Laconic Function Evaluation and ABE for RAMs from (Ring-)LWE

Fangqi Dong

IIIS, Tsinghua
University

Zihan Hao

IIIS, Tsinghua
University

Ethan Mook

Northeastern University

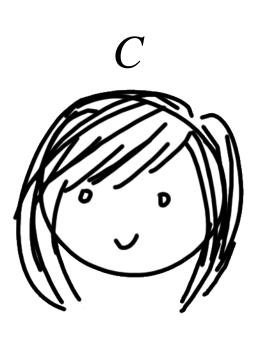
Hoeteck Wee

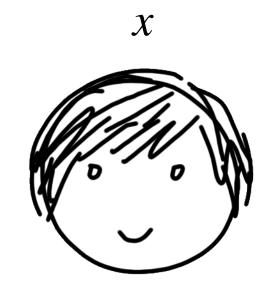
ENS, Paris & NTT Research

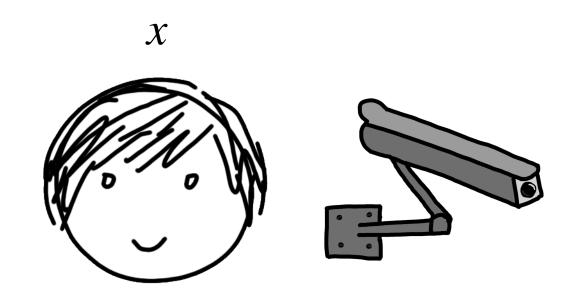
Daniel Wichs

Northeastern
University
&
NTT Research

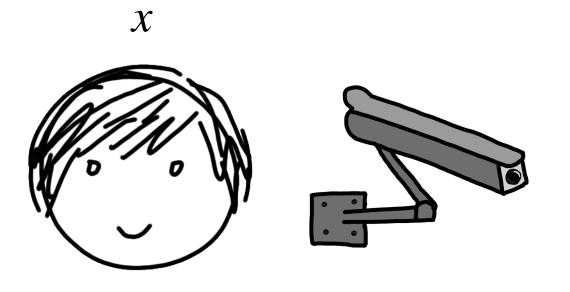
Crypto 2024



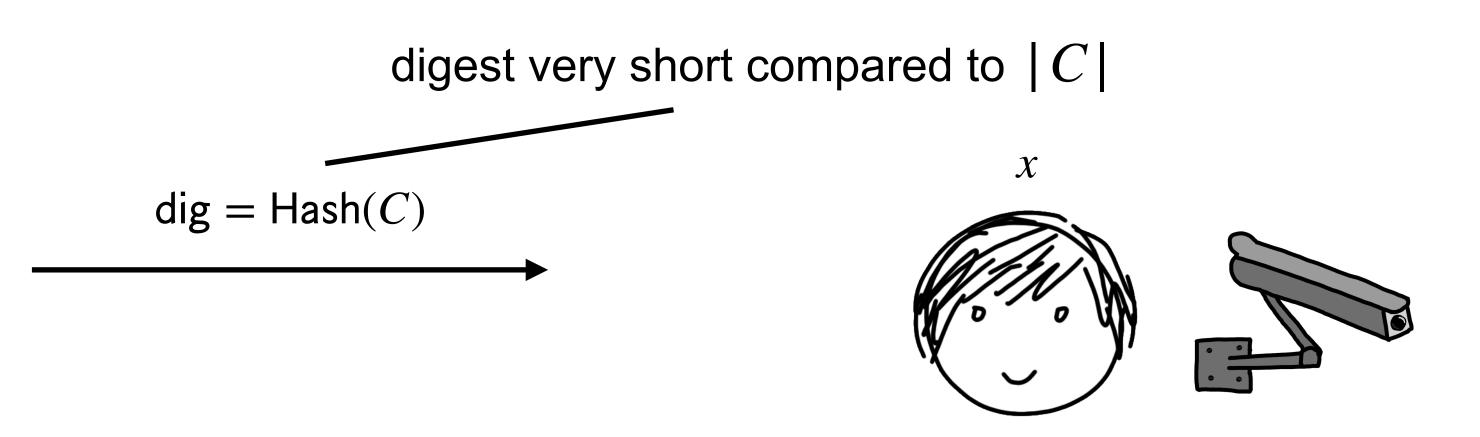




* in CRS model, CRS hidden



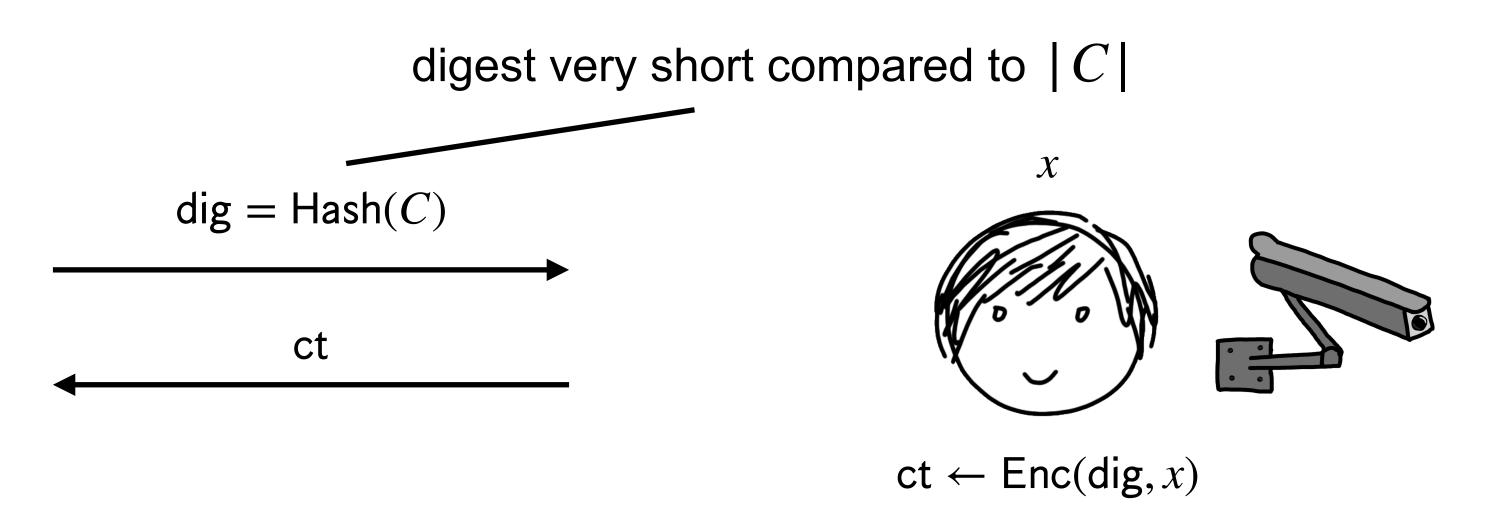
* in CRS model, CRS hidden



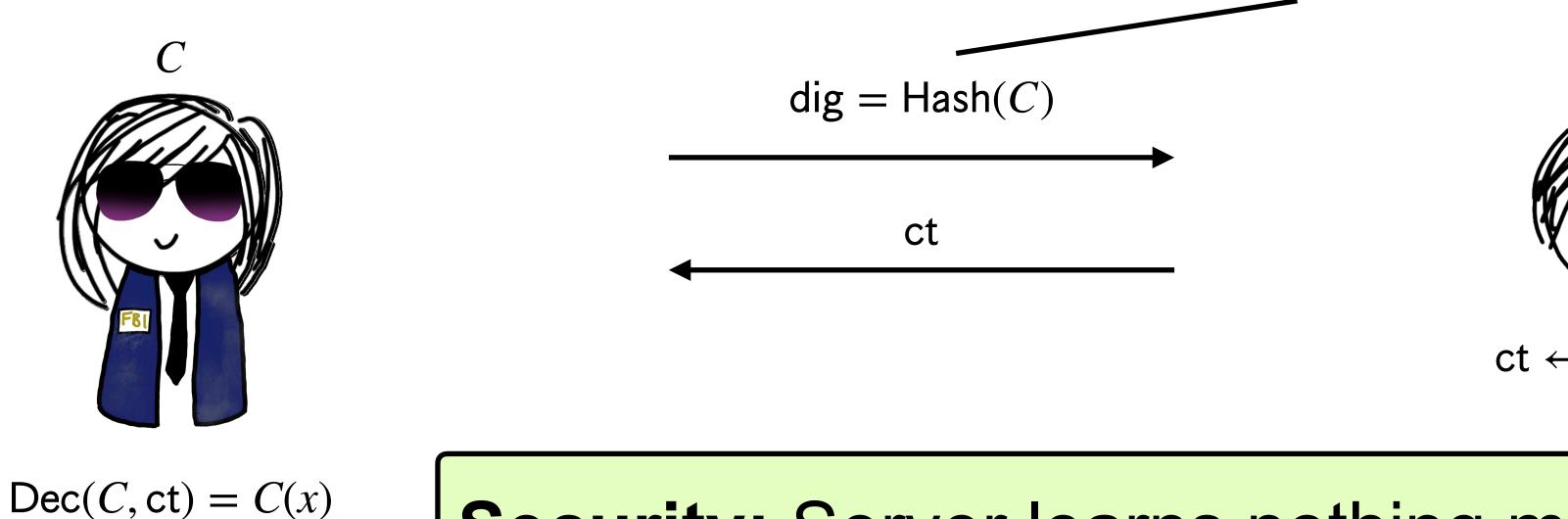
* in CRS model, CRS hidden

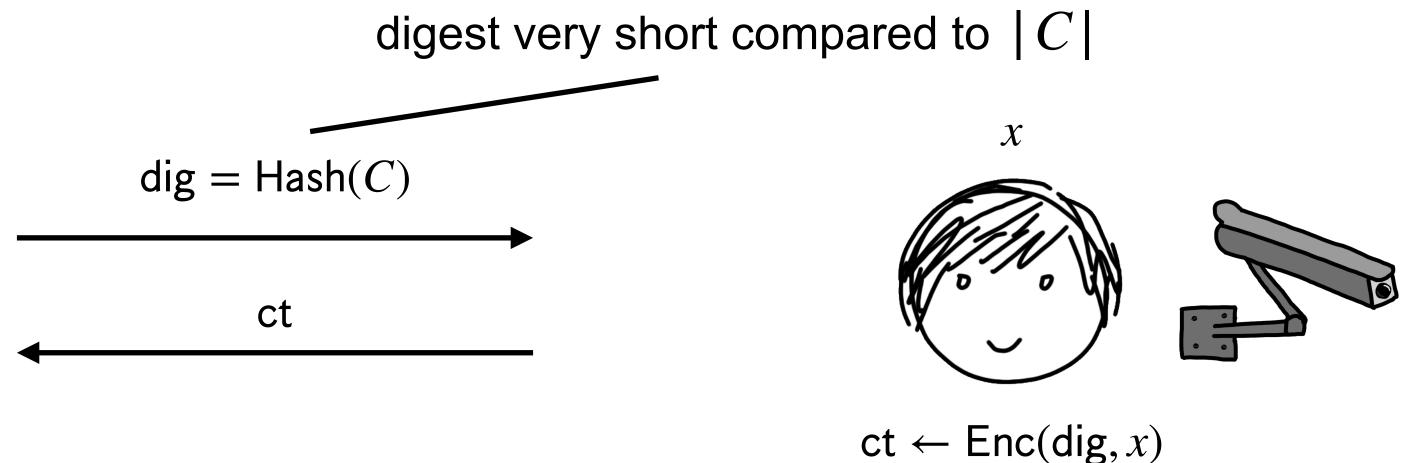
 $\mathsf{digest} \ \mathsf{very} \ \mathsf{short} \ \mathsf{compared} \ \mathsf{to} \ | \ C |$ $\mathsf{dig} = \mathsf{Hash}(C)$ $\mathsf{ct} \leftarrow \mathsf{Enc}(\mathsf{dig}, x)$

* in CRS model, CRS hidden



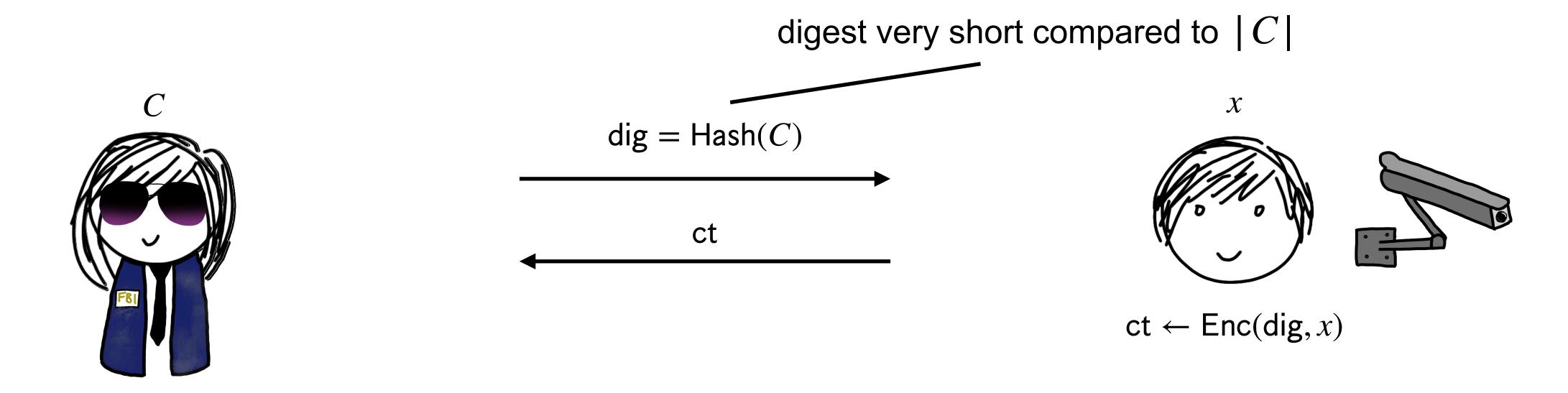
* in CRS model, CRS hidden





Security: Server learns nothing more than C(x)

* in CRS model, CRS hidden

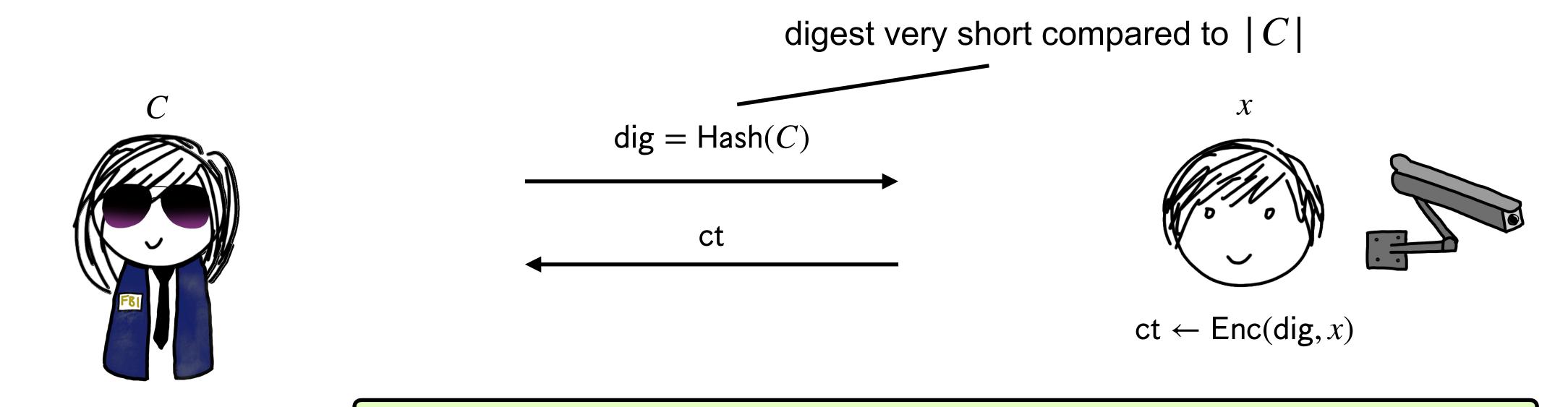


Security: Server learns nothing more than C(x)

Like FHE: 2-round 2PC where Server does the computational work

Dec(C, ct) = C(x)

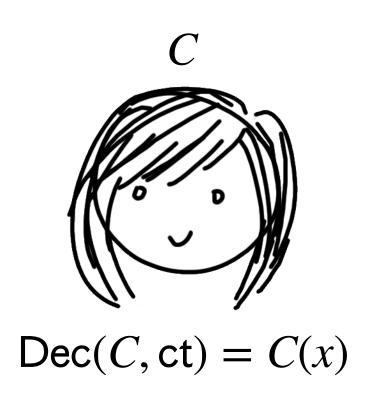
* in CRS model, CRS hidden

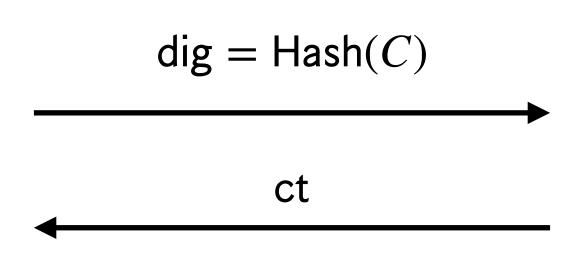


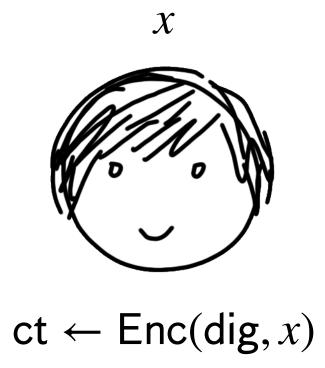
Security: Server learns nothing more than C(x)

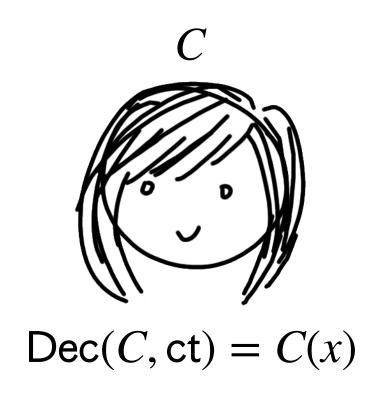
Like FHE: 2-round 2PC where Server does the computational work But "flipped": Server learns the output (instead of Client)

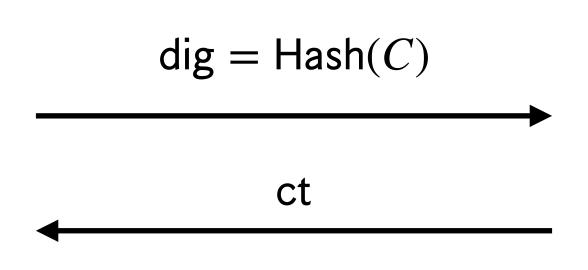
Dec(C, ct) = C(x)

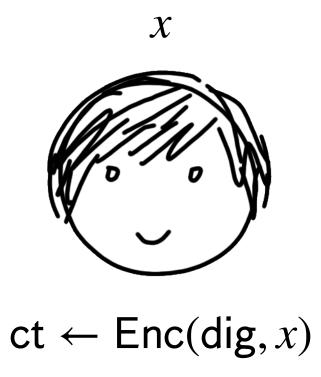






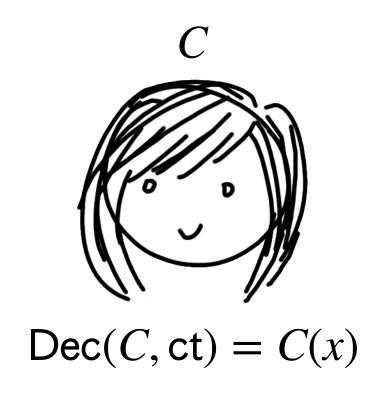


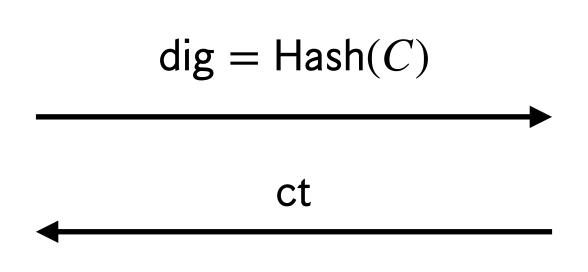


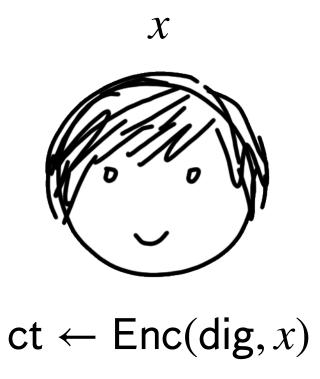


Prior work:

- [Quach-Wee-Wichs'17]: LFE for circuits from LWE

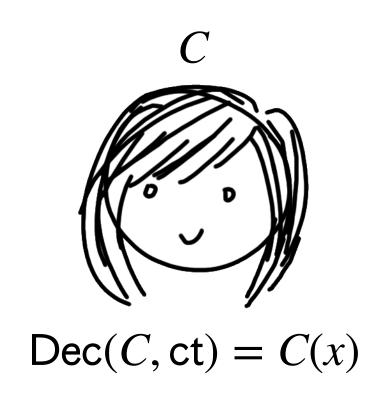


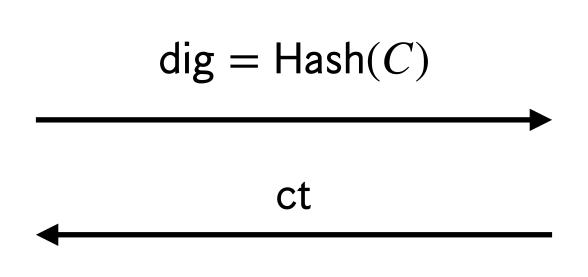


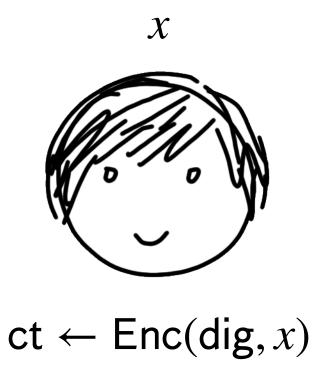


Prior work:

- [Quach-Wee-Wichs'17]: LFE for circuits from LWE
- [Döttling-Gajland-Malavolta'23]: LFE for TM from iO + SSB



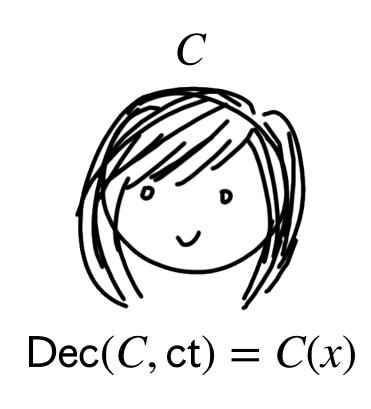


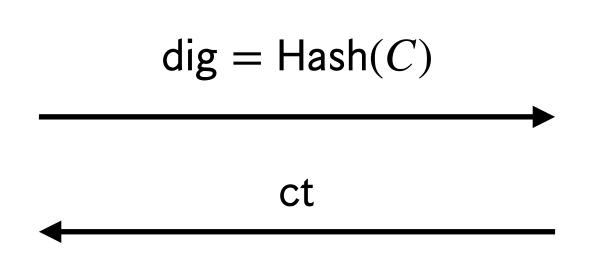


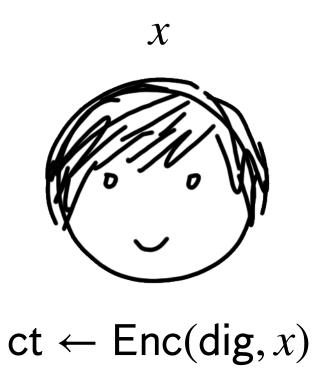
Prior work:

- [Quach-Wee-Wichs'17]: LFE for circuits from LWE
- [Döttling-Gajland-Malavolta'23]: LFE for TM from iO + SSB

Problem: Server computation is at least linear in inputs!

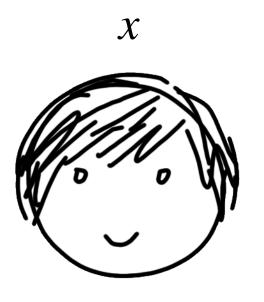




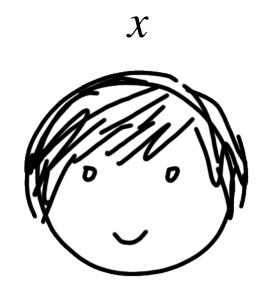


Prior work:

- [Quach-Wee-Wichs'17]: LFE for circuits from LWE
- [Döttling-Gajland-Malavolta'23]: LFE for TM from iO + SSB
- [Dong-Hao-M-Wichs'24]: LFE for RAM from RingLWE (+iO)

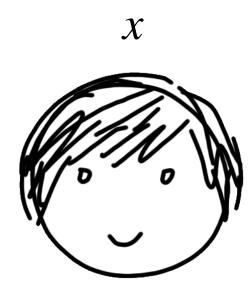


Goal: output RAM computation $f_{DB}(x)$



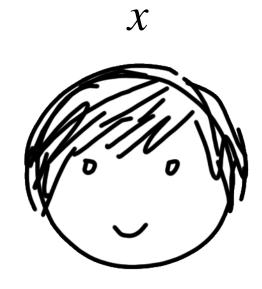
Some fixed RAM program (e.g. universal)

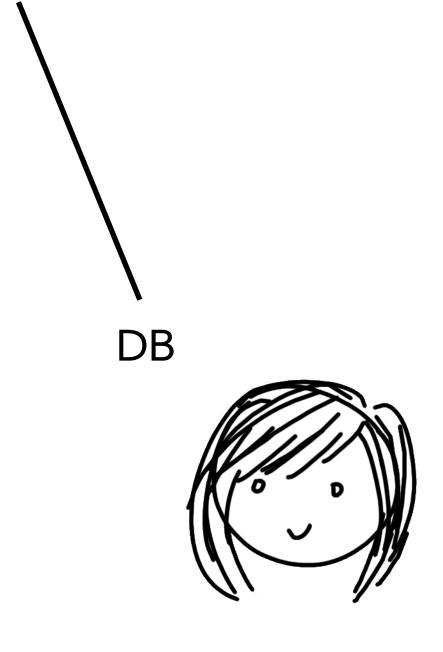
Goal: output RAM computation $f_{DB}(x)$



Some fixed RAM program (e.g. universal)

Goal: output RAM computation $f_{\rm DB}(x)$ $f_{\rm DB}(x)$ has RAM runtime T

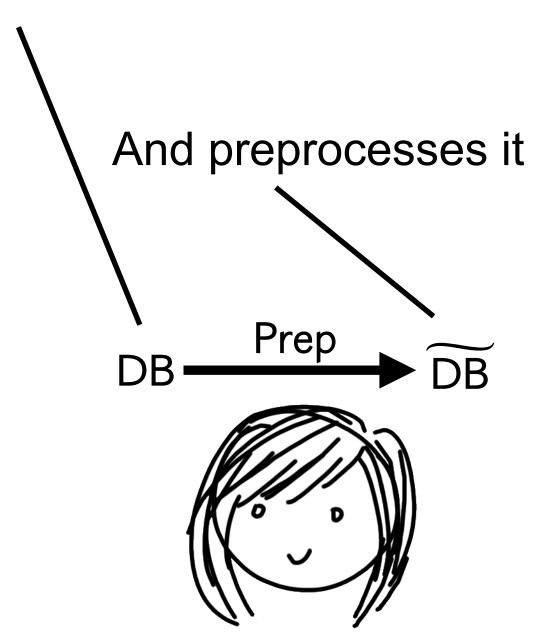




LFE for RAMS

Some fixed RAM program (e.g. universal)

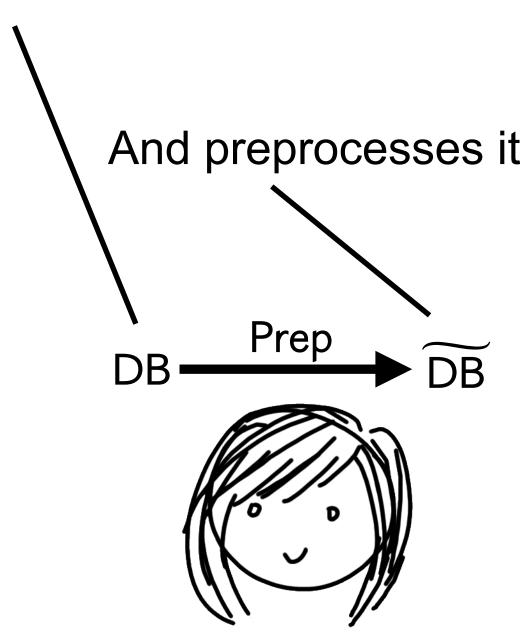
Goal: output RAM computation $f_{DB}(x)$ $f_{DB}(x)$ has RAM runtime T



LFE for RAMS

Some fixed RAM program (e.g. universal)

Goal: output RAM computation $f_{\rm DB}(x)$ $f_{\rm DB}(x)$ has RAM runtime T

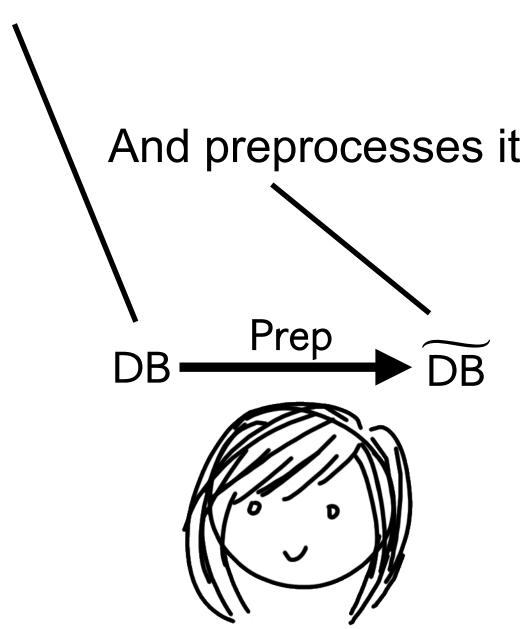


LFE for RAMS

Some fixed RAM program (e.g. universal)

Goal: output RAM computation $f_{\rm DB}(x)$ $f_{\rm DB}(x)$ has RAM runtime T

$$dig = Hash(\widetilde{DB})$$



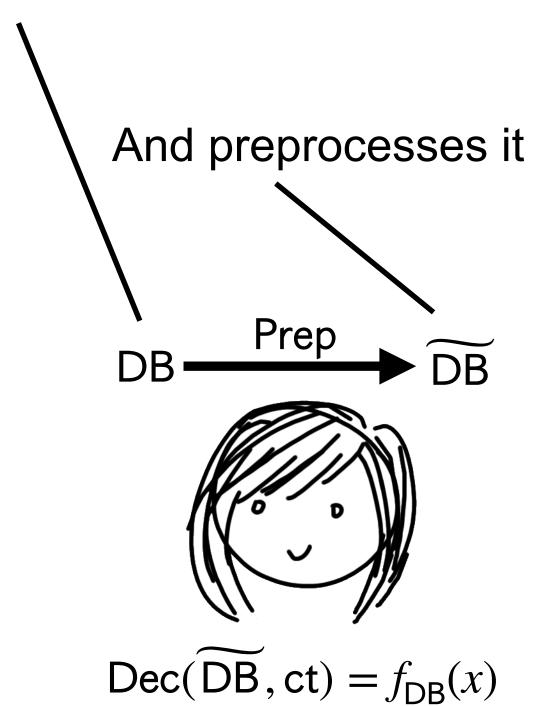
LFE for RAMS

Some fixed RAM program (e.g. universal)

Goal: output RAM computation $f_{DB}(x)$ $f_{DB}(x)$ has RAM runtime T

$$\frac{\text{dig} = \text{Hash}(\widetilde{\text{DB}})}{\text{ct}}$$

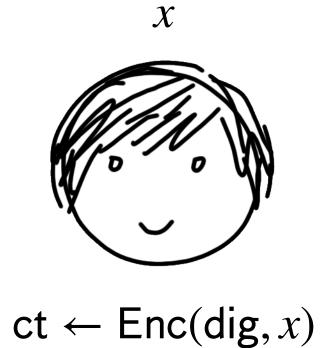
 $ct \leftarrow Enc(dig, x)$



LFE for RAMS

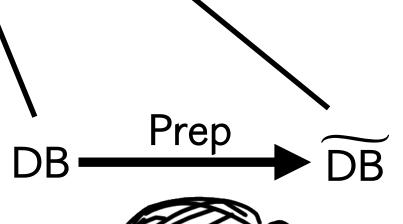
Some fixed RAM program (e.g. universal)

Goal: output RAM computation $f_{DB}(x)$ $f_{DB}(x)$ has RAM runtime T



LFE for RAMS

And preprocesses it



$$Dec(\widetilde{DB}, ct) = f_{DB}(x)$$

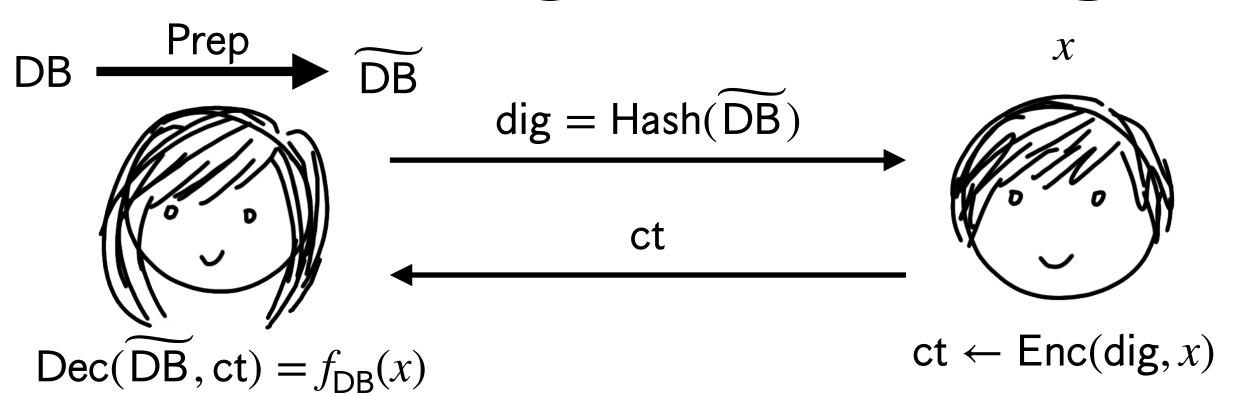
Goal: output RAM computation $f_{\rm DB}(x)$ $f_{\rm DB}(x)$ has RAM runtime T

$$\frac{\text{dig} = \text{Hash}(\widetilde{\text{DB}})}{\text{ct}}$$

Some fixed RAM program (e.g. universal)

$$ct \leftarrow Enc(dig, x)$$

Want Dec to run in time $\approx T$



[DH**M**W'24]

(weak efficiency)

Prep:

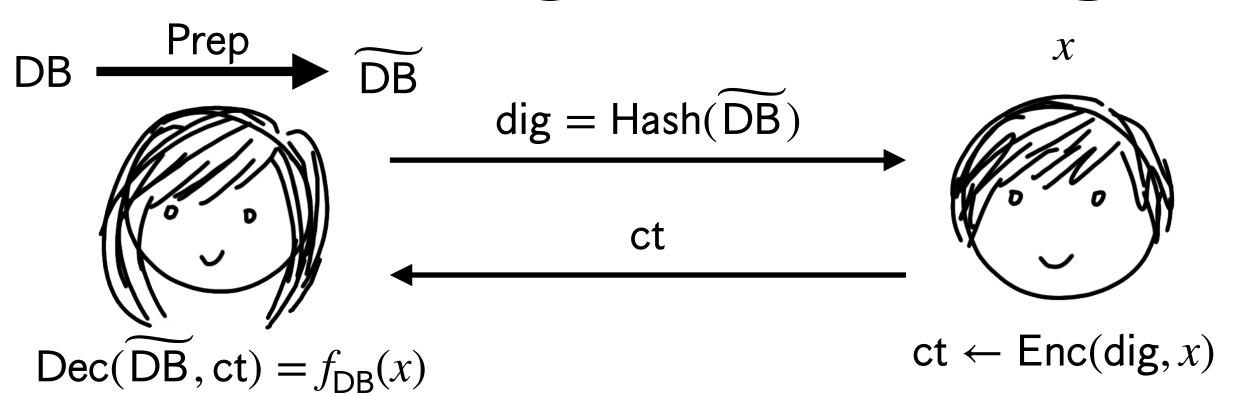
Enc:

Dec:

Assumption:

[DH**M**W'24]

(strong efficiency)



[DH**M**W'24]

(weak efficiency)

Prep: $|DB|^{1+\varepsilon}$

Enc:

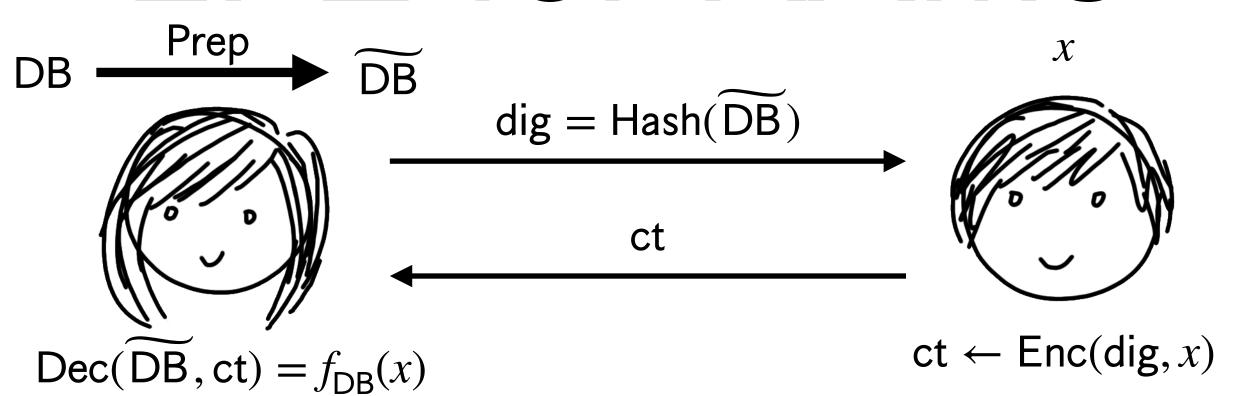
Dec:

Assumption:

[DH**M**W'24]

(strong efficiency)

 $|\mathsf{DB}|^{1+\varepsilon}$



[DH**M**W'24]

(weak efficiency)

Prep: $|DB|^{1+\varepsilon}$

Enc: |x| + T

Dec:

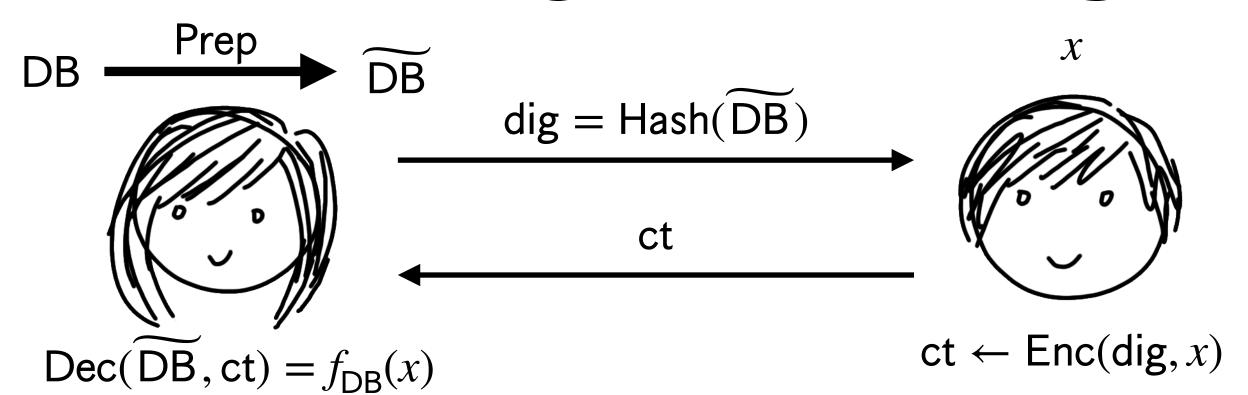
Assumption:

[DH**M**W'24]

(strong efficiency)

 $|\mathsf{DB}|^{1+\varepsilon}$

|X|



[DH**M**W'24]

(weak efficiency)

Prep: $|DB|^{1+\varepsilon}$

Enc: |x| + T

Dec:

Assumption:

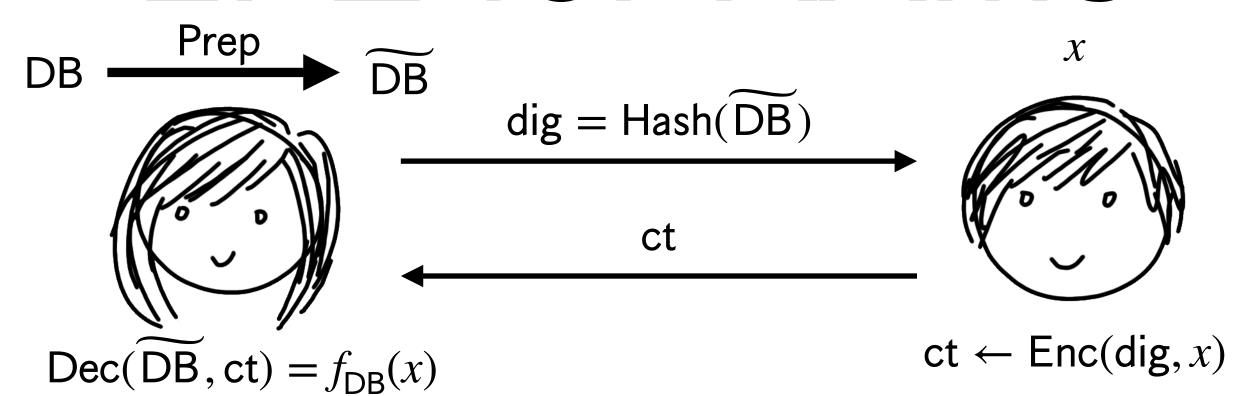
[DH**M**W'24]

(strong efficiency)

 $|\mathsf{DB}|^{1+\varepsilon}$

|x|

T



[DH**M**W'24]

(weak efficiency)

Prep: $|DB|^{1+\varepsilon}$

Enc: |x| + T

Dec: 7

Assumption: RingLWE

[DHMW'24]

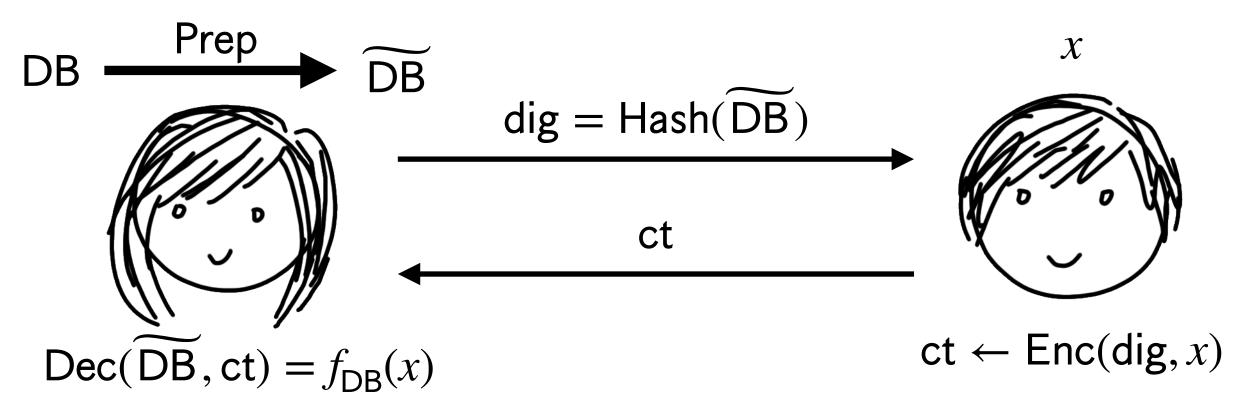
(strong efficiency)

 $|\mathsf{DB}|^{1+\varepsilon}$

|x|

T

RingLWE + iO



[DH**M**W'24]

(weak efficiency)

Prep: $|DB|^{1+\varepsilon}$

Enc: |x| + T

Dec: 7

Assumption: RingLWE

[DH**M**W'24]

(strong efficiency)

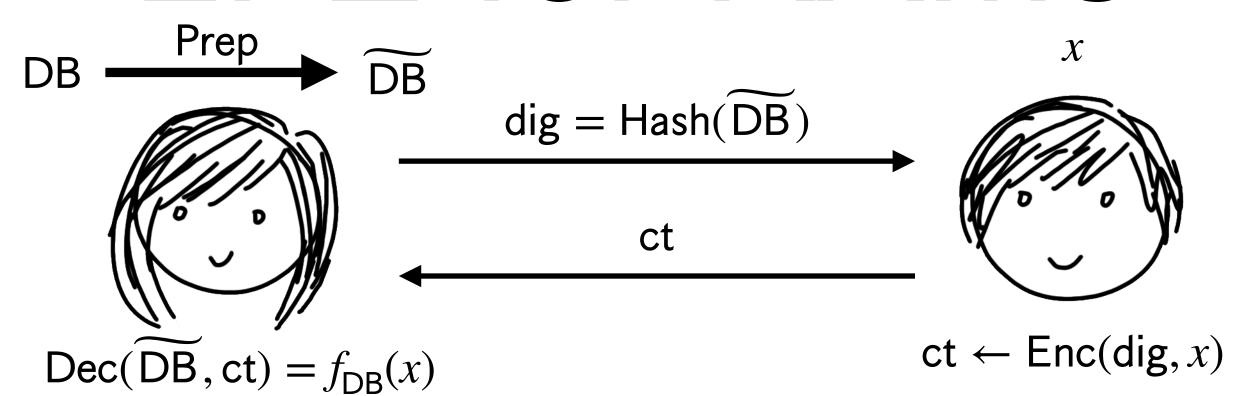
 $|\mathsf{DB}|^{1+\varepsilon}$

|x|

T

RingLWE + iO

This work



[DH**M**W'24]

(weak efficiency)

Prep: $|DB|^{1+\varepsilon}$

Enc: |x| + T

Dec: 7

Assumption: RingLWE

[DH**M**W'24]

(strong efficiency)

 $|\mathsf{DB}|^{1+\varepsilon}$

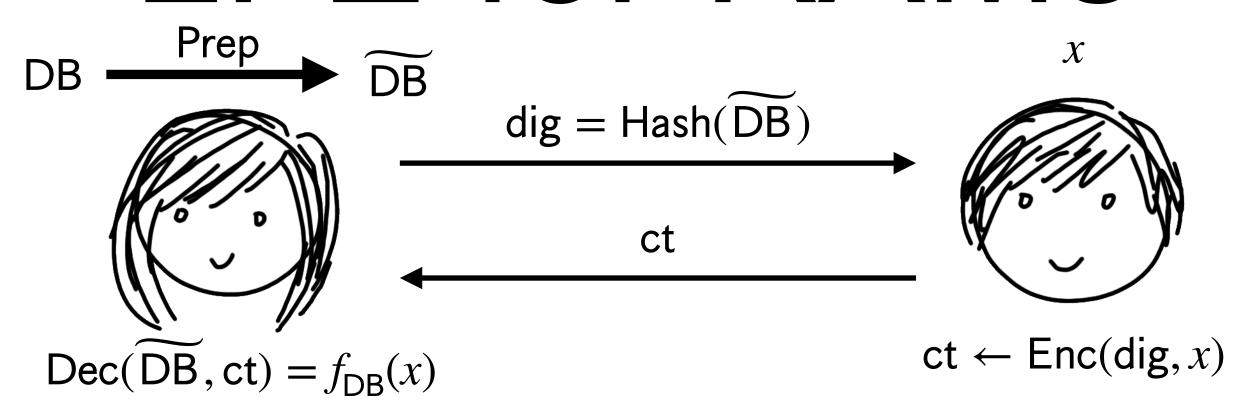
|x|

T

RingLWE + iO

This work

 $s^{1+o(1)}$



s = circuit size of $f_{\text{DB}} \approx T \cdot |\text{DB}|$

[DH**M**W'24]

(weak efficiency)

Prep: $|DB|^{1+\varepsilon}$

Enc: |x| + T

Dec:

Assumption: RingLWE

[DH**M**W'24]

(strong efficiency)

$$|\mathsf{DB}|^{1+\varepsilon}$$

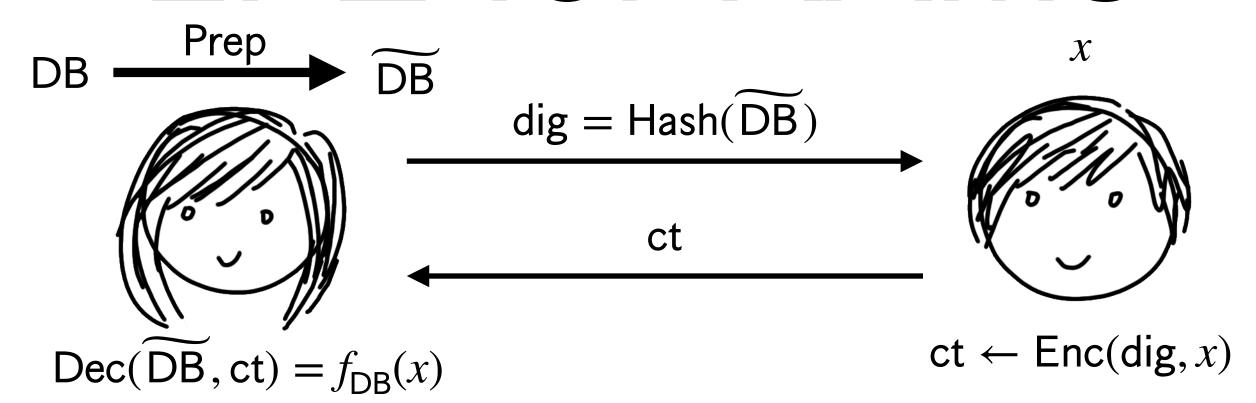
|x|

T

RingLWE + iO

This work

 $s^{1+o(1)}$



s = circuit size of $f_{\text{DB}} \approx T \cdot |\text{DB}|$

[DH**M**W'24]

(weak efficiency)

Prep: $|DB|^{1+\epsilon}$

Enc: |x| + T

Dec: 7

Assumption: RingLWE

[DH**M**W'24]

(strong efficiency)

 $|\mathsf{DB}|^{1+\varepsilon}$

|x|

T

RingLWE + iO

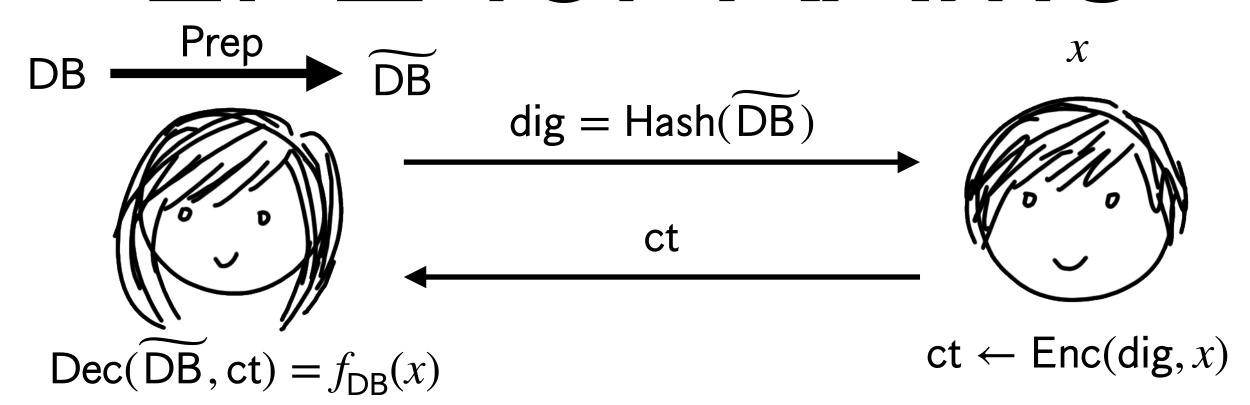
This work

 $s^{1+o(1)}$

 $|x|^{1+o(1)}$

 $T^{1+o(1)}$

RingLWE (+ circular security)



s = circuit size of $f_{\text{DB}} \approx T \cdot |\text{DB}|$

[DH**M**W'24]

(weak efficiency)

Prep: $|DB|^{1+\epsilon}$

Enc: |x| + T

Dec:

Assumption: RingLWE

[DH**M**W'24]

(strong efficiency)

 $|DB|^{1+\varepsilon}$

|x|

T

RingLWE + iO

This work

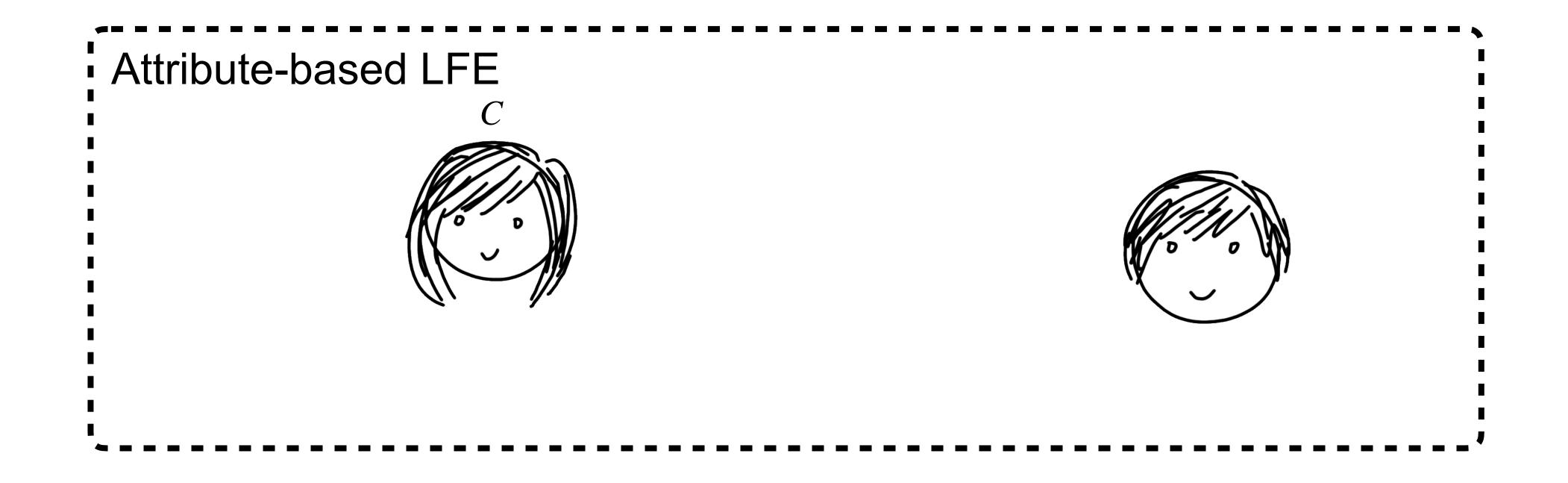
 $s^{1+o(1)}$

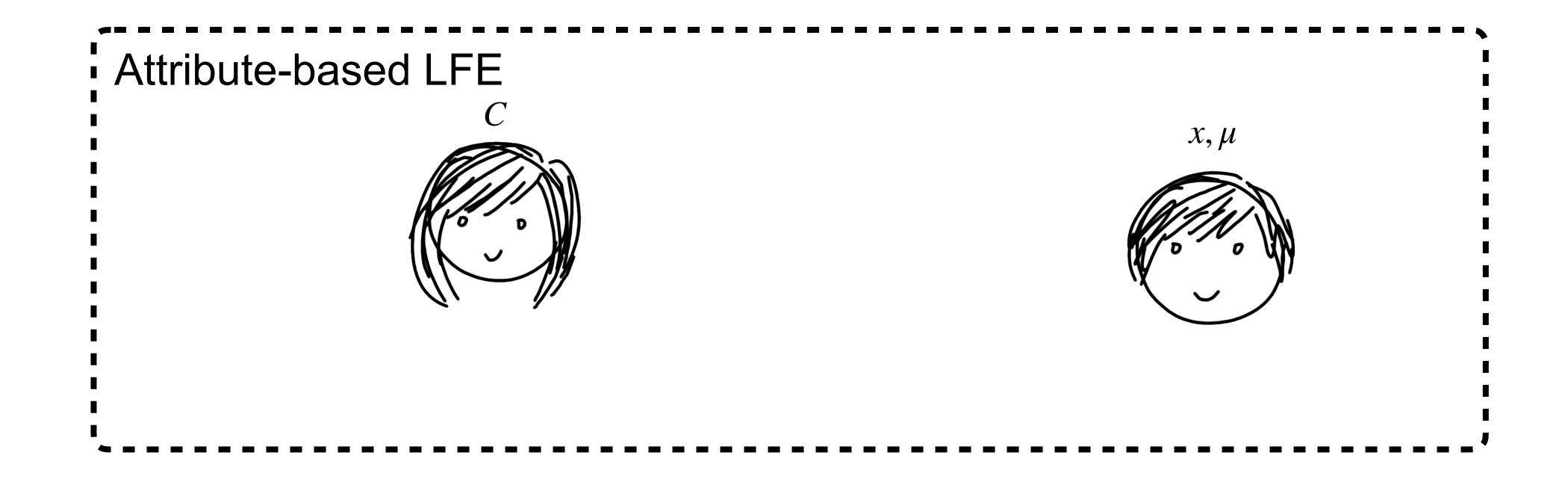
 $|x|^{1+o(1)}$

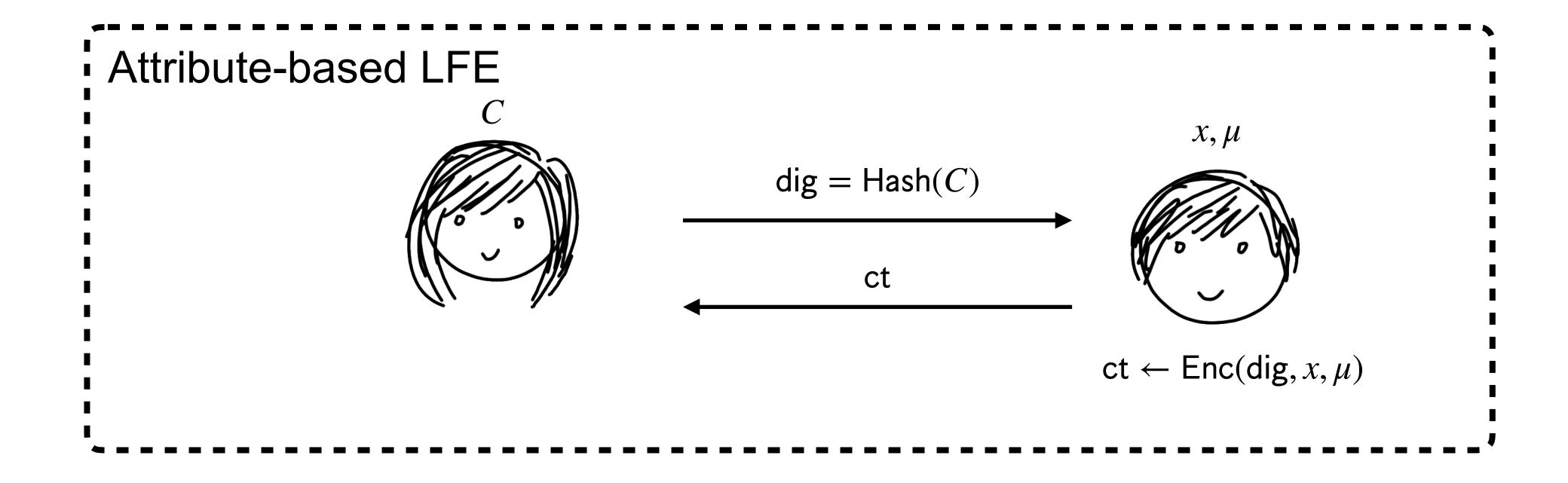
 $T^{1+o(1)}$

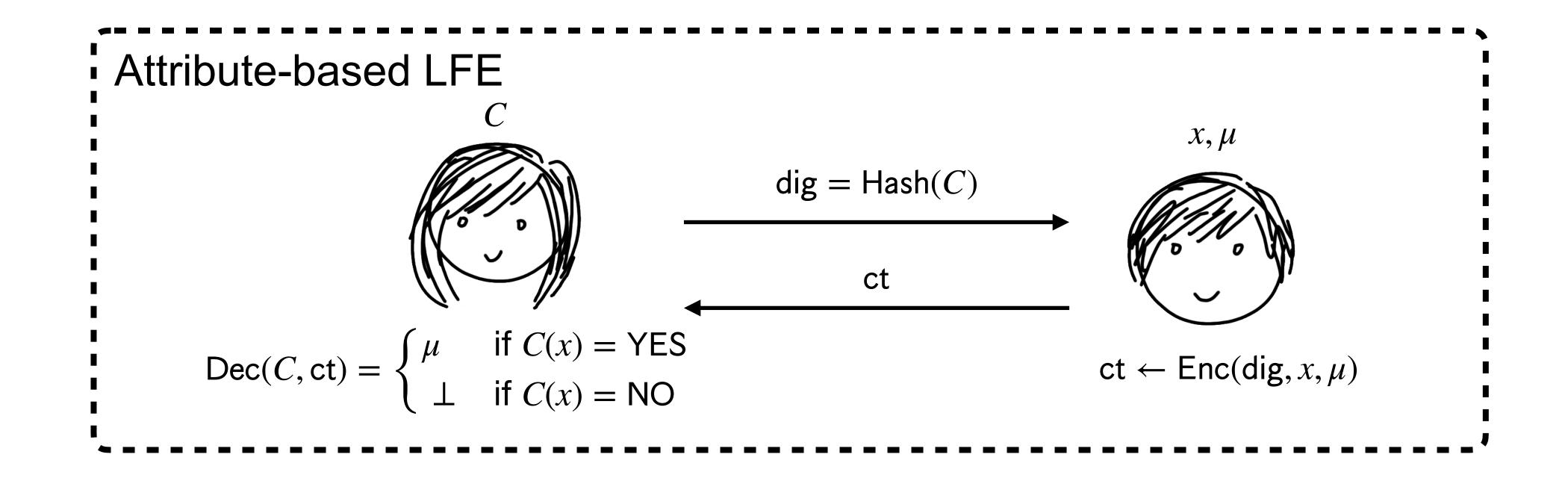
RingLWE (+ circular security)

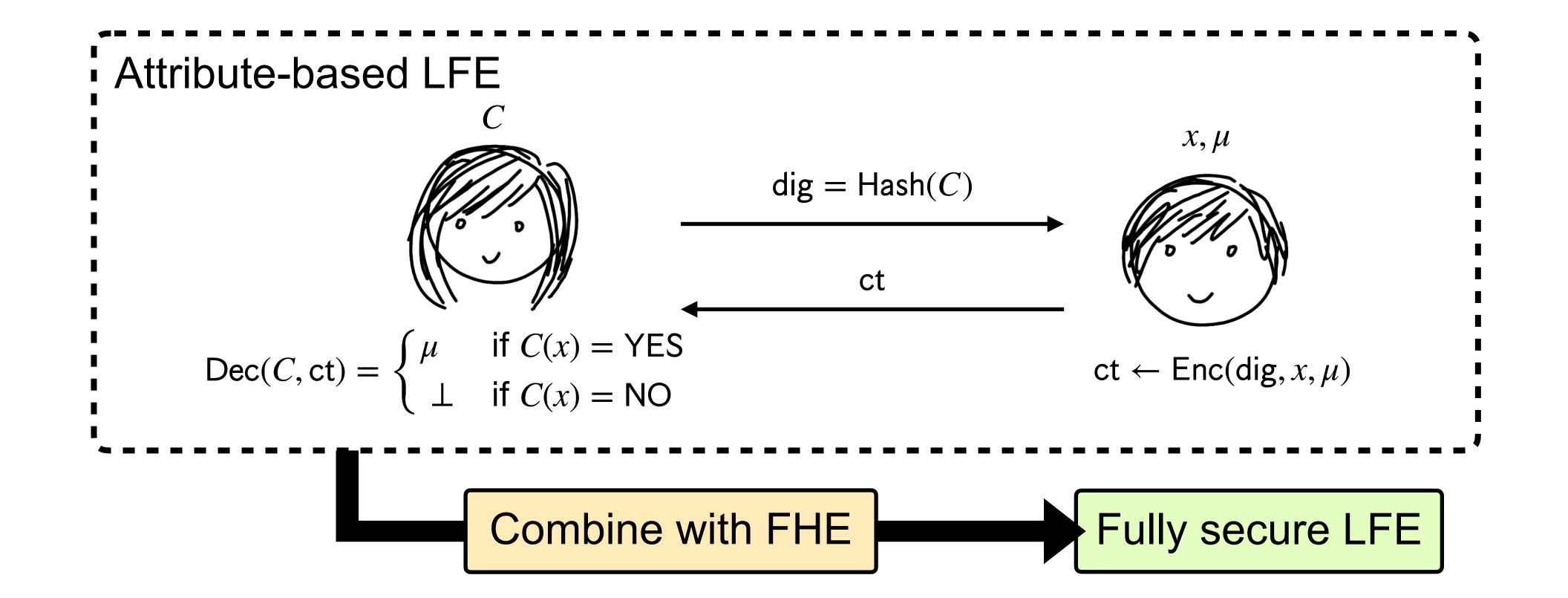
About as efficient online, worse offline





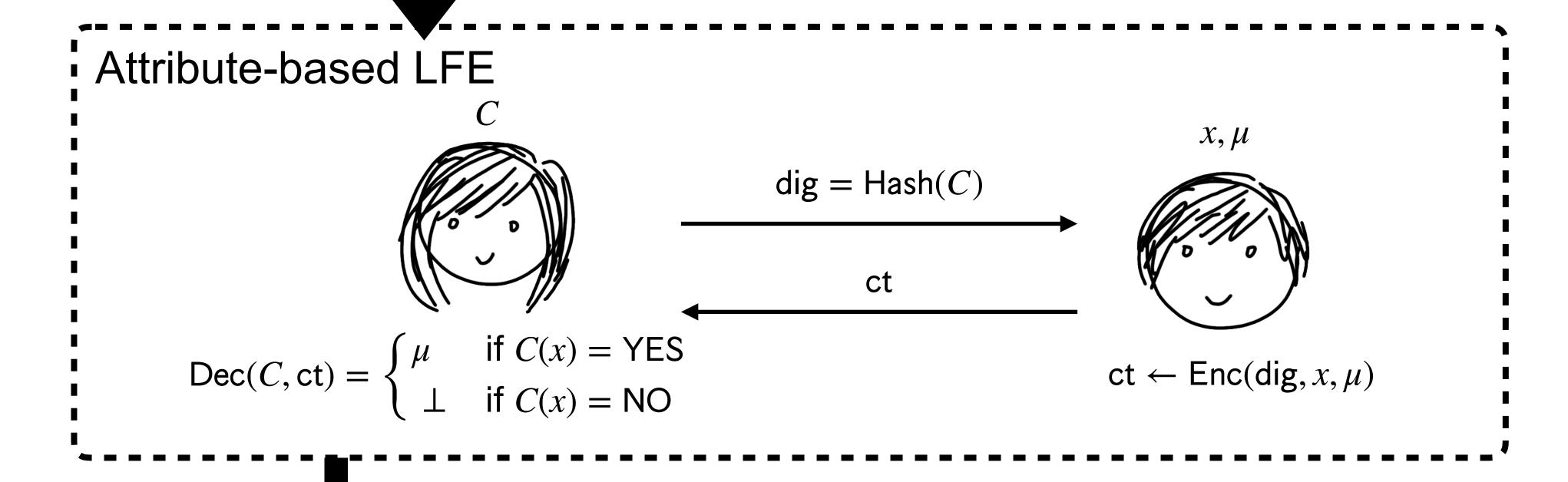






[Quach-Wee-Wichs'17]

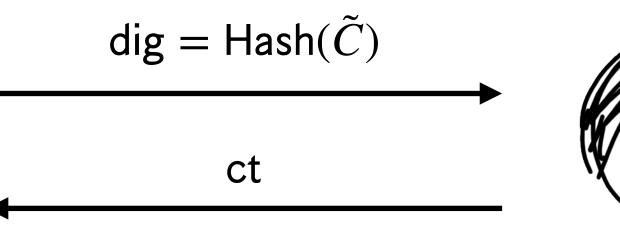
[BGG+'14] System of Homomorphic Lattice Operations

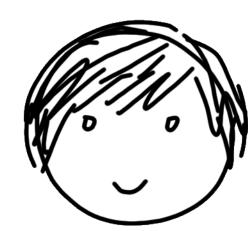


Combine with FHE

[BGG+'14] System of Homomorphic Lattice Operations

$$\operatorname{Dec}(\tilde{C},\operatorname{ct}) = \begin{cases} \mu & \text{if } f_{\operatorname{DB}} = \operatorname{YES} \\ \bot & \text{if } f_{\operatorname{DB}} = \operatorname{NO} \end{cases}$$

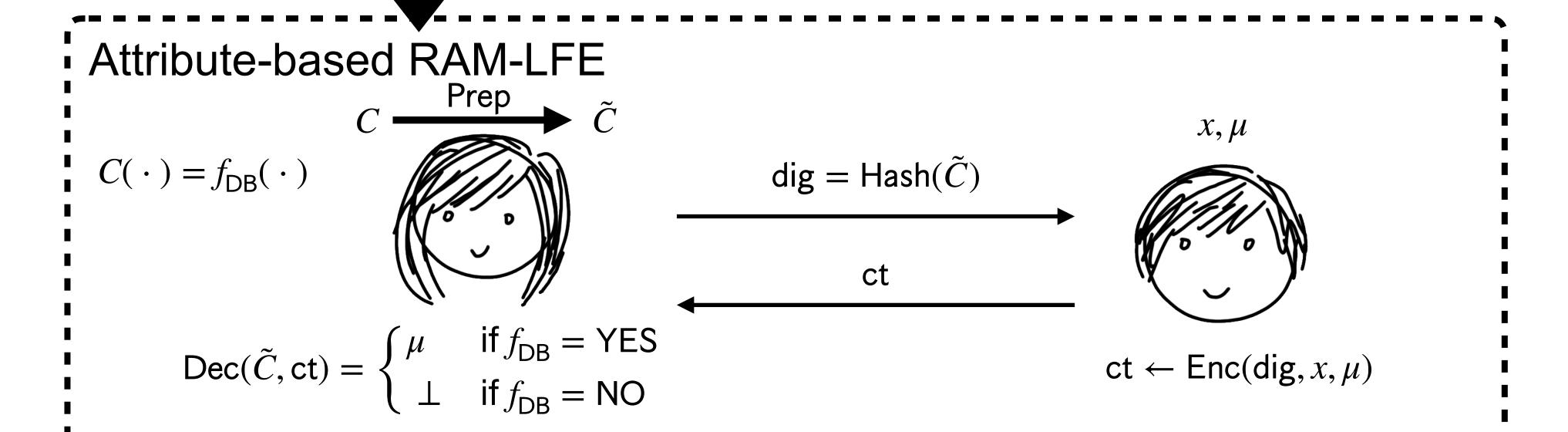




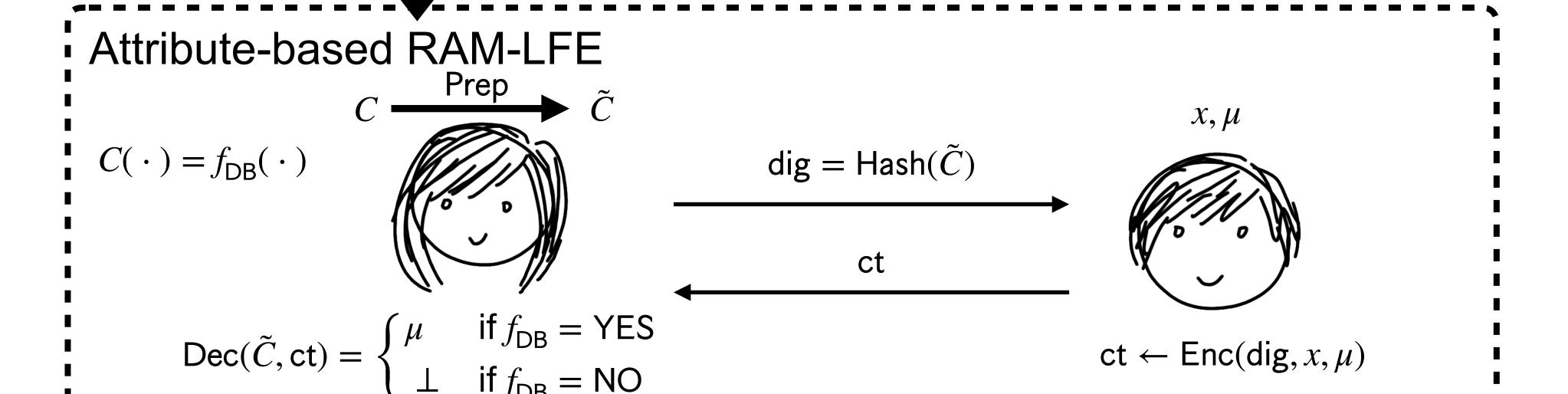
 x, μ

 $\mathsf{ct} \leftarrow \mathsf{Enc}(\mathsf{dig}, x, \mu)$

[BGG+'14] System of Homomorphic Lattice Operations



[BGG+'14] System of Homomorphic Lattice Operations



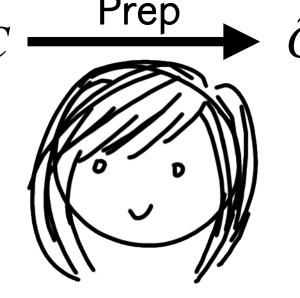
Combine with RAM-FHE [LMW'23]

[BGG+'14] System of Homomorphic Lattice Operations

Main Technical Contribution:

(Preprocessing) Homomorphic Operations for "RAM Circuits"

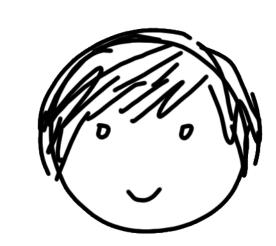
$$C(\,\cdot\,) = f_{\mathsf{DB}}(\,\cdot\,)$$



$$\operatorname{Dec}(\tilde{C},\operatorname{ct}) = \begin{cases} \mu & \text{if } f_{\operatorname{DB}} = \operatorname{YES} \\ \bot & \text{if } f_{\operatorname{DB}} = \operatorname{NO} \end{cases}$$

$$\mathsf{dig} = \mathsf{Hash}(\tilde{C})$$

ct



 χ, μ

$$\mathsf{ct} \leftarrow \mathsf{Enc}(\mathsf{dig}, x, \mu)$$

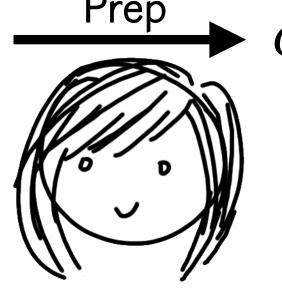
Combine with RAM-FHE [LMW'23]

[BGG+'14] System of Homomorphic Lattice Operations

Main Technical Contribution:

(Preprocessing) Homomorphic Operations for "RAM Circuits"

$$C(\,\cdot\,) = f_{\mathsf{DB}}(\,\cdot\,)$$



$$\mathrm{Dec}(\tilde{C},\mathrm{ct}) = \begin{cases} \mu & \mathrm{if}\, f_{\mathrm{DB}} = \mathrm{YES} \\ \bot & \mathrm{if}\, f_{\mathrm{DB}} = \mathrm{NO} \end{cases}$$

$$\operatorname{dig} = \operatorname{Hash}(\tilde{C})$$

ct

 χ, μ

$$\mathsf{ct} \leftarrow \mathsf{Enc}(\mathsf{dig}, x, \mu)$$

Combine with RAM-FHE [LMW'23]

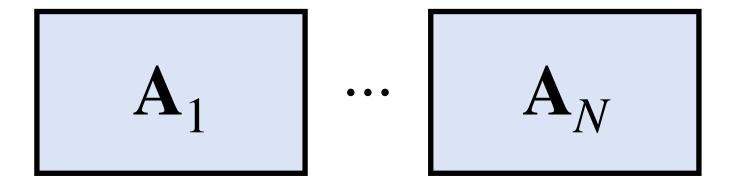
[BGG+'14]

[BGG+'14]

$$f: \{0,1\}^N \to \{0,1\}$$

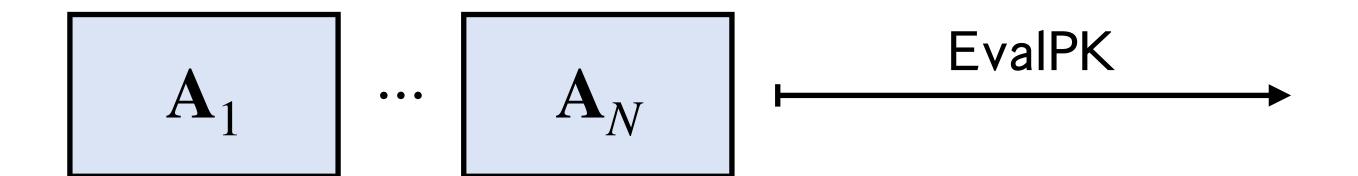
[BGG+'14]

$$f: \{0,1\}^N \to \{0,1\}$$



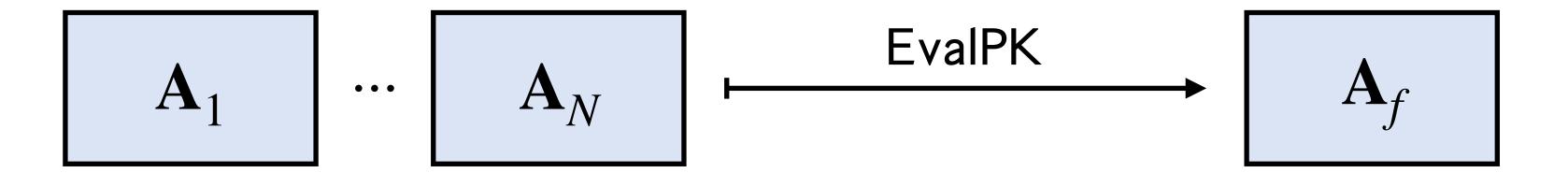
[BGG+'14]

$$f: \{0,1\}^N \to \{0,1\}$$



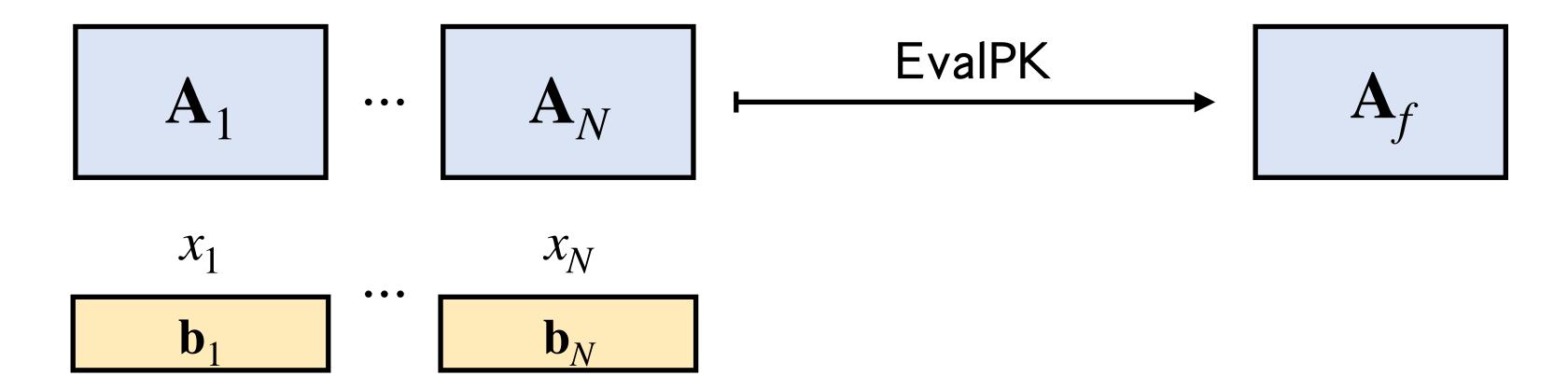
[BGG+'14]

$$f: \{0,1\}^N \to \{0,1\}$$



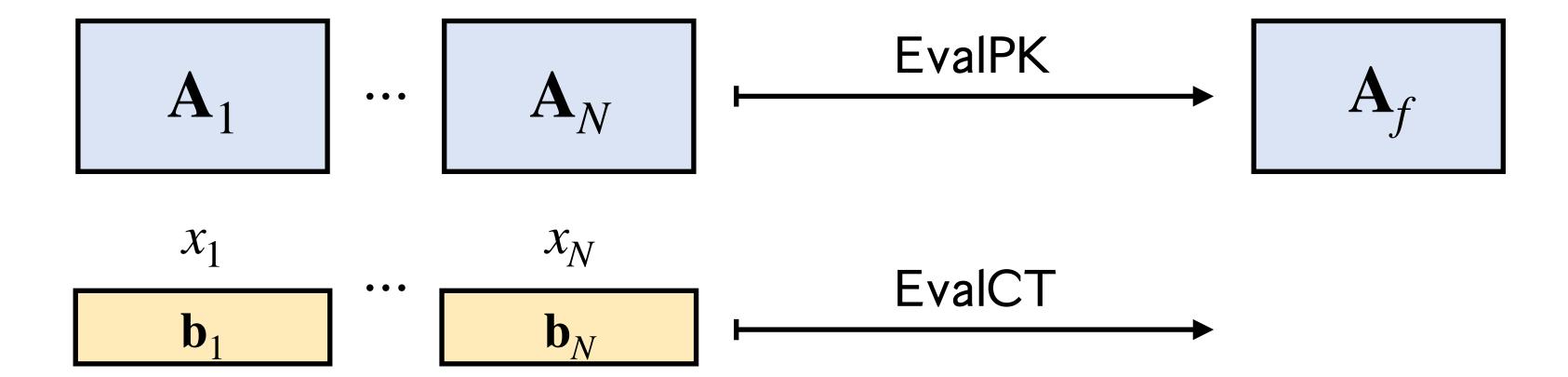
[BGG+'14]

$$f: \{0,1\}^N \to \{0,1\}$$



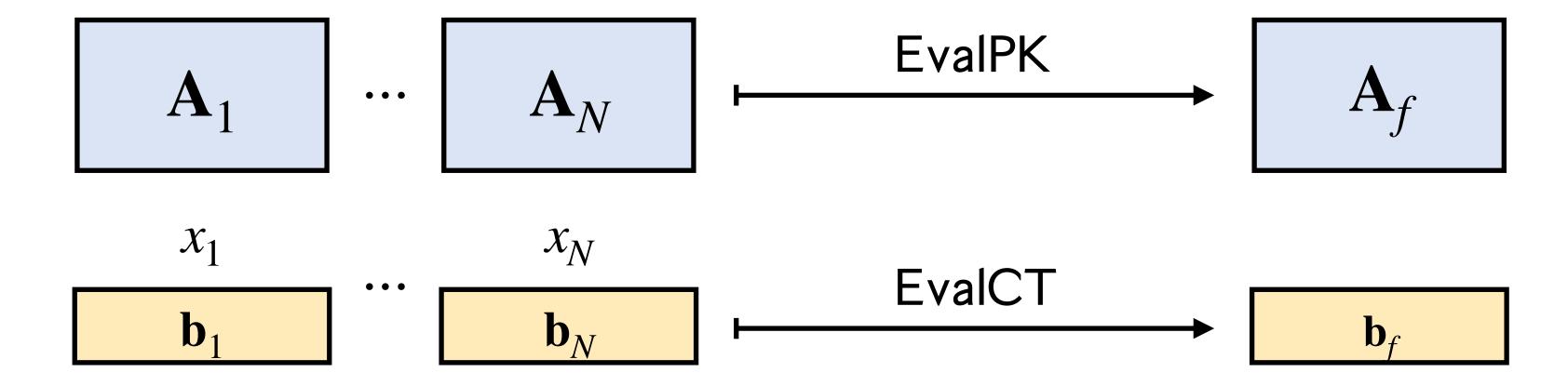
[BGG+'14]

$$f: \{0,1\}^N \to \{0,1\}$$



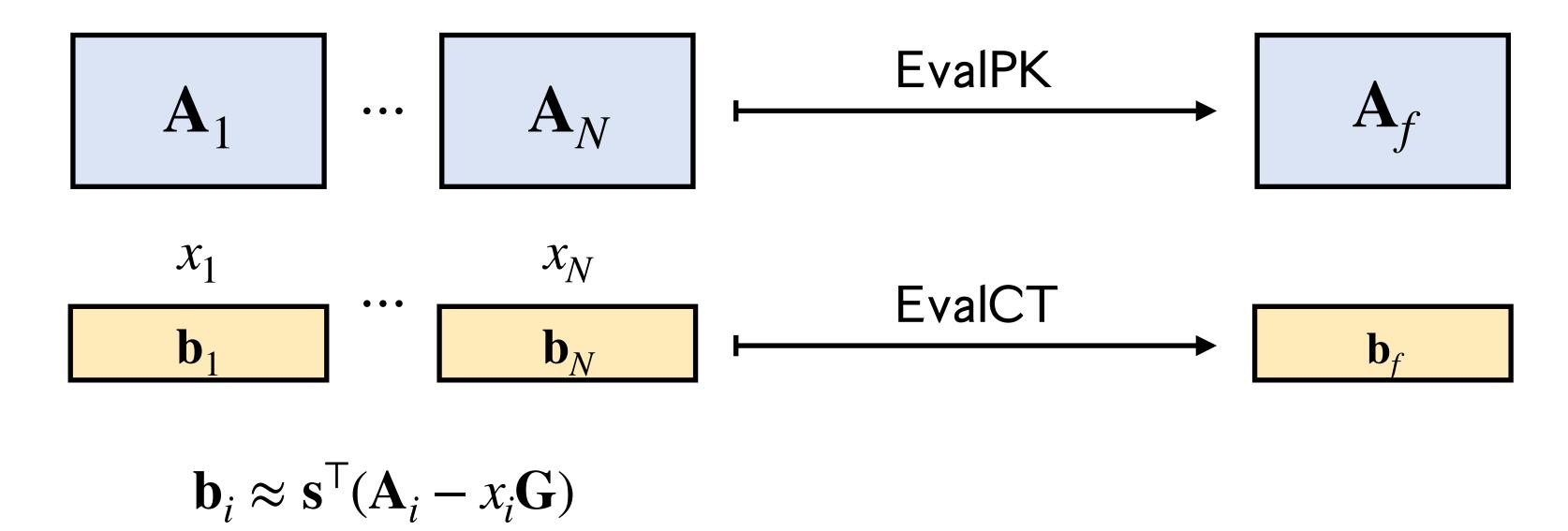
[BGG+'14]

$$f: \{0,1\}^N \to \{0,1\}$$



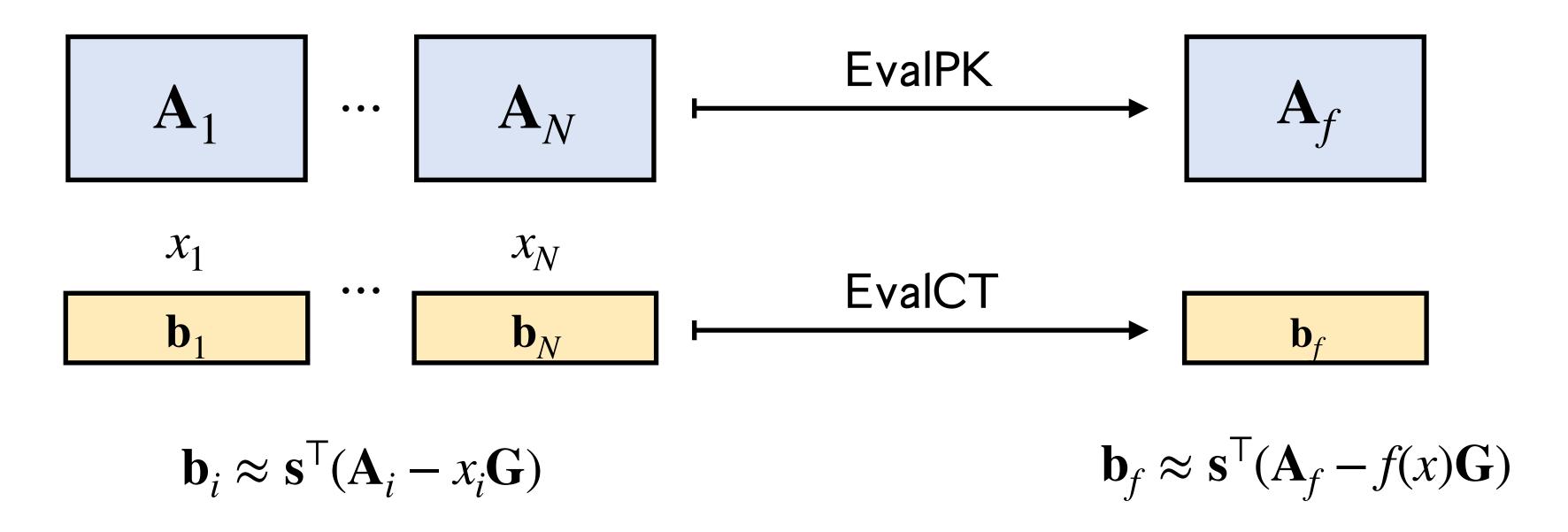
[BGG+'14]

$$f: \{0,1\}^N \to \{0,1\}$$



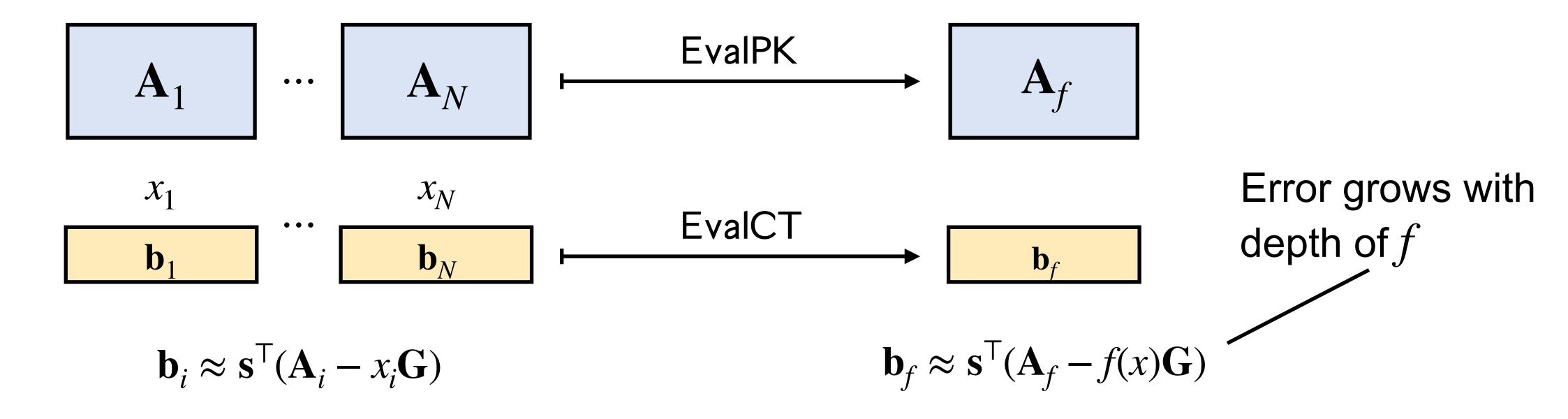
[BGG+'14]

$$f: \{0,1\}^N \to \{0,1\}$$



[BGG+'14]

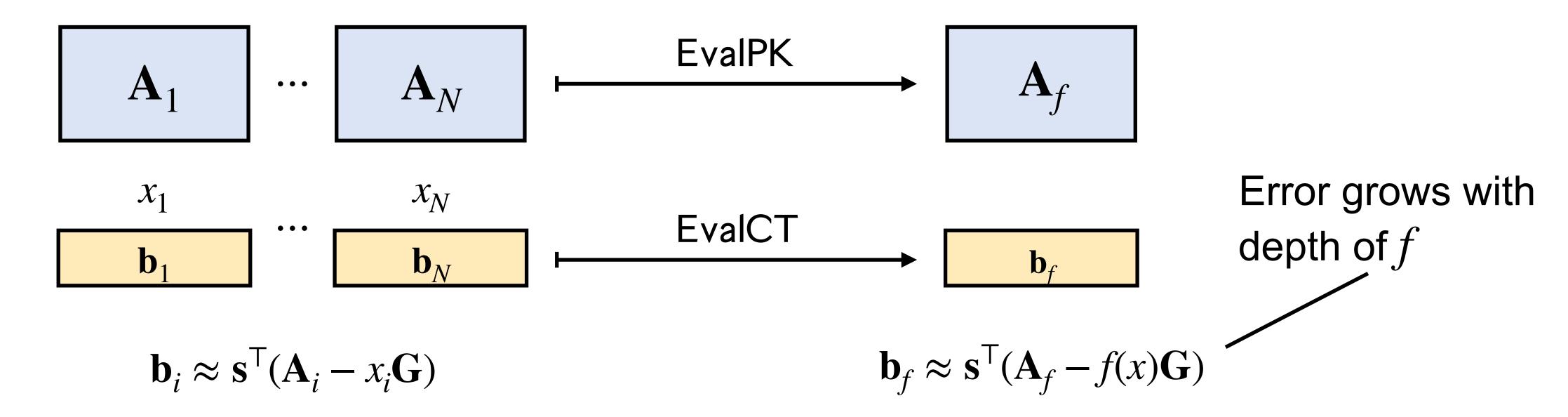
$$f: \{0,1\}^N \to \{0,1\}$$



[BGG+'14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

$$f: \{0,1\}^N \to \{0,1\}$$

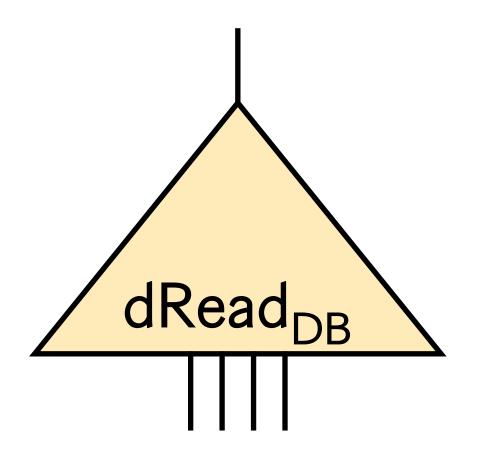


[BGG+'14]: EvalPK, EvalCT run in time proportional to the circuit size of f

Boolean circuits + two new gates:

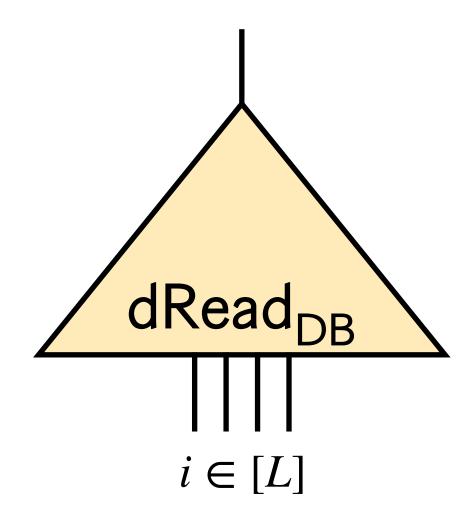
Boolean circuits + two new gates:

Data-Read Gates: For any $DB \in \{0,1\}^L$



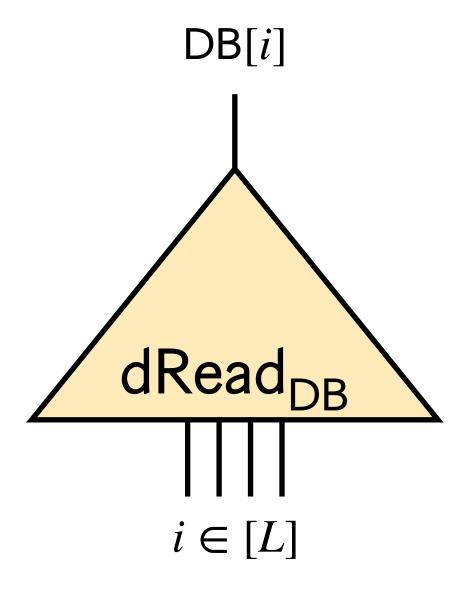
Boolean circuits + two new gates:

Data-Read Gates: For any $DB \in \{0,1\}^L$



Boolean circuits + two new gates:

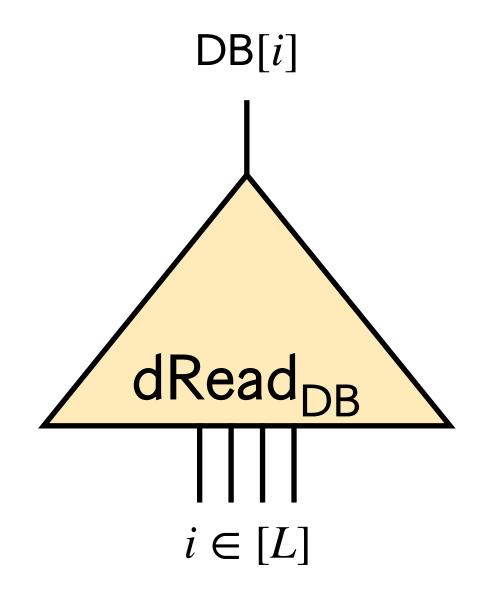
Data-Read Gates: For any DB $\in \{0,1\}^L$

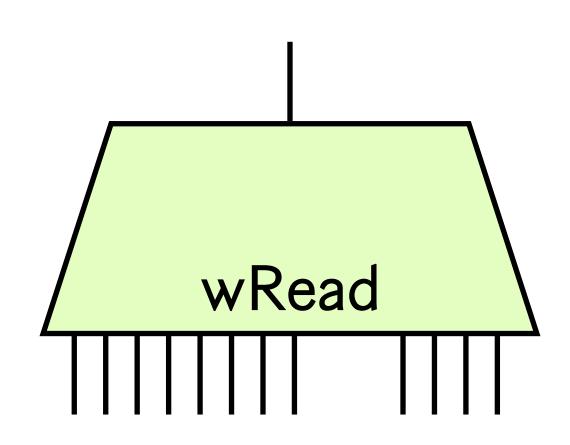


Boolean circuits + two new gates:

Data-Read Gates: For any $DB \in \{0,1\}^L$

Wire-Read Gates:

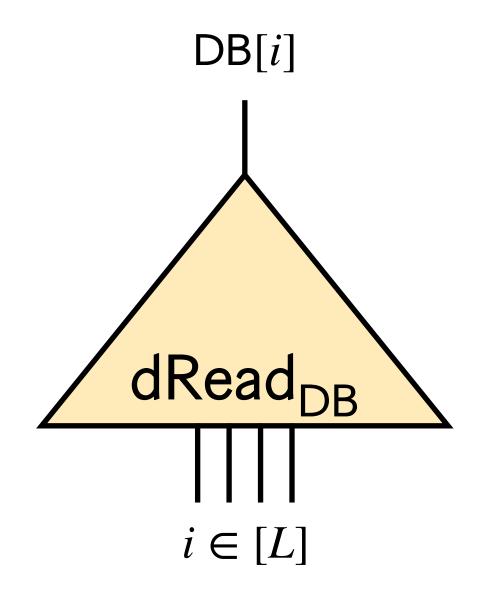


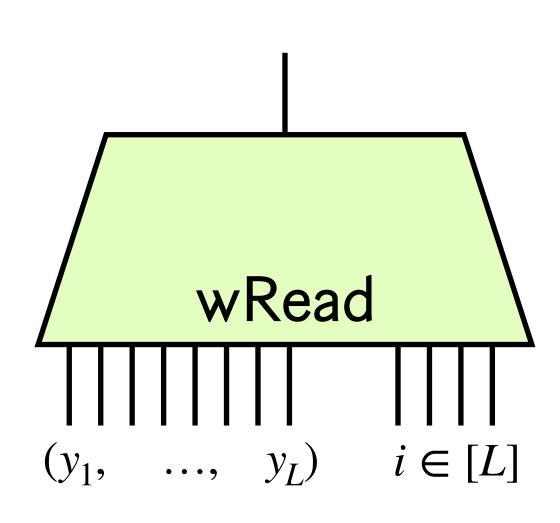


Boolean circuits + two new gates:

Data-Read Gates: For any $DB \in \{0,1\}^L$

Wire-Read Gates:

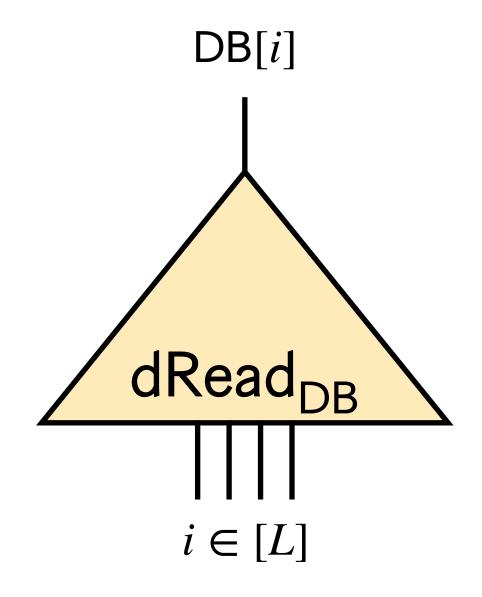


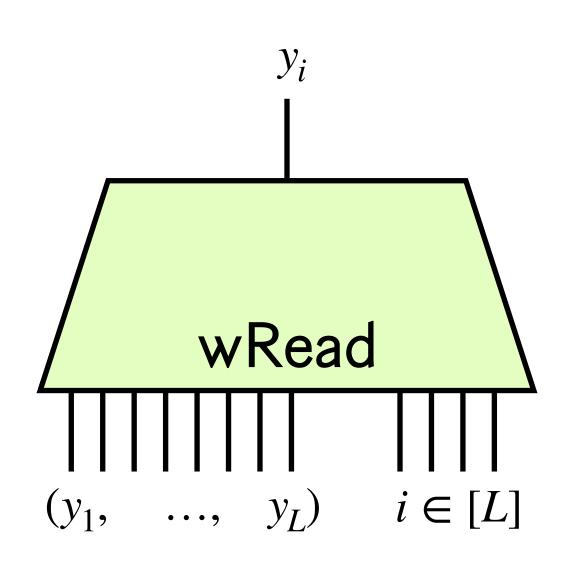


Boolean circuits + two new gates:

Data-Read Gates: For any $DB \in \{0,1\}^L$

Wire-Read Gates:



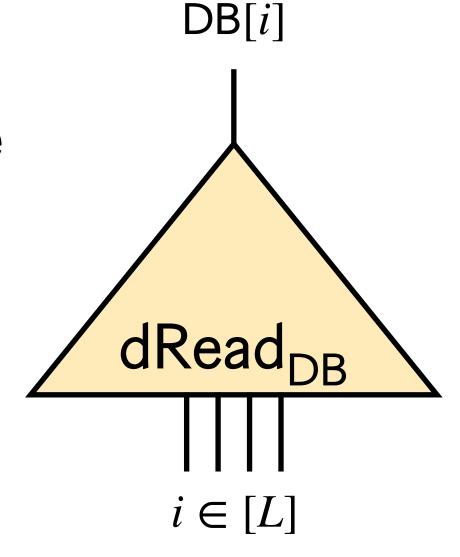


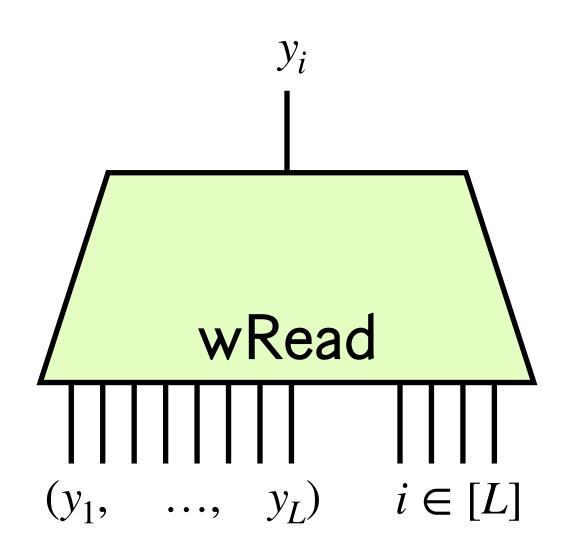
Boolean circuits + two new gates:

Data-Read Gates: For any DB $\in \{0,1\}^L$

Wire-Read Gates:

Efficient access to a hardcoded database



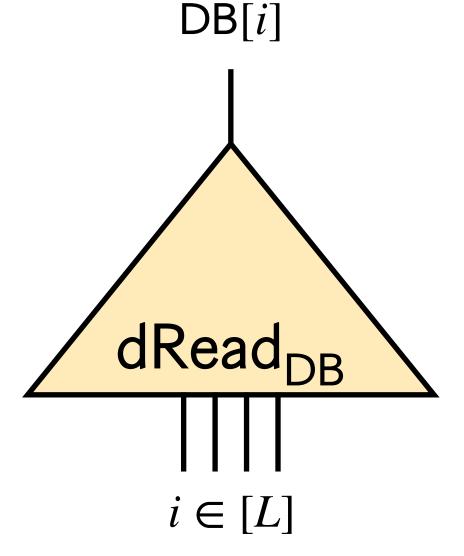


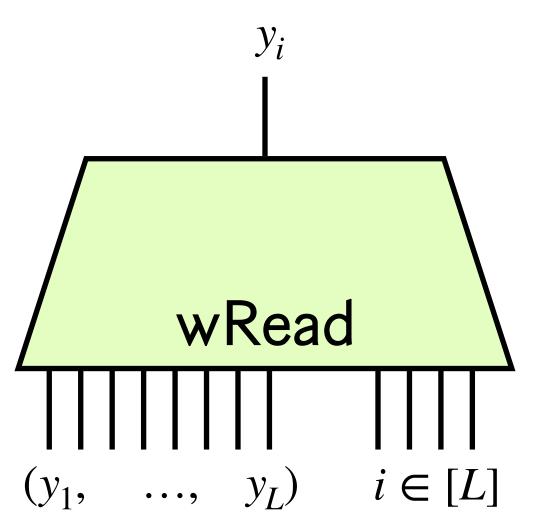
Boolean circuits + two new gates:

Data-Read Gates: For any $DB \in \{0,1\}^L$

Wire-Read Gates:

Efficient access to a hardcoded database





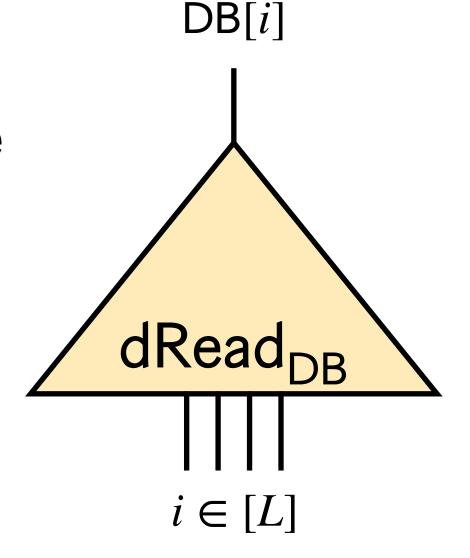
Efficient access to input/working memory

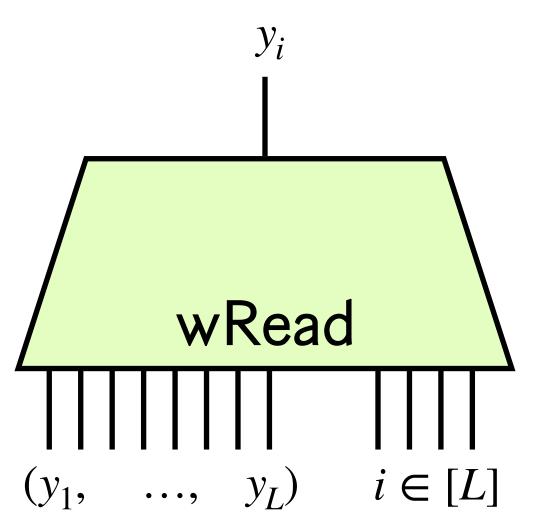
Boolean circuits + two new gates:

Data-Read Gates: For any $DB \in \{0,1\}^L$

Wire-Read Gates:

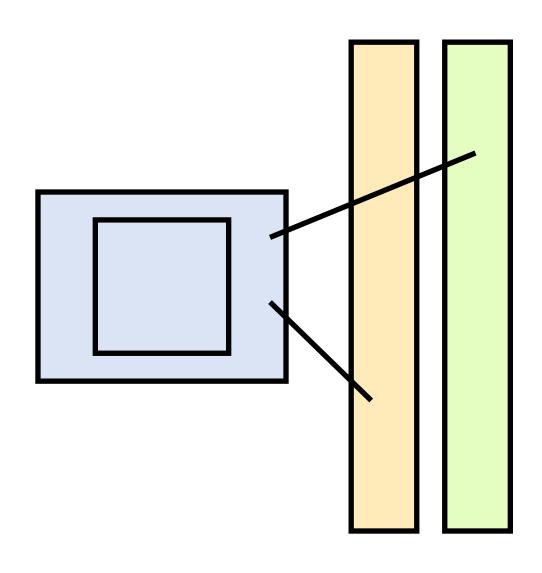
Efficient access to a hardcoded database

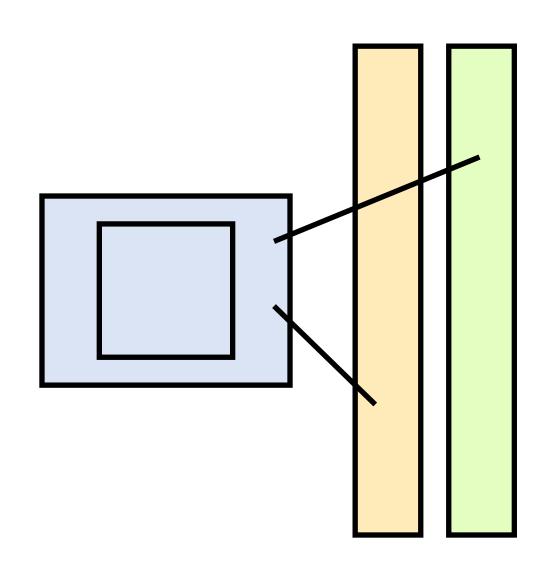




Efficient access to input/working memory

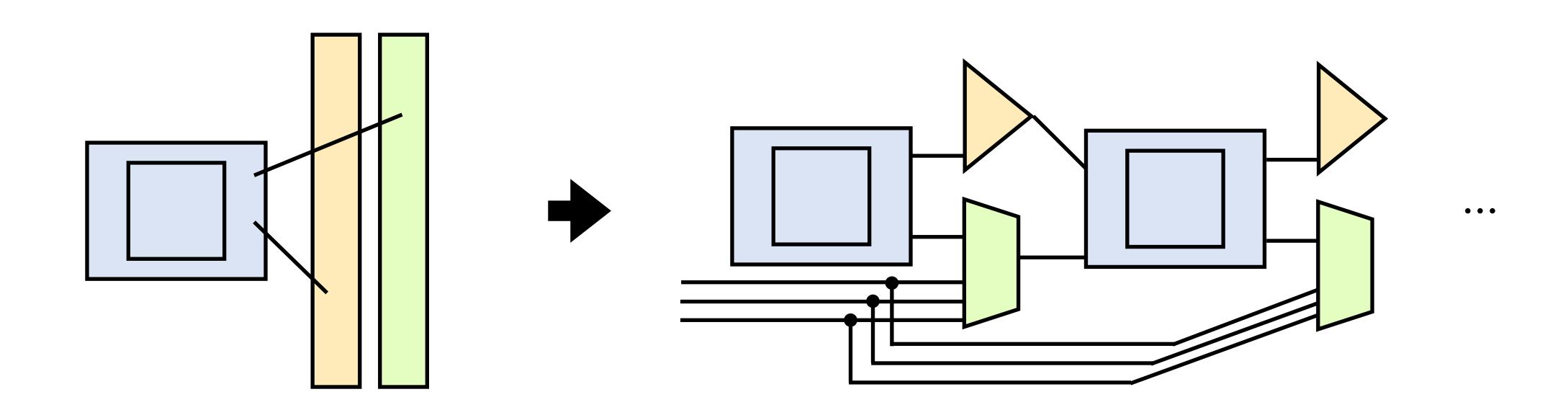
Fixed circuit topology \Longrightarrow write locations must be fixed in advance





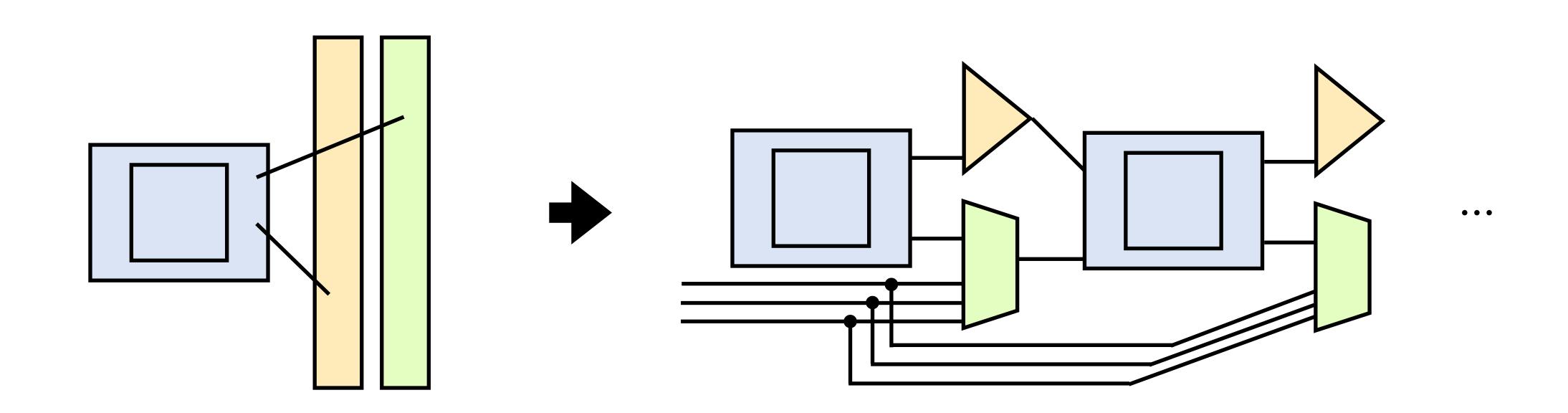
Lemma: A RAM program $f_{\rm DB}$ of runtime T can be represented by a RAM circuit of size $\tilde{O}(\max(T,N))$ for inputs of size N

RAM Circuits



Lemma: A RAM program $f_{\rm DB}$ of runtime T can be represented by a RAM circuit of size $\tilde{O}(\max(T,N))$ for inputs of size N

RAM Circuits



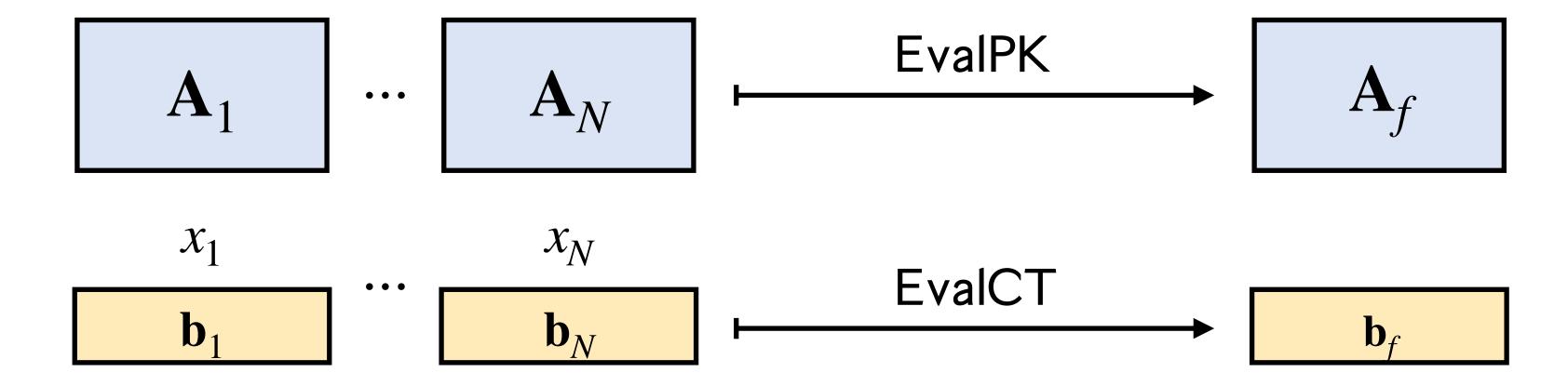
Lemma: A RAM program $f_{\rm DB}$ of runtime T can be represented by a RAM circuit of size $\tilde{O}(\max(T,N))$ for inputs of size N

Note: The transformation yields RAM circuit of depth O(T), but could do better if $f_{\rm DB}$ is parallelizable

[BGG+'14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

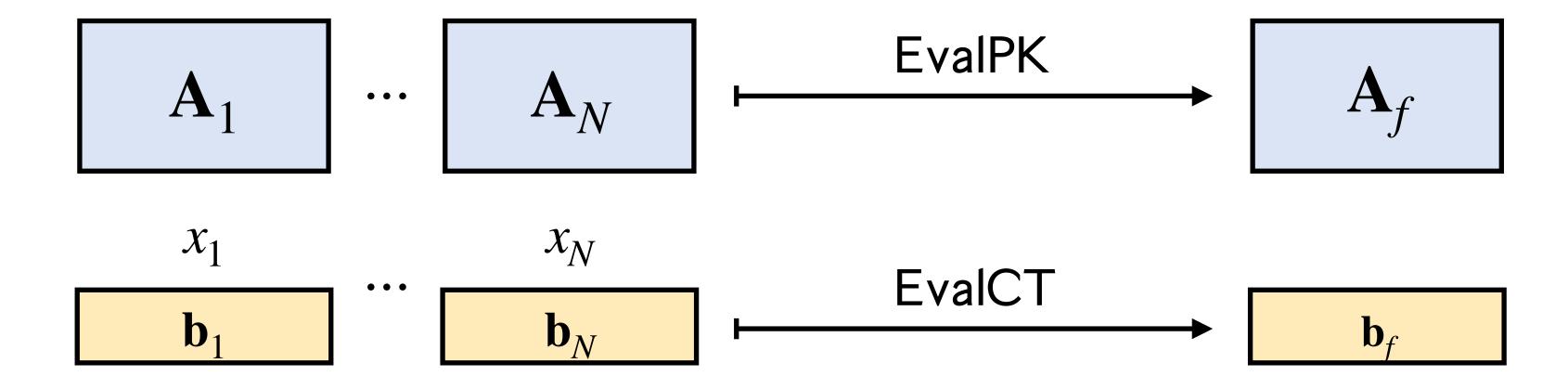
$$f: \{0,1\}^N \to \{0,1\}$$



[BGG+'14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

$$f: \{0,1\}^N \to \{0,1\}$$



[BGG+'14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

[BGG+'14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

[BGG+'14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

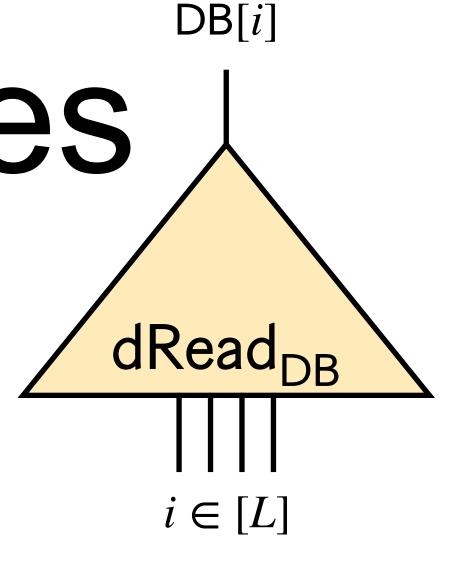
Result: We build (preprocessing) system of homomorphic operations s.t.:

EvalCT runs in time proportional to RAM circuit size of f

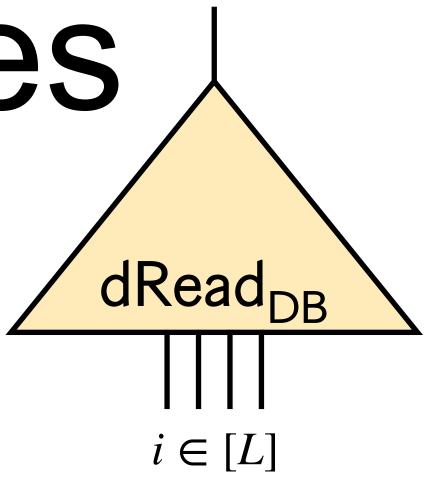
[BGG+'14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

- EvalCT runs in time proportional to RAM circuit size of f
- EvalPK runs in time proportional to boolean circuit size of f

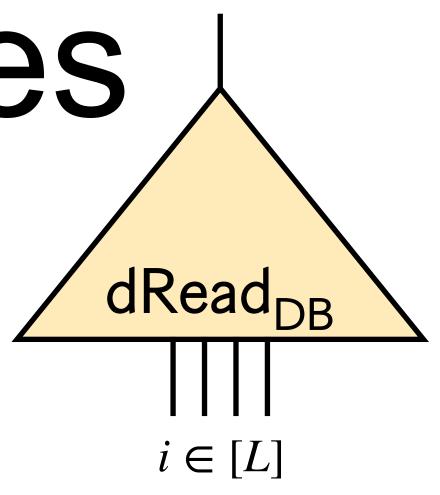


Goal: Apply [BGG+'14] operations to the function dRead_{DB}



Goal: Apply [BGG+'14] operations to the function dRead_{DB}

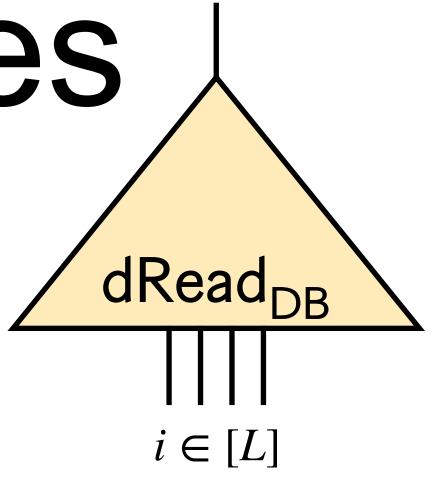
But somehow speed up EvalCT



Goal: Apply [BGG+'14] operations to the function dRead_{DB}

But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

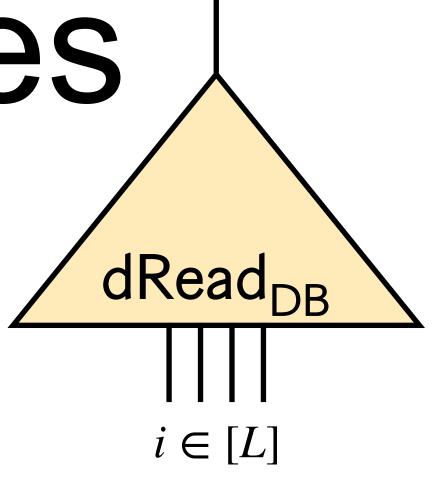


Goal: Apply [BGG+'14] operations to the function dRead_{DB}

But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

There is a matrix $\mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}},\mathbf{A},i}$ s.t.



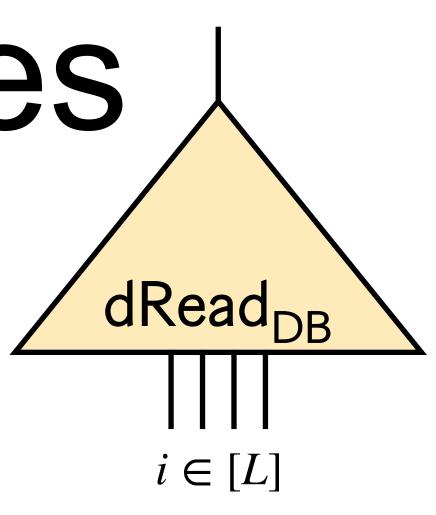
Goal: Apply [BGG+'14] operations to the function dRead_{DB}

But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

There is a matrix $\mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}},\mathbf{A},i}$ s.t.

$$(\mathbf{b}_1, ..., \mathbf{b}_{\log L}) \cdot \mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}}, \mathbf{A}, i} = \mathbf{b}_{\mathsf{dRead}_{\mathsf{DB}}}$$



Goal: Apply [BGG+'14] operations to the function dRead_{DB}

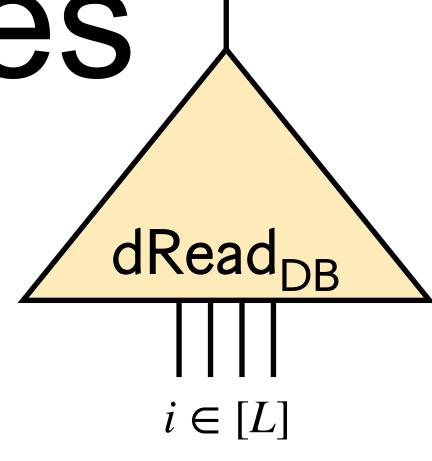
But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

There is a matrix $\mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}},\mathbf{A},i}$ s.t.

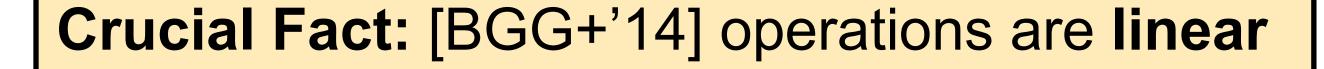
$$(\mathbf{b}_1, ..., \mathbf{b}_{\log L}) \cdot \mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}}, \mathbf{A}, i} = \mathbf{b}_{\mathsf{dRead}_{\mathsf{DB}}}$$

Depends on ${f A}$ and i



Goal: Apply [BGG+'14] operations to the function dRead_{DB}

But somehow speed up EvalCT

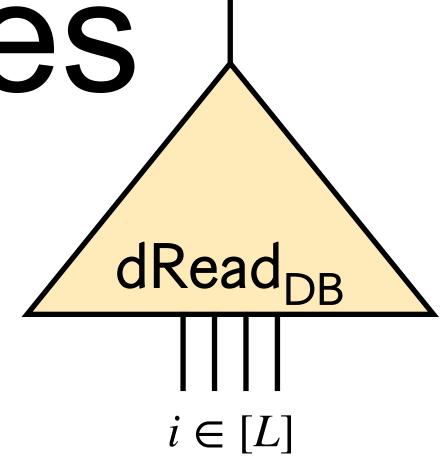


There is a matrix $\mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}},\mathbf{A},i}$ s.t.

$$(\mathbf{b}_1, ..., \mathbf{b}_{\log L}) \cdot \mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}}, \mathbf{A}, i} = \mathbf{b}_{\mathsf{dRead}_{\mathsf{DB}}}$$

Depends on ${\bf A}$ and i

Idea: During preprocessing, just compute all $\mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}},\mathbf{A},i}$ in advance for each $i\in[L]$



Goal: Apply [BGG+'14] operations to the function dRead_{DB}

► But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

There is a matrix $\mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}},\mathbf{A},i}$ s.t.

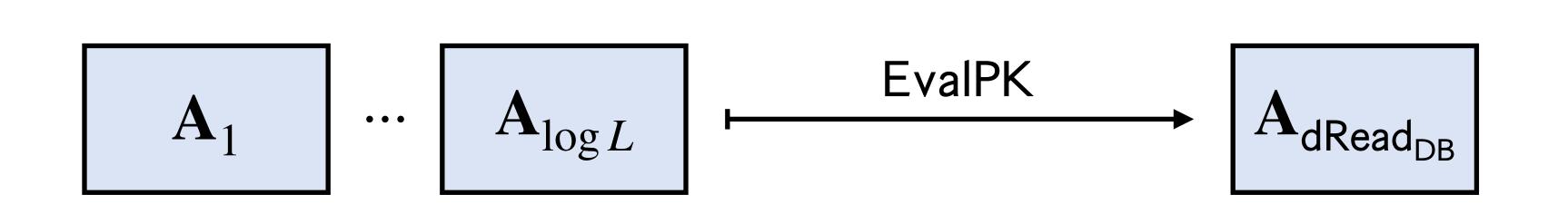
$$(\mathbf{b}_1, ..., \mathbf{b}_{\log L}) \cdot \mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}}, \mathbf{A}, i} = \mathbf{b}_{\mathsf{dRead}_{\mathsf{DB}}}$$

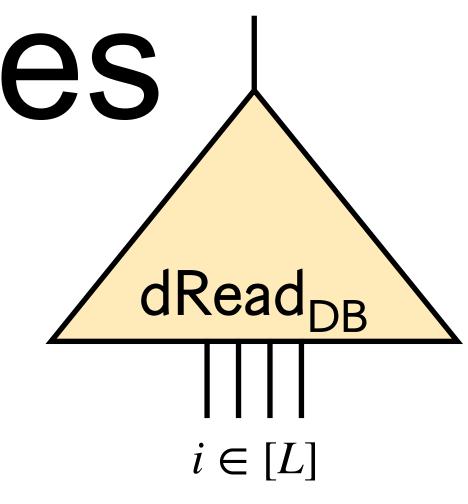
Depends on ${\bf A}$ and i

Sates $\frac{\mathsf{dRead_{DB}}}{i \in [L]}$ Only L many total inputs

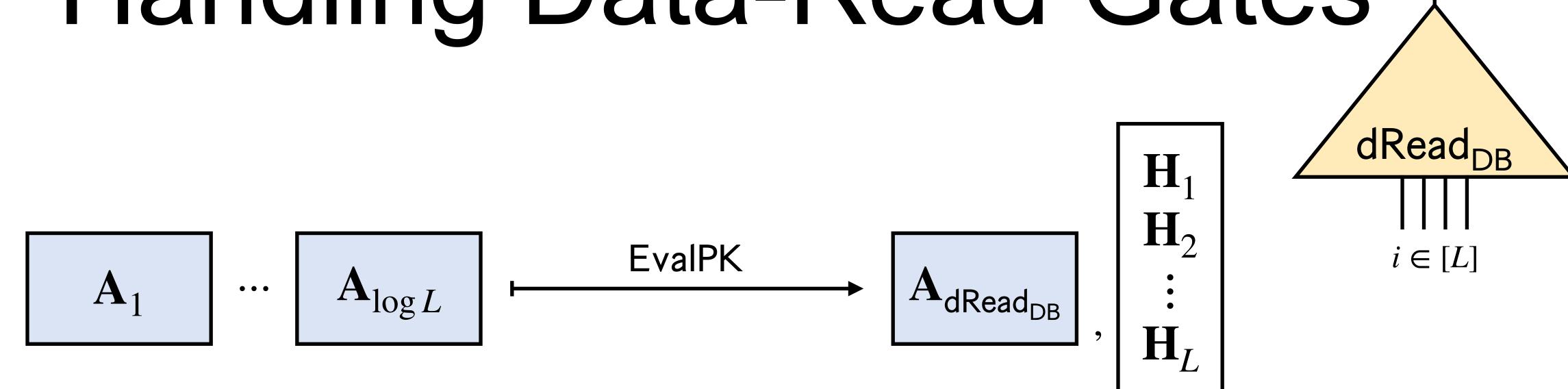
DB[i]

Idea: During preprocessing, just compute all $\mathbf{H}_{\mathsf{dRead}_{\mathsf{DB}},\mathbf{A},i}$ in advance for each $i\in[L]$

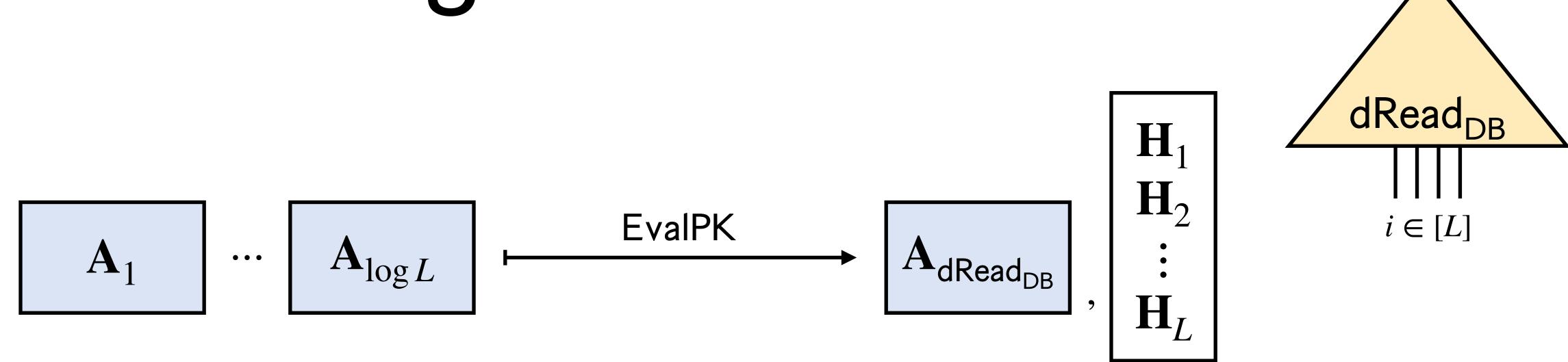




 $\mathsf{DB}[i]$

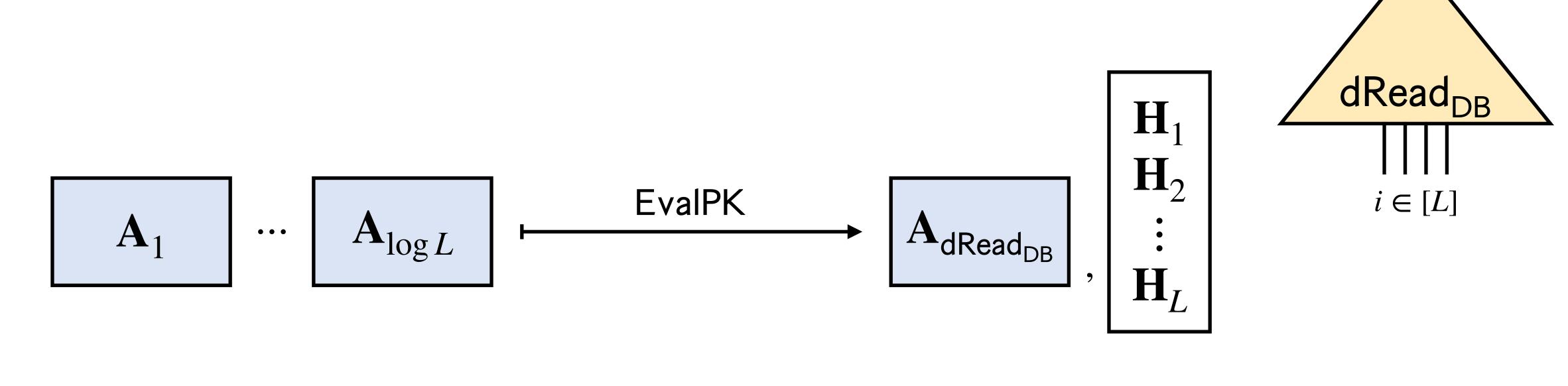


 $\mathsf{DB}[i]$



 $\mathsf{DB}[i]$

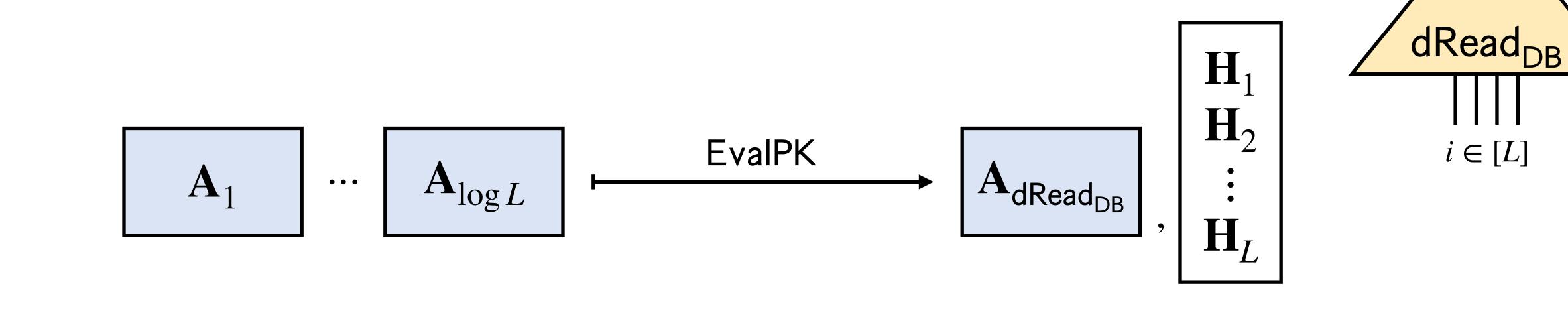
i \mathbf{b}_{1} ... $\mathbf{b}_{\log L}$



 $\mathsf{DB}[i]$

$$i$$
 \mathbf{b}_1 \cdots $\mathbf{b}_{\log L}$ \leftarrow \mathbf{EvalCT} \rightarrow $(\mathbf{b}_1, ..., \mathbf{b}_{\log L}) \cdot \mathbf{H}_i$

DB[i]

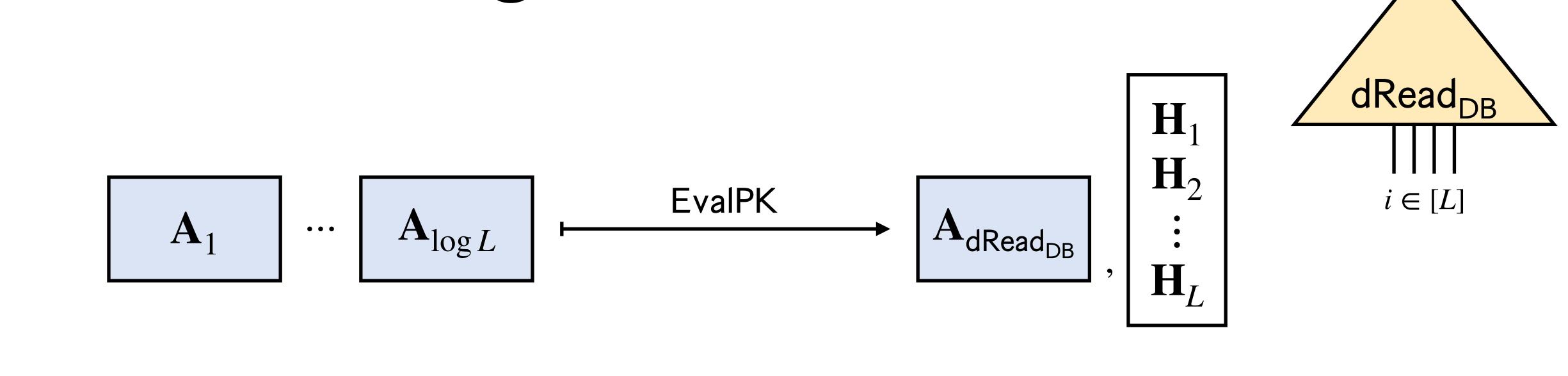


EvalCT

 \rightarrow $(\mathbf{b}_1, ..., \mathbf{b}_{\log L}) \cdot \mathbf{H}_i$

There are L many \mathbf{H} matrices and each takes $\tilde{O}(L)$ time to compute \Longrightarrow EvalPK runs in time $\tilde{O}(L^2)$

• • •

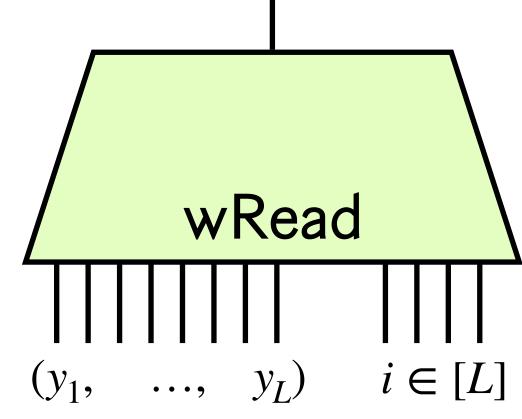


$$i$$
 \mathbf{b}_1 \cdots $\mathbf{b}_{\log L}$ \leftarrow \mathbf{EvalCT} \leftarrow $(\mathbf{b}_1, ..., \mathbf{b}_{\log L}) \cdot \mathbf{H}_i$

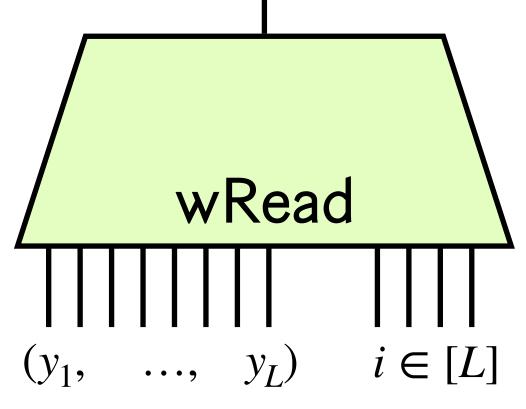
There are L many ${\bf H}$ matrices and each takes O(L) time to compute

 \Longrightarrow EvalPK runs in time $\tilde{O}(L^2)$

Can get just O(L) using a recursive data structure that lets you compute \mathbf{H} on the fly

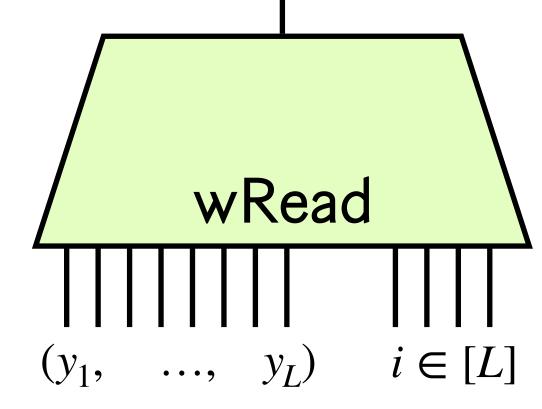


Problem: wRead has exponentially many inputs!



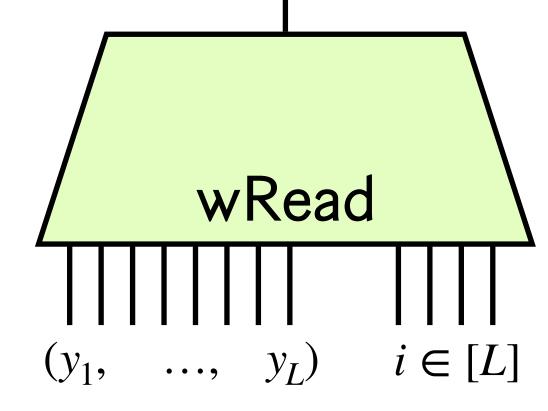
Problem: wRead has exponentially many inputs!

$$wRead(y, i) = \sum_{j=1}^{L} y_i \cdot \mathbb{I}(i = j)$$



Problem: wRead has exponentially many inputs!

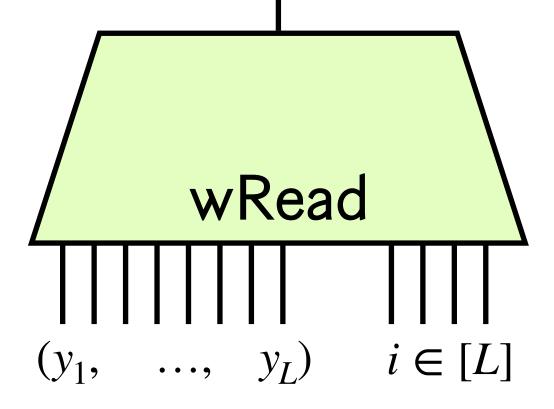
$$wRead(y, i) = \sum_{j=1}^{L} y_i \cdot \mathbb{I}(i = j)$$



Saving Grace: For a given i, \mathbf{b}_{wRead} only depends on one location of y

Problem: wRead has exponentially many inputs!

$$wRead(y, i) = \sum_{j=1}^{L} y_i \cdot \mathbb{I}(i = j)$$



Saving Grace: For a given i, \mathbf{b}_{wRead} only depends on one location of y

Can precompute some data structure in time $\tilde{O}(L)$ over all i's that allows computing $\mathbf{H}_{y,i}$ on the fly

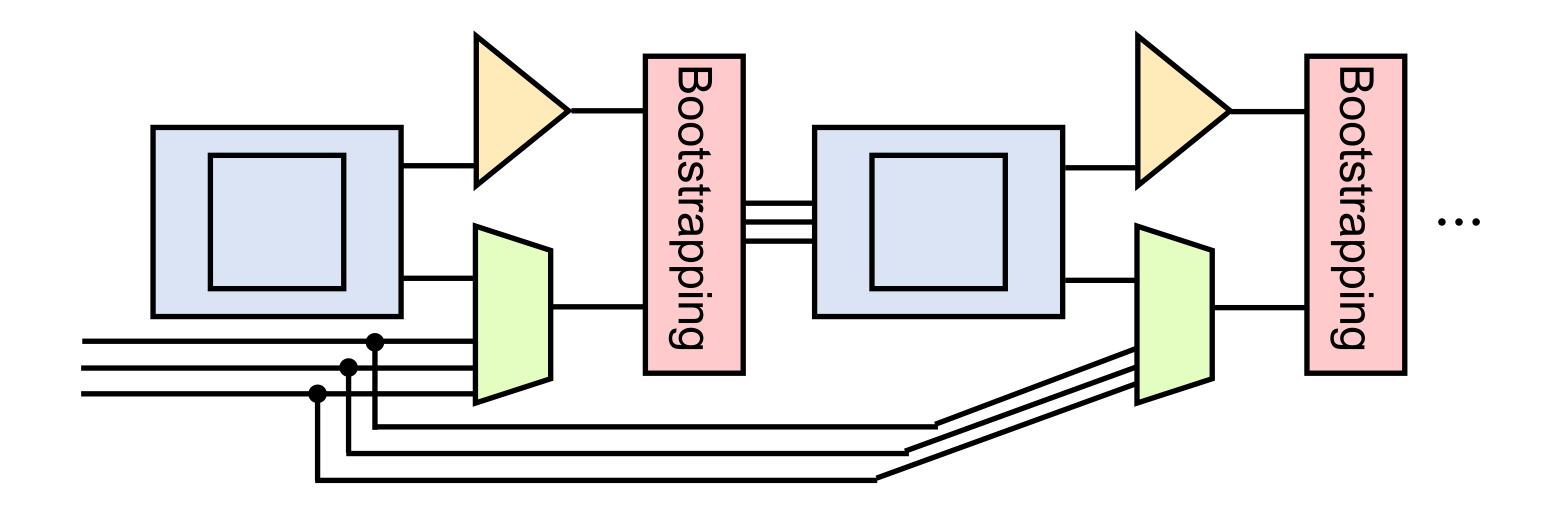
Prior work: [HLL'23] show how to bootstrap homomorphic operations to eliminate error growth assuming circular security

Prior work: [HLL'23] show how to bootstrap homomorphic operations to eliminate error growth assuming circular security

We can apply [HLL'23] techniques to our setting to get unbounded depth RAM-LFE

Prior work: [HLL'23] show how to bootstrap homomorphic operations to eliminate error growth assuming circular security

We can apply [HLL'23] techniques to our setting to get unbounded depth RAM-LFE



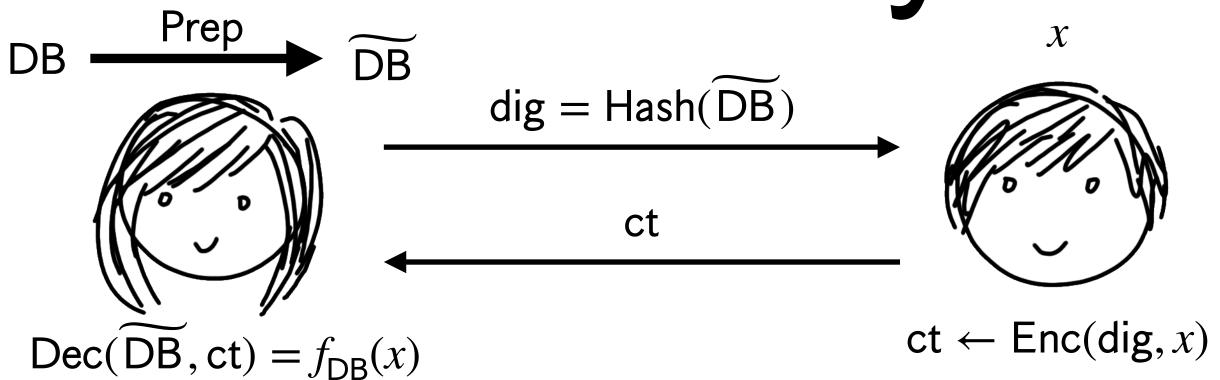
Result: We build ABE for RAM circuits of bounded depth from LWE

 Our preprocessing preserves linearity and hence lattice trapdoors ⇒ [BGG+'14] ABE construction goes through

- Our preprocessing preserves linearity and hence lattice trapdoors ⇒ [BGG+'14] ABE construction goes through
- As in [HLL'23] cannot remove depth dependence without stronger assumptions

- Our preprocessing preserves linearity and hence lattice trapdoors ⇒ [BGG+'14] ABE construction goes through
- As in [HLL'23] cannot remove depth dependence without stronger assumptions
 - Still captures parallel RAM computation

Summary



Result: We build LFE for RAM programs from RingLWE + circular security

- Prep runtime scales with circuit size of RAM program
- Enc runtime slightly superlinear in input size
- Dec runtime slightly superlinear in RAM runtime