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Threshold Encryption
Goal: Encrypt a message to  parties, such that n

Can be decrypted by any  out of  partiest n

Semantic security holds against any subset of  parties< t

|Ciphertext| = O(1)

Non-interactive decryption
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Textbook Solution

Threshold ElGamal seems quite nice:
Short public key: (g, h = gsk)
Short ciphertexts: (gr, hr ⋅ M)
Short partial decryption: gr[sk]

… but it’s not perfect
 DKG for setup with each committeeO(n2)

DKG more expensive in asynchronous settings +  corruption< n/3
Threshold fixed at the time of setup

Almost universal issue

Today: Silent Threshold Encryption
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Deterministic Function: 
Agg(pk1, pk2, pk3, pk4, pk5) → pksk2
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Silent Threshold Encryption

pk
ct ← Enc(m; pk)

|ct | = O(1)



Silent Threshold Encryption

pd2 = Dec(ct, sk2)

pd1 = Dec(ct, sk1)

pd3 = Dec(ct, sk3)

Deterministic Function: 
Agg(pd1, pd2, pd3) → m
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How do we compare?

Threshold ElGamal:
Needs a DKG
Short public key: O(1)
Short secret key: O(1)
Short ciphertexts: 1G + |key |
Short partial decryption: 1G
Reduces to DDH

Silent Threshold:
Long individual public key: O(n)
Short aggregated key: O(1)
Short secret key: O(1)
Short ciphertexts: 2G1 + 7G2 + |key |
Short partial decryption: 1G2
Relies on GGM
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• (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14, 
FWW23, KMW23, GLWW23

• Adaptive Threshold: DP08, HLR10

• Silent Threshold Encryption: RSY21 ( )i𝒪

• Silent Threshold Signatures: DCX+23, GJM+24



A Witness Encryption Solution

Can we build Silent Threshold Encryption given WE for NP? 

(Extractable) Witness Encryption: Encrypt a message to a statement . 

Can decrypt iff you know  such that 


x
w RL(x, w) = 1
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Encrypt: WE.Encrypt  with a random string 𝗆𝗌𝗀 tag
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A Witness Encryption Solution
Suppose we have a WE for the relation: 

“I know  signatures from some subset of  on ”t {pki}i∈[n] tag
= witness = statement

 We build a concretely efficient WE for the relation above

BLS signatures



What class of relations 
support efficient WE?
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Relations with “Linear” verifiers

Express the verification circuit for  as a set of PPEs.RL(x, w) = 1

∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) ⋅ ∏e(wi, wj) = cT

Compiler [BC16]: Linear PPE  WE→



Problem reduced to building linear verifier for: 

 Silent Threshold Encryption! 

Rest of the talk: building a linear verifier 

⟹

“I know  signatures from some subset of  on ”t {pki} tag

WE for Silent Threshold Encryption



Our Construction
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Recall: BLS Signature
Public Key: gsk

Signature: σ = H(m)sk

Linear Verification: e(g, σ) = e(pk, H(m))

Aggregate Verification: Succinctly verify that  signed by all m {pki}i∈[n]

e(g, ∏
i∈[n]

σi) = e( ∏
i∈[n]

pki, H(m))

Linear verifier for : “I know a signatures  from all  on ”t = n {σi} {pki}i∈[n] m
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-out-of-   -out-of-n n → t n
“I know  signatures from some subset of  on ”t {pki} tag

High level plan:

1. Aggregate the subset of public keys that signed

, where pkS = ∏
i∈[n]

pki
bi bi ∈ {0,1}

2. Verify signature under aggregate public key

e(g, σ𝖲) = e(pkS, H(tag))Linear



Sumcheck [BCR+19, CNR+22]
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Sumcheck [BCR+19, CNR+22]
Given two polynomials , prove that .


Sufficient to show there exist polynomials  and :





 


f(x), h(x) ∑
i∈H

f(i) ⋅ h(i) = s

Q1(x) Q2(x)

e(gf(τ), gh(τ)) = e(gs/|H|, g) ⋅ e(gQ1(τ), gτ) ⋅ e(gQ2(τ), gZH(τ))

deg(Q1(x)) < |H | − 1

deg(Q2(x)) < deg( f(x) ⋅ h(x)) − |H |

Linear verification given 
a powers of tau CRS!
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Interpolate Secret Keys: 𝖲𝖪(𝗑)

Interpolate “Selector” Polynomial: 𝖡(x)

Run Sumcheck on !𝖲𝖪(x) ⋅ 𝖡(x)

Note: Doing this in the “exponent” need an additional  terms O(n) (gski, gski⋅τ, gski⋅τ2, …, gski⋅τn)
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|{bi |bi ≠ 0 ∣ ≥ t Can be reduced to a degree check (linear 😃)

-out-of-   -out-of-n n → t n

pkS = ∏
i∈[n]

pki
bi

e(g, σ𝖲) = e(pkS, H(tag))

Compile to a witness encryption 😃🍾

“I know  signatures from any subset of  parties on ”t n tag

Univariate Sumcheck [DCX+23, GJM+24]

Linear



Evaluation



Evaluation (512 Parties)

KeyGen [One-Time]: 125 ms (24 KB in size)


Encrypt: 7 ms, 768 bytes.


Partial Decrypt: 2.5 ms, 96 bytes


Reconstruct: 130 ms 

https://github.com/guruvamsi-policharla/silent-threshold-encryption



Thank you!

Blogpost:

Paper: ia.cr/2024/263


