &x_i^{(0)} = x_i \ &x_i^{(1)} = \chi(x)_i = x_i + (x_{i+1}+1)x_{i+2} \end{aligned}$$

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(j)} = \chi^j(x^{(0)})$. Then

$$\begin{aligned} x_i^{(0)} &= x_i \\ x_i^{(1)} &= \chi(x)_i = x_i + (x_{i+1} + 1)x_{i+2} \\ x_i^{(2)} &= \chi(x^{(1)})_i = x_i^{(1)} + (x_{i+1}^{(1)} + 1)x_{i+2}^{(1)} \end{aligned}$$

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(j)} = \chi^j(x^{(0)})$. Then

$$\begin{aligned} x_i^{(0)} &= x_i \\ x_i^{(1)} &= \chi(x)_i = x_i + (x_{i+1} + 1)x_{i+2} \\ x_i^{(2)} &= \chi(x^{(1)})_i = x_i^{(1)} + (x_{i+1}^{(1)} + 1)x_{i+2}^{(1)} \\ &= x_i + (1 + x_{i+1}) \cdot x_{i+2} \\ &+ (x_{i+1} + (1 + x_{i+2}) \cdot x_{i+3} + 1) \\ &\cdot (x_{i+2} + (1 + x_{i+3}) \cdot x_{i+4}) \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(j)} = \chi^j(x^{(0)})$. Then

$$\begin{aligned} x_i^{(0)} &= x_i \\ x_i^{(1)} &= \chi(x)_i = x_i + (x_{i+1} + 1)x_{i+2} \\ x_i^{(2)} &= \chi(x^{(1)})_i = x_i^{(1)} + (x_{i+1}^{(1)} + 1)x_{i+2}^{(1)} \\ &= x_i + (1 + x_{i+1}) \cdot x_{i+2} \\ &+ (x_{i+1} + (1 + x_{i+2}) \cdot x_{i+3} + 1) \\ &\cdot (x_{i+2} + (1 + x_{i+3}) \cdot x_{i+4}) \\ &= \dots \\ &= x_i + x_{i+4} \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}). \end{aligned}$$

Similarly,

$$egin{aligned} x_i^{(3)} &= x_i + x_{i+2} \cdot (1 + x_{i+1}) \ &+ x_{i+4} \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}) \ &+ x_{i+6} \cdot (1 + x_{i+5}) \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}) \end{aligned}$$

글 > 글

・ロト ・日下 ・日下

Similarly,

$$egin{aligned} &x_i^{(3)} = x_i + x_{i+2} \cdot (1 + x_{i+1}) \ &+ x_{i+4} \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}) \ &+ x_{i+6} \cdot (1 + x_{i+5}) \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}) \end{aligned}$$

and

$$x_i^{(4)} = x_i + x_{i+8} \cdot (1 + x_{i+7}) \cdot (1 + x_{i+5}) \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}).$$

æ

ъ

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We define $\gamma_{2k}: \mathbb{F}_2^n \to \mathbb{F}_2^n$ given by

$$\gamma_{2k}(x)_i = x_{i+2k} \cdot (1 + x_{i+2k-1}) \cdot (1 + x_{i+2k-3}) \cdots (1 + x_{i+1}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

We define $\gamma_{2k}: \mathbb{F}_2^n \to \mathbb{F}_2^n$ given by

$$\gamma_{2k}(x)_i = x_{i+2k} \cdot (1 + x_{i+2k-1}) \cdot (1 + x_{i+2k-3}) \cdots (1 + x_{i+1}).$$

With that notation we have

$$\begin{split} \chi^{0}(x) &= x \\ \chi^{1}(x) &= x + \gamma_{2}(x) \\ \chi^{2}(x) &= x + \gamma_{4}(x) \\ \chi^{3}(x) &= x + \gamma_{2}(x) + \gamma_{4}(x) + \gamma_{6}(x) \\ \chi^{4}(x) &= x + \gamma_{8}(x). \end{split}$$

What is the general pattern?

47 ▶

Our previous notation is ill-suited for our purposes. For example

$$x_{i+1} \circ (x_{i+2} \cdot (1+x_{i+1})) = x_{i+3} \cdot (1+x_{i+2}).$$

 \rightsquigarrow We want notation that is better suited for compositions.

We introduce the cyclic left-shift operator $S:\mathbb{F}_2^n
ightarrow\mathbb{F}_2^n$ given by

$$S(x_1,\ldots,x_n)=(x_2,x_3,\ldots,x_n,x_1)$$

and the Hadamard-product \odot given by

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \odot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 y_1 \\ x_2 y_2 \\ \vdots \\ x_n y_n \end{pmatrix}$$

٠

11 / 24

Remember, χ is given by

$$\chi(x)_i = x_i + x_{i+2}(1 + x_{i+1}).$$

This can also be written as

$$\chi(x) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} x_3 \\ x_4 \\ x_5 \\ \vdots \\ x_2 \end{pmatrix} \odot \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_1 \end{pmatrix} \end{bmatrix}$$

< 47 ▶

э

Now we can write it as

$$\chi = \mathsf{id} + S^2 \odot (\mathbb{1} + S) = \gamma_0 + \gamma_2$$

where id is the identity function and $\mathbb{1}=(1,1,\ldots,1)\in\mathbb{F}_2^n.$ Furthermore,

$$\gamma_{2k} = S^{2k} \odot (\mathbb{1} + S^{2k-1}) \odot (\mathbb{1} + S^{2k-3}) \odot \ldots \odot (\mathbb{1} + S)$$

and $\gamma_0 := \mathsf{id}$.

포 문 문

Image: A matrix and a matrix

This notation is better suited for our purposes, for example

$$S \circ (S^2 \odot (\mathbb{1} + S)) = S(S^2 \odot (\mathbb{1} + S)) = S^3 \odot (\mathbb{1} + S^2)$$

compared to

$$x_{i+1} \circ (x_{i+2} \cdot (1+x_{i+1})) = x_{i+3} \cdot (1+x_{i+2}).$$

э

Image: A marked and A marked

Goal:

- Study how the composition of the functions γ_{2k} and their linear combination works.
- Apply the results to $\chi = \gamma_0 + \gamma_2$.

Key Lemma. It holds that

$$\gamma_{2m}\left(\gamma_0+\sum_{i=1}^k a_i\gamma_{2i}\right)=\sum_{i=0}^k a_i\gamma_{2i+2m}.$$

It is very surprising that such a composition is again a linear combination of the functions $\gamma_{2k}.$

Key Lemma. It holds that

$$\gamma_{2m}\left(\gamma_0+\sum_{i=1}^k a_i\gamma_{2i}\right)=\sum_{i=0}^k a_i\gamma_{2i+2m}.$$

It is very surprising that such a composition is again a linear combination of the functions γ_{2k} .

If γ_0 is not included, then the result does not hold. For example

$$\gamma_2 \circ \gamma_2 = S^4 \odot (\mathbb{1} + S^3)$$

is not a linear combination of γ_{2k} .

Definition. Let G denote the set

$$G = \gamma_0 + \operatorname{span}\{\gamma_2, \gamma_4, \dots, \gamma_{n-1}\}.$$

Note that $\chi = \gamma_0 + \gamma_2 \in G$. We call the maps in G generalized χ -maps.

Key Lemma, Example.

$$\gamma_2 \circ (\gamma_0 + \gamma_4) = \gamma_2 + \gamma_6$$

$$\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}.$$

< 47 ▶

э

Key Lemma, Example.

$$\gamma_2 \circ (\gamma_0 + \gamma_4) = \gamma_2 + \gamma_6$$

$$\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}.$$

This looks like polynomial multiplication!

This looks like polynomial multiplication!

$$egin{aligned} &\gamma_2\circ(\gamma_0+\gamma_4)=\gamma_2+\gamma_6\ &X\cdot(1+X^2)=X+X^3 \end{aligned}$$

and

$$egin{aligned} &\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10} \ &X^2 \cdot (1 + X + X^3) = X^2 + X^3 + X^5. \end{aligned}$$

Kriepke, Kyureghyan

- 4 🗗 ▶

э

19 / 24

This looks like polynomial multiplication!

$$egin{aligned} &\gamma_2\circ(\gamma_0+\gamma_4)=\gamma_2+\gamma_6\ &X\cdot(1+X^2)=X+X^3 \end{aligned}$$

and

$$\begin{aligned} \gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) &= \gamma_4 + \gamma_6 + \gamma_{10} \\ X^2 \cdot (1 + X + X^3) &= X^2 + X^3 + X^5. \end{aligned}$$

Observation: γ_{2k} seems to behave like X^k .

 γ_{n+1} is the zero map, so $X^{(n+1)/2}$ should also be zero.

 γ_{n+1} is the zero map, so $X^{(n+1)/2}$ should also be zero.

 \rightsquigarrow Consider the polynomials modulo $X^{(n+1)/2}$, i.e. in the quotient ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2}).$

 γ_{n+1} is the zero map, so $X^{(n+1)/2}$ should also be zero.

 \rightsquigarrow Consider the polynomials modulo $X^{(n+1)/2}$, i.e. in the quotient ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2}).$

Lemma. The composition of functions in G behaves exactly like polynomial multiplication for polynomials of the form $1 + \sum_{i=1}^{k} a_i X^i$ in the ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$.

Lemma. The composition of functions in G behaves exactly like polynomial multiplication for polynomials of the form $1 + \sum_{i=1}^{k} a_i X^i$ in the ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$.

Lemma. The composition of functions in G behaves exactly like polynomial multiplication for polynomials of the form $1 + \sum_{i=1}^{k} a_i X^i$ in the ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$.

The polynomials of the form $1 + \sum_{i=1}^{k} a_i X^i$ are all multiplicatively invertible in R, in fact they form the unit group of R. Furthermore, clearly polynomial multiplication is commutative. **Lemma.** The composition of functions in G behaves exactly like polynomial multiplication for polynomials of the form $1 + \sum_{i=1}^{k} a_i X^i$ in the ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$.

The polynomials of the form $1 + \sum_{i=1}^{k} a_i X^i$ are all multiplicatively invertible in R, in fact they form the unit group of R. Furthermore, clearly polynomial multiplication is commutative.

Theorem. G is an Abelian group under composition, in particular every function in G is a permutation.

We can now apply these results to $\chi = \gamma_0 + \gamma_2$, which behaves like 1 + X.

Composition of χ corresponds to exponentiation of 1 + X.

Iterates of χ

We saw previously:

$$\begin{split} \chi^{0}(x) &= x \\ \chi^{1}(x) &= x + \gamma_{2}(x) \\ \chi^{2}(x) &= x + \gamma_{4}(x) \\ \chi^{3}(x) &= x + \gamma_{2}(x) + \gamma_{4}(x) + \gamma_{6}(x) \\ \chi^{4}(x) &= x + \gamma_{8}(x). \end{split}$$

∃ > CRYPTO 2024 23 / 24

Image: A matrix and a matrix

Iterates of χ

We saw previously:

$$\begin{split} \chi^{0}(x) &= x \\ \chi^{1}(x) &= x + \gamma_{2}(x) \\ \chi^{2}(x) &= x + \gamma_{4}(x) \\ \chi^{3}(x) &= x + \gamma_{2}(x) + \gamma_{4}(x) + \gamma_{6}(x) \\ \chi^{4}(x) &= x + \gamma_{8}(x). \end{split}$$

We now have the explanation:

$$(1 + X)^0 = 1$$

 $(1 + X)^1 = 1 + X$
 $(1 + X)^2 = 1 + X^2$
 $(1 + X)^3 = 1 + X + X^2 + X^3$
 $(1 + X)^4 = 1 + X^4.$

Kriepke, Kyureghyan

э

Thank you for your attention.

3

< □ > < /□ >