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digest very short compared to | C|

P

dig = Hash(C)

e S

ct <« Enc(dig, x)

Dec(C, ct) = C : |
EW=59 | Security: Server learns nothing more than C(x)

Like FHE: 2-round 2PC where Server does the computational work
But “flipped”: Server learns the output (instead of Client)
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Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

- [Dottling-Gajland-Malavolta'23]: LFE for TM from 10 + SSB

Problem: Server computation is at least linear in inputs!
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C X
— dig = Hash(C
//7// \\ g ash(C)
' ) ct
/ 4—
Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

- [Dottling-Gajland-Malavolta'23]: LFE for TM from 10 + SSB
- [Dong-Hao-M-Wichs24]: LFE for RAM from RingLWE (+iO)
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Some fixed RAM program

And preprocesses it / (e.g. universal)
Goal: output RAM computation fyg(x)
fog(x) has RAM runtime T
Prep

DB =————p DB _ X
dig = Hash(DB)
—>

ct
e

Dec(DB, ct) = fog(x) ct « Enc(dig, x)
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DB =—————p DB
> dig = Hash(DB)

s = circuit size of

.
Dec(DB, ct) = f5(x) Ct < Enc(dlg X) R

IDHMW 24 IDHMW 24 ThIS WOrK J-

(weak efﬁmency (strong efﬁClency
Prep: ‘ DB ‘1+e ‘ DB ‘1+e S1+o(1) About as

efficient online,
Enc: x|+ T | x | \x\”o(l) worse offline
Dec: T T T1+0(1)
Assumption: RingLWE RingLWE + 10 RingLWE

(+ circular security)
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Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:1{0,1}Y = {0,1)

EvalPK
X, Xy Error grows with

T wff
b ~s'(A, — xG) b, ~ s"(A; - f(x)G)

[BGG+’14]: EvalPK, EvalCT run in time proportional to the circuit size of f




RAM Circuits

Boolean circuits + two new gates:



RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L



RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L

1 € [L]



RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L

DB|:]

1 € [L]



RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DB|:]

dReadpg

1 € [L]



RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DB|:]

dReadpg

1 € [L] Vs - YD) T€[L]



RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DBJi]
Yi

dReadpg

1 € [L] Vs - YD) T€[L]



RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DBJ[i]
Efficient access to a Y;

hardcoded database
dReadpg

1 € [L] Vs - YD) T€[L]



RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DB[i]
Efficient access to a Vi Efficient access to
hardcoded database input/working memory

dReadpg

1 € [L] Vs - YD) T€[L]



RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1}* Wire-Read Gates:
DBI[]
Efficient access to a Vi Efficient access to
hardcoded database | input/working memory
dReadpg
1 € [L] O, - Y T E[L]

Fixed circuit topology = write locations must be fixed in advance
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Lemma: A RAM program fyg of runtime 7" can be represented by a RAM circuit
of size O(max(7, N)) for inputs of size N

Note: The transformation yields RAM circuit of depth G(T), but
could do better if fyg is parallelizable
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[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:1{0,1}Y = {0,1)

EvalPK
B H
X Xy

DS

Result: We build (preprocessing) system of homomorphic operations s.t.:
e EvalCT runs in time proportional to RAM circuit size of f

e EvalPK runs in time proportional to boolean circuit size of f
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Handling Data-Read Gates

Goal: Apply [BGG+'14] operations to the function dReadpg dReadp;
» But somehow speed up EvalCT

i €[L]
Crucial Fact: [BGG+'14] operations are linear /
There Is a matrix HdReadDB,A,i s.. Only L many total inputs

/(bb e blogL) ' HdReadDB,A,i — bdReadDB

Depends on A and i

Idea: During preprocessing, just compute all Hyge,q A ; in @dvance for each i € [L]
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Handling Data-Read Gates

EvalPK
-

EvalCT

There are L. many H matrices and each takes O(L) time to compute

DB|:]

— EvalPK runs in time O(L? , ~ , _
(£7) Can get just O(L) using a recursive data
structure that lets you compute H on the fly
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Handling Wire-Read Gates:

1 € [L]

wRead(y, i) = Zyi. 1(i = ) s e V1)
j=1

Saving Grace: For a given 7, b, r..4 only depends on one location of y

Can precompute some data structure in time O(L) over all i’s that allows
computing H, ; on the fly
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Prior work: [HLL'23] show how to bootstrap homomorphic
operations to eliminate error growth assuming circular security
We can apply [HLL'23] techniques to our setting to get
unbounded depth RAM-LFE
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Additional Result: ABE

> Our preprocessing preserves linearity and hence lattice

trapdoors = [BGG+'14] ABE construction goes through
> As In [HLL'23] cannot remove depth dependence without
stronger assumptions
- Still captures parallel RAM computation



~ Summary

o b8 dig = Hash(DB)
ig = Has 7
) = 6

DGC(DB, ct) = fop(x) ct <« Enc(dig, x)

Result: We build LFE for RAM programs from RingLWE + circular
security

e Prep runtime scales with circuit size of RAM program
e Enc runtime slightly superlinear in input size
e Dec runtime slightly superlinear in RAM runtime

Result: \We build ABE for RAM circuits of bounded depth from LWE




