Threshold Encryption with Silent Setup

Sanjam Garg, Dimitris Kolonelos, Guru Vamsi Policharla, Mingyuan Wang

Goal: Encrypt a message to *n* parties, such that

- Goal: Encrypt a message to n parties, such that
- Can be decrypted by any t out of n parties

- Goal: Encrypt a message to n parties, such that
- Can be decrypted by any t out of n parties
- Semantic security holds against any subset of < t parties</p>

- Goal: Encrypt a message to n parties, such that
- Can be decrypted by any t out of n parties
- Semantic security holds against any subset of < t parties</p>
- \bigcirc |Ciphertext| = O(1)

- Goal: Encrypt a message to n parties, such that
- Can be decrypted by any t out of n parties
- Semantic security holds against any subset of < t parties</p>
- |Ciphertext| = O(1)
- Non-interactive decryption

Threshold ElGamal seems quite nice:

Threshold ElGamal seems quite nice: Short public key: $(g, h = g^{sk})$

Threshold ElGamal seems quite nice:

Short public key: $(g, h = g^{sk})$

Short ciphertexts: $(g^r, h^r \cdot M)$

Threshold ElGamal seems quite nice:

- Short public key: $(g, h = g^{sk})$
- Short ciphertexts: $(g^r, h^r \cdot M)$
- Short partial decryption: $g^{r[sk]}$

Threshold ElGamal seems quite nice:

- Short public key: $(g, h = g^{sk})$
- Short ciphertexts: $(g^r, h^r \cdot M)$
- Short partial decryption: $g^{r[sk]}$
- ... but it's not perfect
- $O(n^2)$ DKG for setup with each committee

Threshold ElGamal seems quite nice:

- Short public key: $(g, h = g^{sk})$
- Short ciphertexts: $(g^r, h^r \cdot M)$
- Short partial decryption: $g^{r[sk]}$
- ... but it's not perfect
- $O(n^2)$ DKG for setup with each committee

OKG more expensive in asynchronous settings + < n/3 corruption

Threshold ElGamal seems quite nice:

- Short public key: $(g, h = g^{sk})$
- Short ciphertexts: $(g^r, h^r \cdot M)$
- Short partial decryption: $g^{r[sk]}$
- ... but it's not perfect
- $O(n^2)$ DKG for setup with each committee
- Threshold fixed at the time of setup

OKG more expensive in asynchronous settings + < n/3 corruption

Threshold ElGamal seems quite nice:

- Short public key: $(g, h = g^{sk})$
- Short ciphertexts: $(g^r, h^r \cdot M)$
- Short partial decryption: $g^{r[sk]}$
- ... but it's not perfect
- $O(n^2)$ DKG for setup with each committee

Threshold fixed at the time of setup

eractive Setup $\rightarrow pk$

 pk_1

 pk_2

 sk_2

 sk_4

 pk_3

 sk_3

 pk_1

 pk_2

 sk_2

 sk_4

 pk_3

 sk_3

Deterministic Function:

 $\operatorname{Agg}(pk_1, pk_2, pk_3, pk_4, pk_5) \to pk$

 $ct \leftarrow Enc(m; pk)$ |ct| = O(1)

Deterministic Function: Agg $(pd_1, pd_2, pd_3) \rightarrow m$

 $pd_2 = \text{Dec}(\text{ct}, sk_2)$

Threshold ElGamal:

Threshold ElGamal:

- Needs a DKG
- Short public key: O(1)

- Long individual public key: O(n)
- Short aggregated key: O(1)

Threshold ElGamal:

- Needs a DKG
- Short public key: O(1)
- Short secret key: O(1)

- Long individual public key: O(n)
- Short aggregated key: O(1)
- Short secret key: O(1)

Threshold ElGamal:

- Needs a DKG
- Short public key: O(1)
- Short secret key: O(1)
- Short ciphertexts: 1G + |key|

- Long individual public key: O(n)
- Short aggregated key: O(1)
- Short secret key: O(1)
- Short ciphertexts: $2G_1 + 7G_2 + |key|$

Threshold ElGamal:

- Needs a DKG
- Short public key: O(1)
- Short secret key: O(1)
- Short ciphertexts: 1G + |key|
- Short partial decryption: 1G

- Long individual public key: O(n)
- Short aggregated key: O(1)
- Short secret key: O(1)
- Short ciphertexts: $2G_1 + 7G_2 + |key|$
- Short partial decryption: $1G_2$

Threshold ElGamal:

- Needs a DKG
- Short public key: O(1)
- Short secret key: O(1)
- Short ciphertexts: 1G + |key|
- Short partial decryption: 1G \bigcirc
- **Reduces to DDH**

- Long individual public key: O(n)
- Short aggregated key: O(1)
- Short secret key: O(1)
- Short ciphertexts: $2G_1 + 7G_2 + |key|$
- Short partial decryption: $1G_2$
- Relies on GGM

 (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14, FWW23, KMW23, GLWW23

- (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14, FWW23, KMW23, GLWW23
- Adaptive Threshold: DP08, HLR10

- (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14, FWW23, KMW23, GLWW23
- Adaptive Threshold: DP08, HLR10
- Silent Threshold Encryption: RSY21 (*i*0)

- (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14, FWW23, KMW23, GLWW23
- Adaptive Threshold: DP08, HLR10
- Silent Threshold Encryption: RSY21 (*i*0)
- Silent Threshold Signatures: DCX+23, GJM+24

Can we build Silent Threshold Encryption given WE for NP?

(Extractable) Witness Encryption: Encrypt a message to a statement x. Can decrypt iff you know w such that $R_I(x, w) = 1$

Suppose we have a WE for the relation:

- "I know *t* signatures from some subset of $\{pk_i\}_{i \in [n]}$ on *tag*"
 - \bullet = witness \bullet = statement

Suppose we have a WE for the relation:

- \bullet = witness \bullet = statement
- Compile WE \rightarrow Silent Threshold Encryption:
- Setup: Each party sample's pk_i independently

"I know *t* signatures from some subset of $\{pk_i\}_{i \in [n]}$ on *tag*"

Suppose we have a WE for the relation:

- \bullet = witness \bullet = statement
- Compile WE \rightarrow Silent Threshold Encryption:
- Setup: Each party sample's pk_i independently
- Encrypt: WE.Encrypt msg with a random string tag

"I know *t* signatures from some subset of $\{pk_i\}_{i \in [n]}$ on *tag*"

Suppose we have a WE for the relation:

- \bullet = witness \bullet = statement
- Compile WE \rightarrow Silent Threshold Encryption:
- Setup: Each party sample's pk_i independently
- Encrypt: WE.Encrypt msg with a random string tag
- **Decrypt:** Partial decryptions are signatures on *tag*.

"I know *t* signatures from some subset of $\{pk_i\}_{i \in [n]}$ on *tag*"
A Witness Encryption Solution

Suppose we have a WE for the relation:

- \bullet = witness \bullet = statement
- Compile WE \rightarrow Silent Threshold Encryption:
- Setup: Each party sample's pk_i independently
- Encrypt: WE.Encrypt msg with a random string tag
- **Decrypt:** Partial decryptions are signatures on tag. \bigcirc
- Aggregate: Run WE.Decrypt, to recover msg \bigcirc

"I know *t* signatures from some subset of $\{pk_i\}_{i \in [n]}$ on *tag*"

A Witness Encryption Solution

Suppose we have a WE for the relation:

BLS signatures

- "I know *t* signatures from some subset of $\{pk_i\}_{i \in [n]}$ on *tag*"
 - \bullet = witness \bullet = statement

We build a <u>concretely efficient</u> WE for the relation above

What class of relations support <u>efficient WE</u>?

Relations with "Linear" verifiers

Relations with "Linear" verifiers

Express the verification circuit for $R_L(x, w) = 1$ as a set of PPEs.

Express the verification circuit for $R_I(x, w) = 1$ as a set of PPEs.

$$\prod e(x_i, x_j) \cdot \prod e(x_i, w_j)$$

Relations with "Linear" verifiers

$\cdot \qquad e(w_i, x_j) \cdot \qquad e(w_i, w_j) = c_T$

Express the verification circuit for $R_I(x, w) = 1$ as a set of PPEs.

$$\prod e(x_i, x_j) \cdot \prod e(x_i, w_j)$$

Relations with "Linear" verifiers

$\cdot \prod e(w_i, x_j) \cdot \prod e(w_i) = c_T$

Express the verification circuit for $R_I(x, w) = 1$ as a set of PPEs.

$$\prod e(x_i, x_j) \cdot \prod e(x_i, w_j)$$

Relations with "Linear" verifiers

$\cdot \prod e(w_i, x_j) \cdot \prod e(w_i, y_j) = c_T$

Compiler [BC16]: Linear PPE \rightarrow WE

WE for Silent Threshold Encryption

Problem reduced to building linear verifier for:

"I know *t* signatures from some subset of {*pk_i*} on *tag*"

Rest of the talk: building a linear verifier

⇒ Silent Threshold Encryption!

Our Construction

• Public Key: $g^{sk} \in \mathbb{G}_1$

- Public Key: $g^{sk} \in \mathbb{G}_1$
- Signature: $\sigma = H(m)^{sk} \in \mathbb{G}_2$

- Public Key: $g^{sk} \in \mathbb{G}_1$
- Signature: $\sigma = H(m)^{sk} \in \mathbb{G}_{2}$
- Verification: $e(g, \sigma) = e(pk, H(m))$

Public Key: $g^{sk} \in \mathbb{G}_1$

Signature: $\sigma = H(m)^{sk} \in \mathbb{G}_2$

• Verification: $e(g, \sigma) = e(pk, H(m))$

Cool, but what's so special?

- Public Key: g^{sk}
- Signature: $\sigma = H(m)^{sk}$
- Verification:

 $e(g,\sigma) = e(pk, H(m))$

- Public Key: g^{sk}
- Signature: $\sigma = H(m)^{sk}$
- Verification:

Linear verifier for n = 1: "I know a signature σ under pk on m"

 $e(g,\sigma) = e(pk, H(m))$

- Public Key: g^{sk}
- Signature: $\sigma = H(m)^{sk}$
- Linear Verification: $e(g, \sigma) = e(pk, H(m))$

- Public Key: g^{sk}
- Signature: $\sigma = H(m)^{sk}$
- Linear Verification: $e(g, \sigma) = e(pk, H(m))$

• Aggregate Verification: Succinctly verify that m signed by all $\{pk_i\}_{i \in [n]}$

- Public Key: g^{sk}
- Signature: $\sigma = H(m)^{sk}$
- Linear Verification: $e(g, \sigma) = e(pk, H(m))$
- Aggregate Verification: Succinctly verify that *m* signed by all $\{pk_i\}_{i \in [n]}$

$$e(g, \prod_{i \in [n]} \sigma_i) = e(\prod_{i \in [n]} pk_i, H(m))$$

- Public Key: g^{sk}
- Signature: $\sigma = H(m)^{sk}$
- Linear Verification: $e(g, \sigma) = e(pk, H(m))$

$$e(g, \prod_{i \in [n]} \sigma_i) = e(\prod_{i \in [n]} pk_i, H(m))$$

Linear verifier for t = n: "I know a signatures $\{\sigma_i\}$ from all $\{pk_i\}_{i \in [n]}$ on m"

• Aggregate Verification: Succinctly verify that m signed by all $\{pk_i\}_{i \in [n]}$

$n-out-of-n \rightarrow t-out-of-n$

High level plan:

$n-out-of-n \rightarrow t-out-of-n$

"I know *t* signatures from some subset of {*pk_i*} on *tag*"

"I know *t* signatures from some subset of {*pk_i*} on *tag*"

High level plan:

1. Aggregate the subset of public keys that signed

$$pk_{S} = \prod_{i \in [n]} pk_{i}$$

$n-out-of-n \rightarrow t-out-of-n$

 $b_{i}^{b_{i}}$, where $b_{i} \in \{0,1\}$

"I know *t* signatures from *some* subset of {*pk_i*} on *tag*"

High level plan:

1. Aggregate the subset of public keys that signed

$$pk_{S} = \prod_{i \in [n]} pk_{i}$$

2. Verify signature under aggregate public key

$$e(g, \sigma_{\rm S}) =$$

$n-out-of-n \rightarrow t-out-of-n$

- b_i , where $b_i \in \{0,1\}$
- $= e(pk_S, H(tag))$

"I know *t* signatures from some subset of {*pk_i*} on *tag*"

High level plan:

1. Aggregate the subset of public keys that signed

$$pk_{S} = \prod_{i \in [n]} pk_{i}$$

2. Verify signature under aggregate public key

$n-out-of-n \rightarrow t-out-of-n$

 $b_{i}^{b_{i}}$, where $b_{i} \in \{0,1\}$

Given two polynomials f(x), h(x), prove that $\sum f(i) \cdot h(i) = s$.

$i \in H$

Given two polynomials f(x), h(x), prove that $\sum f(i) \cdot h(i) = s$.

Sufficient to show there exist polynomials $Q_1(x)$ and $Q_2(x)$:

$i \in H$

Given two polynomials f(x), h(x), prove that $\sum f(i) \cdot h(i) = s$.

Sufficient to show there exist polynomials $Q_1(x)$ and $Q_2(x)$:

$i \in H$

 $f(x) \cdot h(x) = s/|H| + Q_1(x) \cdot x + Q_2(x) \cdot Z_H(x)$

Given two polynomials f(x), h(x), prove that $\sum f(i) \cdot h(i) = s$.

Sufficient to show there exist polynomials $Q_1(x)$ and $Q_2(x)$:

$i \in H$

 $f(x) \cdot h(x) = s/|H| + Q_1(x) \cdot x + Q_2(x) \cdot Z_H(x)$

 $\deg(Q_1(x)) < |H| - 1$

Given two polynomials f(x), h(x), prove that $\sum f(i) \cdot h(i) = s$.

Sufficient to show there exist polynomials $Q_1(x)$ and $Q_2(x)$:

$i \in H$

- $f(x) \cdot h(x) = s/|H| + Q_1(x) \cdot x + Q_2(x) \cdot Z_H(x)$
 - $\deg(Q_1(x)) < |H| 1$
 - $\deg(\underline{Q_2(x)}) < \deg(f(x) \cdot h(x)) |H|$

Given two polynomials f(x), h(x), prove that $\sum f(i) \cdot h(i) = s$.

Sufficient to show there exist polynomials $Q_1(x)$ and $Q_2(x)$:

$$e(g^{f(\tau)}, g^{h(\tau)}) = e(g^{s/|H|}, g) \cdot e(g^{Q_1(\tau)}, g^{\tau}) \cdot e(g^{Q_2(\tau)}, g^{Z_H(\tau)})$$

 $deg(Q_1(x))$

$i \in H$

$$(x)) < |H| - 1$$

Linear verification given a powers of tau CRS!

 $\deg(Q_2(x)) < \deg(f(x) \cdot h(x)) - |H|$

Aggregate via Sumcheck [DCX+23, GJM+24]

Aggregate via Sumcheck [DCX+23, GJM+24]

Aggregate via Sumcheck [DCX+23, GJM+24]

Run Sumcheck on $SK(x) \cdot B(x)!$

 $s = sk_i$

 $\bullet = b_i$

- Run Sumcheck on $SK(x) \cdot B(x)!$
- $\mathsf{SK}(x) \cdot \mathsf{B}(x) = aSK + Q_1(x) \cdot x + Q_2(x) \cdot Z_H(x)$

 $b = sk_i$

Run Sumcheck on $SK(x) \cdot B(x)!$ Check via pairings! $SK(x) \cdot B(x) = aSK + Q_1(x) \cdot x + Q_2(x) \cdot Z_H(x)$ $e(g^{\mathsf{SK}(\tau)}, g^{\mathsf{B}(\tau)}) = e(PK_{\mathsf{S}}, g) \cdot e(g^{Q_{1}(\tau)}, g^{\tau}) \cdot e(g^{Q_{2}(\tau)}, g^{Z_{H}(\tau)}) \checkmark$

 $\mathbf{s} = sk_i$

Check via pairings! $\mathsf{SK}(x) \cdot \mathsf{B}(x) = aSK + Q_1(x) \cdot x + Q_2(x) \cdot Z_H(x)$ $e(g^{\mathsf{SK}(\tau)}, g^{\mathsf{B}(\tau)}) = e(PK_{S} | g) \cdot e(g^{Q_{1}(\tau)}, g^{\tau}) \cdot e(g^{Q_{2}(\tau)}, g^{Z_{H}(\tau)}) \checkmark$

 $\mathbf{s} = sk_i$

 $\bullet = b_i$

Note: Doing this in the "exponent" need an additional O(n) terms $(g^{sk_i}, g^{sk_i \cdot \tau}, g^{sk_i \cdot \tau^2}, \dots, g^{sk_i \cdot \tau^n})$

Check via pairings!

$$pk_{S} = \prod_{i \in [n]} pk_{i}^{b_{i}} \longrightarrow Univ$$

 $e(g, \sigma_{S}) = e(pk_{S}, H(tag))$

$n-out-of-n \rightarrow t-out-of-n$

variate Sumcheck [DCX+23, GJM+24]

$n-out-of-n \rightarrow t-out-of-n$

Univariate Sumcheck [DCX+23, GJM+24]

$n-out-of-n \rightarrow t-out-of-n$

Univariate Sumcheck [DCX+23, GJM+24]

$n-out-of-n \rightarrow t-out-of-n$

Univariate Sumcheck [DCX+23, GJM+24]

Can be reduced to a degree check (linear <a>()

$n-out-of-n \rightarrow t-out-of-n$

Univariate Sumcheck [DCX+23, GJM+24]

Can be reduced to a degree check (linear <a>()

Evaluation

KeyGen [One-Time]: 125 ms (24 KB in size)

Encrypt: 7 ms, 768 bytes.

Partial Decrypt: 2.5 ms, 96 bytes

Reconstruct: 130 ms

<u>https://github.com/guruvamsi-policharla/silent-threshold-encryption</u>

Evaluation (512 Parties)

Thank you!

Paper: ia.cr/2024/263

Blogpost:

