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Constructing SNARKs

Modular approach

information theoretic
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Polynomial IOP Polynomial CS

cryptographic
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Result

Polynomial CS with bunch of nice properties:

- quasi-linear prover time
- transparent setup
- succinct commitment

- fast verification
- binding under standard

assumptions (SIS)
- post-quantum security

Concrete Efficiency!
215 220 225 230

91KB 403KB 1.36MB 4.90MB
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Polynomial Commitment Scheme (PCS)

Commitment Scheme

- commitment to vector f ∈ Zdq
- commitment t, opening s

succinct commitment: |t| ≪ d

vectors f of arbitrary norm

Evaluation Protocol
t, x,u

P
(f , s)

V

"Knows f such that f (x) = u and
opening s for f = coeff(f ), t"

V ’s running time≪ d
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How to Commit: from 2n to n

crs : A ∈ Zn×2n log q
q , G ∈ Z2n×2n log q

q (2 generalizes to r)

To commit to f ∈ Z2n
q compute t = H(f)

H : Z2n
q −→ Znq
f 7−→ A · G−1(f)

To open provide low-norm s ∈ Z2n log q

A · s = t mod q
G · s = f mod q
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Tree-based Approach

Want to commit to f ∈ Z8n
q

t

t0 t1

t00 t01 t10 t11

f : f000 f001 f010 f011 f100 f101 f110 f111
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Opening

Algebraic Viewpoint

t = (I⊗ A) · G−1

(
(I⊗ A) ·

s1︷ ︸︸ ︷

G−1
(
(I⊗ A) · G−1(f)

︸ ︷︷ ︸
s2

))

︸ ︷︷ ︸
s0

Opening: "short" s = (s0, s1, s2) such that

A · s0 = t
G · s0 = (I⊗ A) · s1 and G · s1 = (I⊗ A) · s2

G · s2 = f

opening
relation

7



Opening

Algebraic Viewpoint

t = (I⊗ A) · G−1

(
(I⊗ A) ·

s1︷ ︸︸ ︷

G−1
(
(I⊗ A) · G−1(f)

︸ ︷︷ ︸
s2

))
︸ ︷︷ ︸

s0

Opening: "short" s = (s0, s1, s2) such that

A · s0 = t
G · s0 = (I⊗ A) · s1 and G · s1 = (I⊗ A) · s2

G · s2 = f

opening
relation

7



Opening

Algebraic Viewpoint

t = (I⊗ A) · G−1

(
(I⊗ A) ·

s1︷ ︸︸ ︷
G−1
(
(I⊗ A) · G−1(f)

︸ ︷︷ ︸
s2

))
︸ ︷︷ ︸

s0

Opening: "short" s = (s0, s1, s2) such that

A · s0 = t
G · s0 = (I⊗ A) · s1 and G · s1 = (I⊗ A) · s2

G · s2 = f

opening
relation

7



Opening

Algebraic Viewpoint

t = (I⊗ A) · G−1

(
(I⊗ A) ·

s1︷ ︸︸ ︷
G−1
(
(I⊗ A) · G−1(f)︸ ︷︷ ︸

s2

))
︸ ︷︷ ︸

s0

Opening: "short" s = (s0, s1, s2) such that

A · s0 = t
G · s0 = (I⊗ A) · s1 and G · s1 = (I⊗ A) · s2

G · s2 = f

opening
relation

7



Opening

Algebraic Viewpoint

t = (I⊗ A) · G−1

(
(I⊗ A) ·

s1︷ ︸︸ ︷
G−1
(
(I⊗ A) · G−1(f)︸ ︷︷ ︸

s2

))
︸ ︷︷ ︸

s0

Opening: "short" s = (s0, s1, s2) such that

A · s0 = t
G · s0 = (I⊗ A) · s1 and G · s1 = (I⊗ A) · s2

G · s2 = f

opening
relation

7



Opening

Algebraic Viewpoint

t = (I⊗ A) · G−1

(
(I⊗ A) ·

s1︷ ︸︸ ︷
G−1
(
(I⊗ A) · G−1(f)︸ ︷︷ ︸

s2

))
︸ ︷︷ ︸

s0

Opening: "short" s = (s0, s1, s2) such that

A · s0 = t
G · s0 = (I⊗ A) · s1 and G · s1 = (I⊗ A) · s2

G · s2 = f

opening
relation

7



Folding Friendly I

Reduction (of Knowledge) framework [KP23].

P V
msg
chl

commitment

vector

opening

t

f

s

message msg + folding challenge chl

t′

f ′

s′

|f ′| = |f|/2

|s′| ≈ |s|/2
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Folding Friendly II

A, t

P
s = (s0, s1, s2), f

V

msg = s0

chl = c ∈ {0, 1}2 (I⊗ A) ·msg ?
= tbuilding

block

t′ := (c⊤ ⊗ I) · G ·msg

f ′ := (c⊤ ⊗ I) · f
s′0 := (c⊤ ⊗ I) · s1

s′1 := (c⊤ ⊗ I) · s2

=⇒
A · s′0 = t′

G · s′0 = (I⊗ A) · s′1
G · s′1 = f ′

opening relation
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Knowledge Soundness I

Coordinate-Wise extraction strategy from [BBCdGL18; FMN23]:

Rewind cheating prover to obtain

openings s′, s′′, s′′′ for challenges c0, c1, c2 s.t.

ci agrees with c0 in all rows except row i

P ∗ V
msg

c0

, c1, c2

t′

s′, f ′
t′′

s′′, f ′′
t′′′

s′′′, f ′′′

How to recover opening of t?

10
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Knowledge Soundness II

How to recover opening s∗ = (s∗0, s∗1 , s∗2), f∗ of t?

c0 − c1 =

[
1
0

]
, c0 − c2 =

[
0
1

]
=⇒

[
c0|c1|c2

]
·

H︷ ︸︸ ︷ 1 1
−1 0
0 −1



= I

Use H to "invert" folding!

Challenge space has small size: parallel repetition?△!
To achieve negligible soundness error: chl = C← {0, 1}κ·2×κ.

11
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Polynomial Evaluation

Ex: f ∈ Z[X] polynomial of degree < 8, coeff(f ) = f ∈ Z8.

f (x) = u ⇐⇒ (I⊗ x2) · (I⊗ x1) · (I⊗ x0) · f = u

with xi =
[
1 , x2i

]
.

(I⊗ x2) ·

(I⊗ x1) · (I⊗ x0) · f︸ ︷︷ ︸
v

= u

(I⊗ x1) · (I⊗ x0) · (c⊤ ⊗ I) · f︸ ︷︷ ︸
f ′

= (c⊤ ⊗ I) · v︸ ︷︷ ︸
u′

w�
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More Efficient Construction: Rings

Main drawbacks of integer construction

- soundness amplification factor κ

Move to ring setting

: challenge space = set of short polynomials

exponential size =⇒ κ = 1

For concrete efficiency

r = 3
√
d + techniques from previous works
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Post-Quantum Security

Knowledge extraction via rewinding.

△!
Advances in recent works [CMSZ22; LMS22]

uniformly sampled vs correlated challenges

Show how to bypass such hurdles using techniques from [BBK22].
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Concretely Efficient Lattice-based Polynomial
Commitment from Standard Assumptions

Intak Hwang, Jinyeong Seo, Yongsoo Song

Seoul National University



Objective of Our PCS

Large coefficient modulus

- Some lattice primitives (e.g., HE) use polynomial rings with large
moduli.

- PCS that can handle these cases is needed.

Zero-knowledge w/o rejection

- Rejection sampling method [Lyu12] is unsuitable for some cases (e.g.,
MPC).

- Hint-MLWE method [KLS+23] is a promising alternative.

1



Notations

- R := Z[X]/(Xd + 1) : Cyclotomic polynomial ring.
- q : Commitment modulus.
- p : Coefficient modulus.
- Dc+Λ,

√
Σ : Discrete Gaussian distribution over the coset c+ Λ

with covariance matrix Σ.
- ∥·∥∞: Norm for polynomials (the largest coefficients).

2



Ajtai Commitment

- Our PCS is based on the Ajtai commitment.

- Compressing: Commitment length is shorter than message length.

- Hiding: Based on the MLWE problem.

- Binding: Based on the MSIS problem.

ccc = A0mmm+ A1rrr (mod q)

- mmm ∈ Rℓ: Message, rrr ∈ Rν : Randomness, ccc ∈ Rµ
q : Commitment

- A0 ∈ Rµ×ℓ
q ,A1 ∈ Rµ×ν

q : CRS matrices, µ: MSIS rank, ν : MLWE rank

- Binding holds when (mmm, rrr) have small norms due to the MSIS problem. 3



Encoding for Large Coefficient Modulus

Issues

- The coefficient modulus p is too large to be committed directly.

- An encoding method is needed that maps large coefficients to
small messages.

- The encoding must be a homomorphism for polynomial evaluations.

4



Encoding for Large Coefficient Modulus

Our solution

- We employ the following encoding map from Zkp to R/(Xk − b)R = RXk−b
when p = bd/k + 1.

Ecd : (a0, ... ,ak−1) 7→
∑k−1

i=0

(∑d/k−1
j=0 ai,jXjk

)
Xi

- Here, ai =
∑d/k−1

j=0 ai,jbj is the base-b representation of ai ∈ Zp, so the
norm of output polynomial is bounded by b.

- Ecd is an isomorphism since Zkp ∼= R/(Xk − b)R.

- b can be set much smaller than p (e.g., b ≈ 216 ≪ p ≈ 2256).

- q is determined by the value of b, rather than p. (e.g., q ≈ 2112) 5



Encoding for Large Coefficient Modulus

More Details

- Using the encoding map Ecd, a vector a⃗ = (a⃗0, ... , a⃗ℓ−1) ∈ (Zkp)ℓ can be
committed as follows:

Com(a⃗) = A0

 Ecd(a⃗0)
...

Ecd(a⃗ℓ−1)

+ A1rrr

- It supports linear homomorphism for α ∈ Zp where Ecd(α) = Ecd(α, ... ,α):

Com(a⃗+ α · b⃗) = Com(a⃗) + Ecd(α) · Com(b⃗)

since Ecd(a⃗i + α · b⃗i) = Ecd(a⃗i) + Ecd(α) · Ecd(b⃗i) (mod Xk − b).
6



Proof of Knowledge (PoK)

- PoK is required for the knowledge-soundness of PCS.

- PoK for Ajtai commitment is instantiated using a 3-move sigma protocol.

Prover(mmm, rrr) Verifer(A0mmm+ A1rrr)

A0uuu+ A1yyy

c

vvv = uuu+ c ·mmm, zzz = yyy + c · rrr

- To achieve zero-knowledge, (vvv,zzz) should be simulatable.

7



Hint-MLWE

Definition
The Hint-MLWE problem asks an adversary A to distinguish between the following two
distributions, where A← U(Rℓ×ν

q ), u⃗uu← U(Rℓq), r⃗rr ← χ, y⃗yyi ← ψ, and z⃗zzi = ccci · r⃗rr + y⃗yyi for
0 ≤ i < n:

-
(
A, [A | Iℓ ]⃗rrr, z⃗zz0, ... , z⃗zzn−1

)
-

(
A, u⃗uu, z⃗zz0, ... , z⃗zzn−1

)

- There is a reduction from the MLWE problem if χ and ψ are discrete
Gaussian distributions Dν

Zd,σI [KLS+23; MKM+22].

- The response zzz = yyy + c · rrr in PoK is simulatable using Hint-MLWE. 8



Randomized Encoding

Observation

- vvv = uuu+ c ·mmm is not covered by Hint-MLWE.

- To apply a Hint-MLWE-like approach, mmm needs to be a random
variable drawn from a discrete Gaussian distribution.

- The correctness of PCS is maintained if mmm is replaced bymmm′, where
mmm =mmm′ (mod Xk − b).

- The set of suchmmm′ forms a coset of a latticemmm+ Λ (when interpreting
a polynomial as a vector of coefficients).

9



Randomized Encoding

Our Solution

- Sample mmm′ ← Dmmm+Λ,
√
Σ and uuu← DZdℓ,

√
Σ so that they follow discrete

Gaussian distributions.

- The commitment is given as A0mmm′ + A1rrr and the response vvv is given
as uuu+ c ·mmm′.

- By the convolution lemma [Pei10],

DZdℓ,
√
Σ + c · Dmmm+Λ,

√
Σ ≈ DZdℓ,

√
(c+I)Σ

sincemmm+ Λ ⊆ Zdℓ, so vvv is now simulatable. 10



Polynomial Evaluation

- Adapted from the square-root evaluation strategy for the Pedersen
commitment [BCC+16].

- For a polynomial f (X) = f0 + f1X + ... fN−1XN−1 (mod p),

f (x) = [1 1 x
√
N · · · xN−

√
N x]


0 g1 · · · g√N−1
f0 f1 · · · f√N−1
...

...
...

fN−√
N fN−√

N+1 · · · fN−1
−g1 −g2 · · · 0


 1

x
...

x
√
N−1


- Each row vector is committed to as ccci (0 ≤ i <

√
N+ 2), and the evaluation

proof is given by the opening of ccc0 +
∑√

N−1
i=1 Ecd(xi

√
N) · ccci + Ecd(x) · ccc√N.

- Proof size: Õ(
√
N) Verification cost: Õ(

√
N) 11



Benchmark Results

Comparison with Brakedown [GLS+23] for log p ≈ 255

N 219 221 223 225

Prover(seconds)
Ours 0.97 3.47 13.0 50.9

Brakedown 0.60 2.41 9.85 39.2

Verifier(seconds)
Ours 0.14 0.27 0.53 1.07

Brakedown 0.15 0.30 0.61 0.70

Communication(MB)
Ours 6.07 11.9 23.6 47.5

Brakedown 10.0 15.8 27.1 49.2
12



Benchmark Results

Comparison with SLAP [AFL+24]

N log p Proof size

Ours 220 255 8.93 MB

SLAP 220 276 36.5 MB

13



Thank you!

eprint: https://eprint.iacr.org/2024/306
github: https://github.com/SNUCP/celpc
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Third Polynomial Commitment

Evaluation of f (X) = f0 + f1X + f2X2 + f3X3:

• Write evaluation as quadratic form

f (α) =
(
1 α

)(f0 f2
f1 f3

)(
1
α2

)

• Send
(
w0 w1

)
=
(
1 α2

)(f0 f2
f1 f3

)

• Randomly linear-combine columns
(
f0
f1

)
+ c

(
f2
f3

)

• Use Labrador to prove w0 + cw1 =
(
1 α2

)((f0
f1

)
+ c

(
f2
f3

))

and f (α) =
(
w0 w1

)( 1
α3

)
2



Differences to the other schemes

• We don’t recurse and immediately use Labrador — square root is good
enough

• We hide the large cost of w⃗ by committing to it and having it part of the
Labrador witness

• We use an optimized parameterization to minimize proof size

3



Implementation

We provide a fully vectorized implementation for AVX-512 in C with intrinsics —
finally online: github.com/lattice-dogs/labrador

The polynomial operations in lattice-based cryptography profit massively from
vectorization, which is not really accessible from plain C

So restricting to plain C implementations would give a distorted picture of
real-world performance

Important building blocks:

• Polynomial arithmetic
• Johnson-Lindenstrauss projection
• Parameter finding

4
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Polynomial arithmetic

For small proof sizes we need NTT-unfriendly q, i.e. q ≡ 5 (mod 8)

Still: Fastest arithmetic by using NTT-based approach via modulus switching:

1. Lift polynomials to Z[X]/(X64 + 1)
2. Operate in Zpi [X]/(X

64 + 1) for many small NTT-friendly pi, using NTT
3. Apply explicit CRT to obtain centered result mod P =

∏
i pi

4. Reduce mod q — correct if operation on lifted polynomials would result in
coefficients bounded by P/2

This is usually faster even for a single multiplication

And results in large saving for high-dim matrix-vector products 5



Vector layout

For fast modular reduction mod pi can use 16-bit or 52-bit multipliers on AVX-512

52-bit pi don’t give enough granularity so we opted for 16-bit arithmetic

To enable efficient transformation between multimodular representation and
direct representation mod q we have implemented all mod q operations using
14-bit signed multiprecision arithmetic

So coefficient limbs align with the 16-bit coefficients mod pi

6



Johnson-Lindenstrauss Projection

A crucial ingredient in lattice-based proofs are proofs of shortness
∥∥⃗s∥∥ ≤ β

Have explored many approaches over the last years

Now pretty much settled for using random projections — both for l2-norm and
infinity norm (binary)

Johnson-Lindenstrauss: Some linear projections tightly preserve l2-norm up to
constants

7



Fast projection using Four Russians algorithm

p⃗ =


−1 1 1 −1
−1 1 −1 −1
1 −1 1 −1
1 1 −1 1



s0
s1
s2
s3



1. Precompute all 16 signed summations of s0, s1, s2, s3
2. For each row of matrix just look up correct summation

8



Four Russians on AVX-512

On AVX-512 can store the 16 summations in one vector register of 32 bit integers

Then simultaneously look up 16 summations at a time using a vector shuffle
instruction

In lattice proofs we need not only multiply from the right for projection but also
multiply from the left for randomly collapsing the matrix

The former only has to be performed by the prover whereas the later has to be
performed by the prover and verifier, multiple times

So we optimize for the latter case

9



Results: Proof Sizes, Runtimes, Comparison

225 229

size comm prove verify size comm prove verify

Brakedown-PC 49′157 KB 36 s 3.21 s 0.703 s 181′948 KB 605 s 48.6 s 2.96 s
Ligero-PC 7′256 KB 83.9 s 3.13 s 0.338 s 28′631 KB 1590 s 51.6 s 1.57 s

FRI-PC 740 KB 168 s 185 s 0.041 s — — — —
CMNW 1′393 KB — — — 3′983 KB — — —

HSS 48′640 KB 30.9 s 19.6 s 1.07 s 198′656 KB — — —
Greyhound 47 KB 1.84 s 0.788 s 0.239 s 52 KB 72 s 21.7 s 1.61 s
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Thank you!
github.com/lattice-dogs/labrador
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