Threshold Encryption with
Silent Setup

Sanjam Garg, Dimitris Kolonelos, Guru Vamsi Policharla, Mingyuan Wang




Threshold Encryption

Goal: Encrypt a message to n parties, such that



Threshold Encryption

Goal: Encrypt a message to n parties, such that

- Can be decrypted by any 7 out of n parties



Threshold Encryption

Goal: Encrypt a message to n parties, such that
- Can be decrypted by any 7 out of n parties

- Semantic security holds against any subset of < 7 parties



Threshold Encryption

Goal: Encrypt a message to n parties, such that
- Can be decrypted by any 7 out of n parties
- Semantic security holds against any subset of < 7 parties

-~ |Ciphertext| = O(1)



Threshold Encryption

Goal: Encrypt a message to n parties, such that

- Can be decrypted by any 7 out of n parties

- Semantic security holds against any subset of < 7 parties
-~ |Ciphertext| = O(1)

- Non-interactive decryption



Textbook Solution

Threshold ElGamal seems quite nice:



Textbook Solution

Threshold ElGamal seems quite nice:

© Short public key: (g, h = g°%)



Textbook Solution

Threshold ElGamal seems quite nice:

- Short public key: (g, h = gSk)

- Short ciphertexts: (g’, h" - M)



Textbook Solution

Threshold ElGamal seems quite nice:
© Short public key: (g, h = g°%)

- Short ciphertexts: (g, h" - M)

© Short partial decryption: g’5X]



Textbook Solution

Threshold EIGamal seems quite nice:
~ Short public key: (g, h = gSk)
- Short ciphertexts: (g’, h" - M)

- Short partial decryption: g’ [$K]

.. but it’s not perfect
O(nz) DKG for setup with each committee



Textbook Solution

Threshold ElGamal seems quite nice:
~ Short public key: (g, h = g*%)
-~ Short ciphertexts: (¢’, h" - M)
~ Short partial decryption: g" [sk]

... but It’s not perfect

- O(nz) DKG for setup with each committee

- DKG more expensive in asynchronous settings + < n/3 corruption



Textbook Solution

Threshold ElGamal seems quite nice:
~ Short public key: (g, h = g*%)
-~ Short ciphertexts: (¢’, h" - M)

~ Short partial decryption: g" [5K]

... but It’s not perfect
- O(nz) DKG for setup with each committee

~ DKG more expensive in asynchronous settings + < n/3 corruption
- Threshold fixed at the time of setup



Textbook Solution

Threshold ElGamal seems quite nice:
~ Short public key: (g, h = g*%)

~ Short ciphertexts: (g', h" - M) Almost universal issue
© Short partial decryption: gI¥] Today: Silent Threshold Encryption

.. but it’s not perfect

O(n”) DKG for setup with each committee

DKG more expensive in asynchronous settings + < 7/3 corruption
Threshold fixed at the time of setup




Threshold Encryption

& Interactive Setup — pk
I sk
o—'—&
Sks / \ Skz

sk, sky



Silent Threshold Encryption




Silent Threshold Encryption




Silent Threshold Encryption

sk,
pk, pk;

sk, sky



Silent Threshold Encryption




Silent Threshold Encryption

ct <« Enc(m; pk) .
B —
ct| = 0(1) w

& -
o &

&




Silent Threshold Encryption

& pdl — D@C(Ct, Skl)

o

pd, = Dec(ct, sk,)

o (&

de —_ D@C(Ct, SkB)



How do we compare?

Threshold ElIGamal: Silent Threshold:



How do we compare?

Threshold ElGamal: Silent Threshold:
> Needs a DKG ~ Long individual public key: O(n)

- Short public key: O(1) - Short aggregated key: O(1)



How do we compare?

Threshold EIGamal: Silent Threshold:
> Needs a DKG ~ Long individual public key: O(n)
~ Short public key: O(1) -~ Short aggregated key: O(1)

~ Short secret key: O(1) ~ Short secret key: O(1)



How do we compare?

Threshold ElGamal: Silent Threshold:
> Needs a DKG ~ Long individual public key: O(n)
~ Short public key: O(1) - Short aggregated key: O(1)
~ Short secret key: O(1) ~ Short secret key: O(1)

~ Short ciphertexts: 1G + | key | - Short ciphertexts: 2G; + 7G, + | key |



How do we compare?

Threshold ElIGamal: Silent Threshold:
> Needs a DKG ~ Long individual public key: O(n)
~ Short public key: O(1) ~ Short aggregated key: O(1)
~ Short secret key: O(1) ~ Short secret key: O(1)
~ Short ciphertexts: 1G + | key | - Short ciphertexts: 2G; + 7G, + | key |

- Short partial decryption: 1G -~ Short partial decryption: 1G,



How do we compare?

Threshold ElGamal: Silent Threshold:
> Needs a DKG ~ Long individual public key: O(n)
~ Short public key: O(1) ~ Short aggregated key: O(1)
~ Short secret key: O(1) - Short secret key: O(1)
~ Short ciphertexts: 1G + | key | -~ Short ciphertexts: 2G, + 7G, + | key |
- Short partial decryption: 1G -~ Short partial decryption: 1G,

o Reduces to DDH o Relies on GGM



Related Work

* (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14,
FWW23, KMW23, GLWW23



Related Work

* (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14,
FWW23, KMW23, GLWW23

 Adaptive Threshold: DP08, HLR10



Related Work

* (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14,
FWW23, KMW23, GLWW23

 Adaptive Threshold: DP08, HLR10

o Silent Threshold Encryption: RSY21 (i)



Related Work

(Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14,
FWW23, KMW23, GLWW23

Adaptive Threshold: DP08, HLR10

Silent Threshold Encryption: RSY21 (i)

Silent Threshold Signatures: DCX+23, GJM+24



A Witness Encryption Solution

Can we build Silent Threshold Encryption given WE for NP?

(Extractable) Witness Encryption: Encrypt a message to a statement x.
Can decrypt iff you know w such that R; (x, w) = 1



A Witness Encryption Solution

Suppose we have a WE for the relation:

“I know 7 signatures from some subset of {pk;},cr,; on tag”

e = Withess e = statement



A Witness Encryption Solution

Suppose we have a WE for the relation:

“I know 7 signatures from some subset of {pk;},cr,; on tag”

e = withess e = statement
Compile WE — Silent Threshold Encryption:

-~ Setup: Each party sample’s pk; independently



A Witness Encryption Solution

Suppose we have a WE for the relation:

“I know 7 signatures from some subset of {pk;},cr,; on tag”

e = withess e = statement
Compile WE — Silent Threshold Encryption:

-~ Setup: Each party sample’s pk; independently
< Encrypt: WE.Encrypt msg with a random string fag



A Witness Encryption Solution

Suppose we have a WE for the relation:

“I know 7 signatures from some subset of {pk;},cr,; on tag”

e = withess e = statement
Compile WE — Silent Threshold Encryption:

-~ Setup: Each party sample’s pk; independently
- Encrypt: WE.Encrypt msg with a random string fag

- Decrypt: Partial decryptions are signatures on fag.



A Witness Encryption Solution

Suppose we have a WE for the relation:

“I know 7 signatures from some subset of {pk;},cr,; on tag”

e = withess e = statement
Compile WE — Silent Threshold Encryption:

-~ Setup: Each party sample’s pk; independently
- Encrypt: WE.Encrypt msg with a random string fag
- Decrypt: Partial decryptions are signatures on fag.

- Aggregate: Run WE.Decrypt, to recover msg



A Witness Encryption Solution

Suppose we have a WE for the relation:

“I know 7 signatures from some subset of {pk;},cr,; on tag”

e = Withess e = statement

BLS signatures

We build a concretely efficient WE for the relation above




What class of relations
support efficient WE?



Relations with “Linear” verifiers




Relations with “Linear” verifiers

Express the verification circuit for R;(x, w) = 1 as a set of PPEs.



Relations with “Linear” verifiers

Express the verification circuit for R;(x, w) = 1 as a set of PPEs.

He(xiv X;) - He(xl-, w;) - He(Wi, X;) - He(wl-, w;) = cy



Relations with “Linear” verifiers

Express the verification circuit for R;(x, w) = 1 as a set of PPEs.

He(xiv X;) - He(xi, w;) - He(wl-, X;) - He(wxj) = Cp



Relations with “Linear” verifiers

Express the verification circuit for R;(x, w) = 1 as a set of PPEs.

He(xiv X;) - He(xi, w;) - He(wl-, X;) - He(wxj) = Cp

Compiler [BC16]: Linear PPE — WE



WE for Silent Threshold Encryption

Problem reduced to building linear verifier for:

“| know 7 signatures from some subset of { pk;} on tag”

—> Silent Threshold Encryption!

Rest of the talk: building a linear verifier



Our ‘uction




Recall: BLS Signature



Recall: BLS Signature

© Public Key: g% € G,



Recall: BLS Signature

© Public Key: g € G,

© Signhature: o = H(m)Sk e G,



Recall: BLS Signature

> Public Key: g% € G,
> Signature: o0 = H(m)Sk e G,

- Verification: e(g, ) = e(pk, H(m))



Recall: BLS Signature

© Public Key: g% € G,
© Signature: 6 = H(m)Sk e G,

- Verification: e(g, 6) = e(pk, H(m))

Cool, but what’s so special?



Recall: BLS Signature

° Public Key: g**
© Signature: 6 = H(m)*

o Verification:

e(g,0) = e(pk, H(m))



Recall: BLS Signature

> Public Key: g%
© Signature: 6 = H(m)*

o Verification:

e(g,0) = e(pk, H(m))




Recall: BLS Signature

° Public Key: g**
© Signature: 6 = H(m)*

- Linear Verification: e(g, o) = e(pk, H(m))



N—

N’

Recall: BLS Signature

Public Key: g**
Signature: 6 = H(m)*
Linear Verification: e(g, o) = e(pk, H(m))

Aggregate Verification: Succinctly verify that m signed by all { pki}ie[n]



Recall: BLS Signature

° Public Key: g**
© Signature: 6 = H(m)*
- Linear Verification: e(g, 6) = e(pk, H(m))

© Aggregate Verification: Succinctly verify that m signed by all { pkl-} iln)

e(g. | | o) = e( | | pk Hm))

1€|n] 1€|n]



Recall: BLS Signature

> Public Key: g%
© Signature: 6 = H(m)*

~ Linear Verification: e(g, ) = e(pk, H(m))

~ Aggregate Verification: Succinctly verify that m signed by all { pkl-} iln)

e(g. | | o) = e( | | pk Hm))

1€|n] 1€|n]







n-out-of-n — t-out-of-n

“| know 1 signatures from some subset of {pk;} on tag”

High level plan:



n-out-of-n — t-out-of-n

“| know 1 signatures from some subset of {pk;} on tag”

High level plan:

1. Aggregate the subset of public keys that signhed

pkg = Hpkibi, where b, € {0,1}

1€|n]



n-out-of-n — t-out-of-n

“| know 1 signatures from some subset of {pk;} on tag”

High level plan:

1. Aggregate the subset of public keys that signhed

pkg = Hpkibi, where b, € {0,1}

1€|n]

2. \Verity signature under aggregate public key

e(g, o5) = e(pkg, H(tag))



n-out-of-n — r-out-of-n

“| know 1 signatures from some subset of {pk;} on tag”

High level plan:

1. Aggregate the subset of public keys that signhed

pkg = Hpkibi, where b, € {0,1}

1€|n]

2. \Verity signature under aggregate public key

e(g))



Sumcheck [BCR+19, CNR+22]



Sumcheck [BCR+19, CNR+22]

Given two polynomials f(x), i(x), prove that Z (1) - h(i) = .
i€H



Sumcheck [BCR+19, CNR+22]

Given two polynomials f(x), i(x), prove that Z (1) - h(i) = .
i€H

Sufficient to show there exist polynomials O, (x) and O, (x):



Sumcheck [BCR+19, CNR+22]

Given two polynomials f(x), i(x), prove that Z (1) - h(i) = .
i€H

Sufficient to show there exist polynomials O, (x) and O, (x):

f0) - h(x) = s/H| + O1(x) - x + O (x) - Zy(x)



Sumcheck [BCR+19, CNR+22]

Given two polynomials f(x), i(x), prove that Z (1) - h(i) = .
i€H

Sufficient to show there exist polynomials O, (x) and O, (x):
f) - h(x) =s/H| + O)(x) - x + O5(x) - Zy(x)

deg(O,(x)) < |H| -1



Sumcheck [BCR+19, CNR+22]

Given two polynomials f(x), i(x), prove that Z (1) - h(i) = .
i€H

Sufficient to show there exist polynomials O, (x) and O, (x):
f) - h(x) =s/H| + O)(x) - x + O5(x) - Zy(x)
deg(O,(x)) < |H| -1

deg(0,(x)) < deg(f(x) - h(x)) — | H|



Sumcheck [BCR+19, CNR+22]

Given two polynomials f(x), i(x), prove that 2 (1) - h(i) = .
i€H

Sufficient to show there exist polynomials O, (x) and O, (x):

- Linear verification given
dex(0,(0) <IH1 -

deg(0,(x)) < deg(f(x) - h(x)) — | H|



Aggregate via Sumcheck [DCX+23, GJM+24]



Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: SK(x)

=

® = sk



Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: SK(x)

Interpolate “Selector” Polynomial: B(x)



Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: SK(x)

Interpolate “Selector” Polynomial: B(x)

Run Sumcheck on SK(x) - B(x)!



Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: SK(x)

Interpolate “Selector” Polynomial: B(x)

Run Sumcheck on SK(x) - B(x)!
SK(x) - B(x) = aSK + O(x) - x + O,(x) - Zy(x)



Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: SK(x)

Interpolate “Selector” Polynomial: B(x)

Run Sumcheck on SK(x) - B(x)!

SK(x) - B(x) = aSK + O,(x) - x + O,(x) - Zs(x) %GCK via pairings
e(g", g°7) = e(PKg, g) - e(g97, g") - e(gL?, g%D)



Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: SK(x)

Interpolate “Selector” Polynomial: B(x)

Run Sumcheck on SK(x) - B(x)!

SK(x) - B(x) = aSK + O,(x) - x + O,(x) - Zs(x) %GCK via pairings
e(g%, g0 = e(PK | g) - e(2™, g% - e(g2?, g%



Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: SK(x)

Interpolate “Selector” Polynomial: B(x)

Run Sumcheck on SK(x) - B(x)!

SK(x) - B(x) = aSK + O,(x) - x + O,(x) - Zs(x) %GCK via pairings
e(gSK®, gBO)y e 2) - e(g2, g7) - (gL, g%

sket skt

Note: Doing this in the “exponent” need an additional O(n) terms (g*%, g*k% g*@" . . g%



n-out-of-n — t-out-of-n

“| know 7 signatures from any subset of n parties on fag”

_ b,
ka — H pki — Univariate Sumcheck [DCX+23, GJM+24]
1€ n]

e(g, 05) = e(pkg, H(tag))



n-out-of-n — t-out-of-n

“| know 7 signatures from any subset of n parties on fag”




n-out-of-n — t-out-of-n

“| know 7 signatures from any subset of n parties on fag”

| 1010, 70| 21t



n-out-of-n — t-out-of-n

“| know 7 signatures from any subset of n parties on fag”

| —— Univariate Sumcheck [DCX+23, GJM+24]

6(8, ag))
|10 |b; F0 | >t Can be reduced to a degree check (linear )




n-out-of-n — r-out-of-n

“| know 7 signatures from any subset of n parties on fag”

| —— Univariate Sumcheck [DCX+23, GJM+24]

(g, )
‘ {bi ‘ bi 75 0 ‘ > 1 Can be reduced to a degree check (linear &)

Compile to a witness encryption & ™e






Evaluation (512 Parties)

KeyGen [One-Time]: 125 ms (24 KB in size)
Encrypt: 7 ms, 768 bytes.
Partial Decrypt: 2.5 ms, 96 bytes

Reconstruct: 130 ms

https://github.com/guruvamsi-policharla/silent-threshold-encryption




Thank you!

Paper: ia.cr/2024/263

Blogpost:




