L aconic Function Evaluation and
ABE for RAMs from (Ring-)LWE

Fangqi Dong Zihan Hao Ethan Mook Hoeteck Wee Daniel Wichs

1S, Tsinghua 1S, Tsinghua Northeastern ENS’&Pa”S Narr:?vee?z}teym
University University University NTT Research Y

NTT Research

Crypto 2024

Laconic Function Evaluation (LFE)

Laconic Function Evaluation (LFE)

&

Laconic Function Evaluation (LFE)

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

dig = Hash(C)

=== @

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

T A

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

T A

ct <« Enc(dig, x)

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

T O

ct <« Enc(dig, x)

Dec(C, ct) = C(x)

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

T O

ct <« Enc(dig, x)

Dec(C, ct) = C : |
EW=59 | Security: Server learns nothing more than C(x)

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

e S

ct <« Enc(dig, x)

Dec(C, ct) = C : |
EW=59 | Security: Server learns nothing more than C(x)

Like FHE: 2-round 2PC where Server does the computational work

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

e S

ct <« Enc(dig, x)

Dec(C, ct) = C : |
EW=59 | Security: Server learns nothing more than C(x)

Like FHE: 2-round 2PC where Server does the computational work
But “flipped”: Server learns the output (instead of Client)

Laconic Function Evaluation (LFE)

. ig = Has i

Dec(C, ct) = C(x) ct <« Enc(dig, x)

Laconic Function Evaluation (LFE)

C Iig = Has

Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

Laconic Function Evaluation (LFE)

C

X
— dig = Hash(C)
2) — G2\
, ct " ~
Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

- [Dottling-Gajland-Malavolta'23]: LFE for TM from 10 + SSB

Laconic Function Evaluation (LFE)

C X
dig = Hash(C)

@ — .

Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

- [Dottling-Gajland-Malavolta'23]: LFE for TM from 10 + SSB

Problem: Server computation is at least linear in inputs!

Laconic Function Evaluation (LFE)

C X
— dig = Hash(C
//7// \\ g ash(C)
') ct
/ 4—
Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

- [Dottling-Gajland-Malavolta'23]: LFE for TM from 10 + SSB
- [Dong-Hao-M-Wichs24]: LFE for RAM from RingLWE (+iO)

LFE for RAMs

8

LFE for RAMs

Goal: output RAM computation fyg(x)

£ S

L F E fO r RAM S Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation fyg(x)
/
a

@

L F E fO r RAM S Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation fyg(x)
/
a

fog(x) has RAM runtime T

@

Server holds some arbitrary

| FE for RAMSs
Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation fyg(x)
fog(x) has RAM runtime T

Server holds some arbitrary

| FE for RAMSs
Some fixed RAM program

And preprocesses it / (e.g. universal)
Goal: output RAM computation fyg(x)

fog(x) has RAM runtime T

Server holds some arbitrary

| FE for RAMSs
Some fixed RAM program

And preprocesses it / (e.g. universal)
Goal: output RAM computation fyg(x)

fog(x) has RAM runtime T

dig = Hash(DB)
—>

Server holds some arbitrary

| FE for RAMSs
Some fixed RAM program

And preprocesses it / (e.g. universal)
Goal: output RAM computation fyg(x)

fog(x) has RAM runtime T

dig = Hash(DB)
—>

ct
e

ct < Enc(dig, x)

Server holds some arbitrary

| FE for RAMSs
Some fixed RAM program

And preprocesses it / (e.g. universal)
Goal: output RAM computation fyg(x)

fog(x) has RAM runtime T

dig = Hash(DB)
—>

ct
e

Dec(DB, ct) = fr(x) ct < Enc(dig, x)

Server holds some arbitrary

SEEETTT O LFE for RAMS

Some fixed RAM program

And preprocesses it / (e.g. universal)
Goal: output RAM computation fyg(x)
fog(x) has RAM runtime T
Prep

DB =————p DB _ X
dig = Hash(DB)
—>

ct
e

Dec(DB, ct) = fog(x) ct « Enc(dig, x)

N\

Want Dectorunintime ~ T

LFE for RAMS

Pre
DB —p> DB

i dig = Hash(DB)

Dec(DB, ct) = fog(x) ct < Enc(dig, x)
IDHMW 24 IDHMW 24
(weak efﬁmency (strong efflc:lency
Prep:
Enc:
Dec:

Assumption:

LFE for RAMS

Pre
DB —p> DB

i dig = Hash(DB)

Dec(DB, ct) = f5(x) ct < Enc(dig, x)
IDHMW 24 IDHMW 24
(weak efﬁmency (strong efflc:lency
Prep: ‘ DB ‘1+8 ‘ DB ‘1+8
Enc:
Dec:

Assumption:

LFE for RAMs

Pre
DB —p> DB

i dig = Hash(DB)

Dec(DB, ct) = f5(x) ct < Enc(dig, x)
IDHMW 24 IDHMW 24
(weak efﬁmency (strong efflc:lency
Prep: ‘ DB ‘1+8 ‘ DB ‘1+8
Enc: x|+ T | x|

Dec:

Assumption:

LFE for RAMs

Pre
DB —p> DB

i dig = Hash(DB)

Dec(DB, ct) = f5(x) ct < Enc(dig, x)
IDHMW 24 IDHMW 24
(weak efﬁmency (strong efflc:lency
Prep: ‘ DB ‘1+8 ‘ DB ‘1+8
Enc: x|+ T | x|
Dec: T T

Assumption:

LFE for RAMs

Pre
DB —p> DB

i dig = Hash(DB)

Dec(DB, ct) = f5(x) ct < Enc(dig, x)
IDHMW 24 IDHMW 24
(weak efﬁmency (strong efflc:lency
Prep: ‘ DB ‘1+8 ‘ DB ‘1+8
Enc: x|+ T | x|
Dec: T T

Assumption: RingLWE RingLWE + iO

LFE for RAMs

Pre
DB —p> DB

i dig = Hash(DB)

Dec(DB, ct) = f5(x) ct < Enc(dig, x)
[DHMW'24]| | [DHMW'24] w
(weak efﬁmency (strong efficiency)
Prep: ‘ DB ‘1+8 ‘ DB ‘1+8
Enc: x|+ T | x|
Dec: T T

Assumption: RingLWE RingLWE + iO

LFE for RAMs

Pre
DB —p> DB

i dig = Hash(DB)

Dec(DB, ct) = f5(x) ct < Enc(dig, x)
IDHMW 24 IDHMW 24 ThIS work
(weak efﬁmency (strong efflc:lency
Prep ‘ DB ‘1+8 ‘ DB ‘1+8 1+0(1)
Enc: x|+ T | x|
Dec: T T

Assumption: RingLWE RingLWE + iO

LFE for RAMs

Prep
@

DB =3P DB
; dig = Hash(DB)

s = circuit size of

Jos ® T-|DB]|
Dec(DB, ct) = frg(x) Ct « Enc(dlg X) "
[DHMW'24]| | [DHMW'24] w
(weak efﬁmency (strong efficiency)
Prep ‘ DB ‘1+8 ‘ DB ‘1+8 1+0(1)
Enc: x|+ T | x|
Dec: T T

Assumption: RingLWE RingLWE + iO

LFE for RAMs

Prep
@

DB =—————p DB
> dig = Hash(DB)

s = circuit size of

Dec(DB, ct) = f5(x) Ct < Enc(dlg X) "
IDHMW 24 IDHMW 24 ThIS WOrK J-
(weak efﬁmency (strong efﬁClency
Prep ‘ DB ‘1+8 ‘ DB ‘1+8 S1+0(1)
Enc: x|+ T | x| x|
Dec: T T T1+0(1)
Assumption: RingLWE RingLWE + 10 RingLWE

(+ circular security)

LFE for RAMs

Prep
@

DB =—————p DB
> dig = Hash(DB)

s = circuit size of

.
Dec(DB, ct) = f5(x) Ct < Enc(dlg X) R

IDHMW 24 IDHMW 24 ThIS WOrK J-

(weak efﬁmency (strong efﬁClency
Prep: ‘ DB ‘1+e ‘ DB ‘1+e S1+o(1) About as

efficient online,
Enc: x|+ T | x | \x\”o(l) worse offline
Dec: T T T1+0(1)
Assumption: RingLWE RingLWE + 10 RingLWE

(+ circular security)

L FE Construction Template

[Quach-Wee-Wichs’17]

E Attribute-based LFE
. C

-~

()

--

L FE Construction Template

[Quach-Wee-Wichs’17]

E Attribute-based LFE
. C

-~

()

--

L FE Construction Template

[Quach-Wee-Wichs’17]

E Attribute-based LFE

--

L FE Construction Template

[Quach-Wee-Wichs’17]

E Attribute-based LFE

If C(x) = YES
Dec(C, ct) = {'MJ_ If CE; NG

--

L FE Construction Template

[Quach-Wee-Wichs’17]

E Attribute-based LFE
. C

//C)’//“A\) dig = Hash(C)

ct
D

u 1If C(x) =YES
1 if C(x) = NO

Combine with FHE

Fully secure LFE

L FE Construction Template

[Quach-Wee-Wichs’17]

[BGG+'14] System of
Homomorphic Lattice

Operations

Attribute-based LFE

ct

u 1If C(x) =YES
1 if C(x) = NO

Combine with FHE

il BEH BB H B H BE B E SN B E E N BN B =N
a E E E E E E EEEE B B B B B B

Fully secure LFE

L FE Construction Template

[BGG+'14] System of
Homomorphic Lattice

Operations

 Attribute-based RAM-LFE

@

a E E E E E E EEEE B B B B B B

Fully secure LFE

L FE Construction Template

[BGG+'14] System of
Homomorphic Lattice

Operations

Attribute-based RAM-LFE

C(C-) =Jfpp(-)

il BEH BB H B H BE B E SN B E E N BN B =N
a E E E E E E EEEE B B B B B B

Fully secure LFE

L FE Construction Template

[BGG+'14] System of
Homomorphic Lattice

Operations

Attribute-based RAM-LFE

C(C-) =Jfpp(-)

il BEH BB H B H BE B E SN B E E N BN B =N
a E E E E E E EEEE B B B B B B

Combine with RAM-FHE [LMW'23] Fully secure LFE

L FE Construction Template

[BGG+'14] System of Main Technical Contribution:
Homomorphic Lattice (Preprocessing) Homomorphic

Operations Operations for “RAM Circuits”

Attribute-based RAM-LFE

C(C-) =Jfpp(-)

il BEH BB H B H BE B E SN B E E N BN B =N
a E E E E E E EEEE B B B B B B

Combine with RAM-FHE [LMW'23] Fully secure LFE

LFE Construction Template

[BGG+'14] System of Main Technical Contribution:

Homomorphic Lattice (Preprocessing) Homomorphic
Operations Operations for “RAM Circuits”

Attribute-based RAM-LFE

C(C-) =Jfpp(-)

il BEH BB H B H BE B E SN B E E N BN B =N
a E E E E E E EEEE B B B B B B

Combine with RAM-FHE [LMW'23] Fully secure LFE

Homomorphic Operations

[BGG+14]

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

EvalPK
B

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

E

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

EvalPK
X Xy

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

EvalPK
X Xy

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

EvalPK
X Xy

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

EvalPK
X Xy

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

EvalPK
X Xy

b, ~s'(A; — xG) b, ~ s"(A; — f(x)G)

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

EvalPK
X, Xy Error grows with

— st

b, ~s'(A; — xG) b, ~ s"(A; — f(x)G)

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:1{0,1}Y = {0,1)

EvalPK
X, Xy Error grows with

T wff
b ~s'(A, — xG) b, ~ s"(A; - f(x)G)

[BGG+’14]: EvalPK, EvalCT run in time proportional to the circuit size of f

RAM Circuits

Boolean circuits + two new gates:

RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L

RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L

1 € [L]

RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L

DB|:]

1 € [L]

RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DB|:]

dReadpg

1 € [L]

RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DB|:]

dReadpg

1 € [L] Vs - YD) T€[L]

RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DBJi]
Yi

dReadpg

1 € [L] Vs - YD) T€[L]

RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DBJ[i]
Efficient access to a Y;

hardcoded database
dReadpg

1 € [L] Vs - YD) T€[L]

RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1 }L Wire-Read Gates:

DB[i]
Efficient access to a Vi Efficient access to
hardcoded database input/working memory

dReadpg

1 € [L] Vs - YD) T€[L]

RAM Circuits

Boolean circuits + two new gates:

Data-Read Gates: For any DB € {0,1}* Wire-Read Gates:
DBI[]
Efficient access to a Vi Efficient access to
hardcoded database | input/working memory
dReadpg
1 € [L] O, - Y T E[L]

Fixed circuit topology = write locations must be fixed in advance

RAM Circuits

RAM Circuits

RAM Circuits

Lemma: A RAM program fyg of runtime 7" can be represented by a RAM circuit

of size O(max(T, N)) for inputs of size N

RAM Circuits

RAM Circuits

Lemma: A RAM program fyg of runtime 7" can be represented by a RAM circuit
of size O(max(7, N)) for inputs of size N

Note: The transformation yields RAM circuit of depth G(T), but
could do better if fyg is parallelizable

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:{0,1}" - {0,1}

EvalPK
X Xy

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:1{0,1}Y = {0,1)

EvalPK
A1 AN

Result: We build (preprocessing) system of homomorphic operations s.t.:

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:1{0,1}Y = {0,1)

EvalPK
B H
X Xy

Result: We build (preprocessing) system of homomorphic operations s.t.:

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:1{0,1}Y = {0,1)

EvalPK
B H
X Xy

DS

Result: We build (preprocessing) system of homomorphic operations s.t.:

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:1{0,1}Y = {0,1)

EvalPK
B H
X Xy

DS

Result: We build (preprocessing) system of homomorphic operations s.t.:
e EvalCT runs in time proportional to RAM circuit size of f

Homomorphic Operations

[BGG+14]

Goal: Given encodings of an input x want to get an encoding of the output f(x)

f:1{0,1}Y = {0,1)

EvalPK
B H
X Xy

DS

Result: We build (preprocessing) system of homomorphic operations s.t.:
e EvalCT runs in time proportional to RAM circuit size of f

e EvalPK runs in time proportional to boolean circuit size of f

DB|:]

Handling Data-Read Gates 'I

1 € [L]

DB|:]

Handling Data-Read Gates

Goal: Apply [BGG+'14] operations to the function dReadpg

1 € [L]

DB|:]

Handling Data-Read Gates

Goal: Apply [BGG+'14] operations to the function dReadpg

» But somehow speed up EvalCT
i € [L]

DB|:]

Handling Data-Read Gates

Goal: Apply [BGG+'14] operations to the function dReadpg dReadng

» But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

1 € [L]

DB|:]

Handling Data-Read Gates

Goal: Apply [BGG+'14] operations to the function dReadpg dReadng

» But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

There is a matrix Hjgeag 4 St

1 € [L]

DB|:]

Handling Data-Read Gates

Goal: Apply [BGG+'14] operations to the function dReadpg dReadng

» But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

There is a matrix Hjgeag 4 St

1 € [L]

(bla oo blogL) ' HdReadDB,A,i = bdReadDB

DB|:]

Handling Data-Read Gates

Goal: Apply [BGG+'14] operations to the function dReadpg dReadng

» But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

There is a matrix Hjgeag 4 St

/(bb e blogL) ' HdReadDB,A,i — bdReadDB

Depends on A and i

1 € [L]

DB|:]

Handling Data-Read Gates

Goal: Apply [BGG+'14] operations to the function dReadpg dReadng

» But somehow speed up EvalCT

Crucial Fact: [BGG+'14] operations are linear

There is a matrix Hjgeag 4 St

/(bb e blogL) ' HdReadDB,A,i — bdReadDB

Depends on A and i

1 € [L]

Idea: During preprocessing, just compute all Hyge,q A ; in @dvance for each i € [L]

DB|:]

Handling Data-Read Gates

Goal: Apply [BGG+'14] operations to the function dReadpg dReadp;
» But somehow speed up EvalCT

i €[L]
Crucial Fact: [BGG+'14] operations are linear /
There Is a matrix HdReadDB,A,i s.. Only L many total inputs

/(bb e blogL) ' HdReadDB,A,i — bdReadDB

Depends on A and i

Idea: During preprocessing, just compute all Hyge,q A ; in @dvance for each i € [L]

DB|:]

Handling Data-Read Gates
- m _ EvalPK i € [L]

DB|!]

Handling Data-Read Gate -

H
A EvaIPK A 2 i e L]
lo gL dR adpg

DB|!]

Handling Data-Read Gate -

H
A EvaIPK A 2 i e L]
lo gL dR adpg

EvalPK

EvalCT

DB|:]

EvalPK
-

EvalCT
i — (by. ... bg) - H,

There are L. many H matrices and each takes O(L) time to compute
— EvalPK runs in time O(L?)

Handling Data-Read Gates

EvalPK
-

EvalCT

There are L. many H matrices and each takes O(L) time to compute

DB|:]

— EvalPK runs in time O(L? , ~ , _
(£7) Can get just O(L) using a recursive data
structure that lets you compute H on the fly

Handling Wire-Read Gates:

Ve e YD) T E[L]

Handling Wire-Read Gates:

Ve e YD) T E[L]

Handling Wire-Read Gates:

Problem: wRead has exponentially many inputs!

L
wRead(y, i) = Zyl.. 1(i =) s e V1)
=1

Handling Wire-Read Gates:

1 € [L]

wRead(y, i) = Zyl.. 1(i =) s e V1)
j=1

Saving Grace: For a given i, b 4 only depends on one location of y

wRea

Handling Wire-Read Gates:

1 € [L]

wRead(y, i) = Zyi. 1(i =) s e V1)
j=1

Saving Grace: For a given 7, b, r..4 only depends on one location of y

Can precompute some data structure in time O(L) over all i’s that allows
computing H, ; on the fly

Removing depth dependence

Removing depth dependence

Prior work: [HLL'23] show how to bootstrap homomorphic

operations to eliminate error growth assuming circular security

Removing depth dependence
Prior work: [HLL'23] show how to bootstrap homomorphic
operations to eliminate error growth assuming circular security
We can apply [HLL'23] techniques to our setting to get
unbounded depth RAM-LFE

Removing depth dependence
Prior work: [HLL'23] show how to bootstrap homomorphic
operations to eliminate error growth assuming circular security
We can apply [HLL'23] techniques to our setting to get
unbounded depth RAM-LFE

0
®,
O
ﬁ
w
=Y
Q)
5
O,
S
Q

Additional Result: ABE

Additional Result: ABE

Additional Result: ABE

> Our preprocessing preserves linearity and hence lattice
trapdoors = [BGG+'14] ABE construction goes through

Additional Result: ABE

> Our preprocessing preserves linearity and hence lattice

trapdoors = [BGG+'14] ABE construction goes through

> As In [HLL'23] cannot remove depth dependence without
stronger assumptions

Additional Result: ABE

> Our preprocessing preserves linearity and hence lattice

trapdoors = [BGG+'14] ABE construction goes through
> As In [HLL'23] cannot remove depth dependence without
stronger assumptions
- Still captures parallel RAM computation

~ Summary

o b8 dig = Hash(DB)
ig = Has 7
) = 6

DGC(DB, ct) = fop(x) ct <« Enc(dig, x)

Result: We build LFE for RAM programs from RingLWE + circular
security

e Prep runtime scales with circuit size of RAM program
e Enc runtime slightly superlinear in input size
e Dec runtime slightly superlinear in RAM runtime

Result: \We build ABE for RAM circuits of bounded depth from LWE

