
Threshold Encryption with
Silent Setup

Sanjam Garg, Dimitris Kolonelos, Guru Vamsi Policharla, Mingyuan Wang

Threshold Encryption
Goal: Encrypt a message to parties, such that n

Threshold Encryption
Goal: Encrypt a message to parties, such that n

Can be decrypted by any out of partiest n

Threshold Encryption
Goal: Encrypt a message to parties, such that n

Can be decrypted by any out of partiest n

Semantic security holds against any subset of parties< t

Threshold Encryption
Goal: Encrypt a message to parties, such that n

Can be decrypted by any out of partiest n

Semantic security holds against any subset of parties< t

|Ciphertext| = O(1)

Threshold Encryption
Goal: Encrypt a message to parties, such that n

Can be decrypted by any out of partiest n

Semantic security holds against any subset of parties< t

|Ciphertext| = O(1)

Non-interactive decryption

Textbook Solution

Threshold ElGamal seems quite nice:

Textbook Solution

Threshold ElGamal seems quite nice:
Short public key: (g, h = gsk)

Textbook Solution

Threshold ElGamal seems quite nice:
Short public key: (g, h = gsk)
Short ciphertexts: (gr, hr ⋅ M)

Textbook Solution

Threshold ElGamal seems quite nice:
Short public key: (g, h = gsk)
Short ciphertexts: (gr, hr ⋅ M)
Short partial decryption: gr[sk]

Textbook Solution

Threshold ElGamal seems quite nice:
Short public key: (g, h = gsk)
Short ciphertexts: (gr, hr ⋅ M)
Short partial decryption: gr[sk]

… but it’s not perfect
 DKG for setup with each committeeO(n2)

Textbook Solution

Threshold ElGamal seems quite nice:
Short public key: (g, h = gsk)
Short ciphertexts: (gr, hr ⋅ M)
Short partial decryption: gr[sk]

… but it’s not perfect
 DKG for setup with each committeeO(n2)

DKG more expensive in asynchronous settings + corruption< n/3

Textbook Solution

Threshold ElGamal seems quite nice:
Short public key: (g, h = gsk)
Short ciphertexts: (gr, hr ⋅ M)
Short partial decryption: gr[sk]

… but it’s not perfect
 DKG for setup with each committeeO(n2)

DKG more expensive in asynchronous settings + corruption< n/3
Threshold fixed at the time of setup

Textbook Solution

Threshold ElGamal seems quite nice:
Short public key: (g, h = gsk)
Short ciphertexts: (gr, hr ⋅ M)
Short partial decryption: gr[sk]

… but it’s not perfect
 DKG for setup with each committeeO(n2)

DKG more expensive in asynchronous settings + corruption< n/3
Threshold fixed at the time of setup

Almost universal issue

Today: Silent Threshold Encryption

Threshold Encryption

Interactive Setup → pk

sk2

sk3sk4

sk5

sk1

Silent Threshold Encryption

Interactive Setup → pk

sk2

sk3sk4

sk5

sk1

Silent Threshold Encryption

pk2

pk3pk4

pk5

pk1

sk2

sk3sk4

sk5

sk1

Silent Threshold Encryption

pk2

pk3pk4

pk5

pk1

sk2

sk3sk4

sk5

sk1

Silent Threshold Encryption

pk2

pk3pk4

pk5

pk1

Deterministic Function:
Agg(pk1, pk2, pk3, pk4, pk5) → pksk2

sk3sk4

sk5

sk1

Silent Threshold Encryption

pk
ct ← Enc(m; pk)

|ct | = O(1)

Silent Threshold Encryption

pd2 = Dec(ct, sk2)

pd1 = Dec(ct, sk1)

pd3 = Dec(ct, sk3)

Deterministic Function:
Agg(pd1, pd2, pd3) → m

How do we compare?

Threshold ElGamal: Silent Threshold:

How do we compare?

Threshold ElGamal:
Needs a DKG
Short public key: O(1)

Silent Threshold:
Long individual public key: O(n)
Short aggregated key: O(1)

How do we compare?

Threshold ElGamal:
Needs a DKG
Short public key: O(1)
Short secret key: O(1)

Silent Threshold:
Long individual public key: O(n)
Short aggregated key: O(1)
Short secret key: O(1)

How do we compare?

Threshold ElGamal:
Needs a DKG
Short public key: O(1)
Short secret key: O(1)
Short ciphertexts: 1G + |key |

Silent Threshold:
Long individual public key: O(n)
Short aggregated key: O(1)
Short secret key: O(1)
Short ciphertexts: 2G1 + 7G2 + |key |

How do we compare?

Threshold ElGamal:
Needs a DKG
Short public key: O(1)
Short secret key: O(1)
Short ciphertexts: 1G + |key |
Short partial decryption: 1G

Silent Threshold:
Long individual public key: O(n)
Short aggregated key: O(1)
Short secret key: O(1)
Short ciphertexts: 2G1 + 7G2 + |key |
Short partial decryption: 1G2

How do we compare?

Threshold ElGamal:
Needs a DKG
Short public key: O(1)
Short secret key: O(1)
Short ciphertexts: 1G + |key |
Short partial decryption: 1G
Reduces to DDH

Silent Threshold:
Long individual public key: O(n)
Short aggregated key: O(1)
Short secret key: O(1)
Short ciphertexts: 2G1 + 7G2 + |key |
Short partial decryption: 1G2
Relies on GGM

Related Work

• (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14,
FWW23, KMW23, GLWW23

Related Work

• (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14,
FWW23, KMW23, GLWW23

• Adaptive Threshold: DP08, HLR10

Related Work

• (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14,
FWW23, KMW23, GLWW23

• Adaptive Threshold: DP08, HLR10

• Silent Threshold Encryption: RSY21 ()i𝒪

Related Work

• (Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14,
FWW23, KMW23, GLWW23

• Adaptive Threshold: DP08, HLR10

• Silent Threshold Encryption: RSY21 ()i𝒪

• Silent Threshold Signatures: DCX+23, GJM+24

A Witness Encryption Solution

Can we build Silent Threshold Encryption given WE for NP?

(Extractable) Witness Encryption: Encrypt a message to a statement .

Can decrypt iff you know such that

x
w RL(x, w) = 1

A Witness Encryption Solution
Suppose we have a WE for the relation:

“I know signatures from some subset of on ”t {pki}i∈[n] tag
= witness = statement

A Witness Encryption Solution
Suppose we have a WE for the relation:

“I know signatures from some subset of on ”t {pki}i∈[n] tag

Compile WE Silent Threshold Encryption:→
Setup: Each party sample’s independently pki

= witness = statement

A Witness Encryption Solution
Suppose we have a WE for the relation:

“I know signatures from some subset of on ”t {pki}i∈[n] tag

Compile WE Silent Threshold Encryption:→
Setup: Each party sample’s independently pki

Encrypt: WE.Encrypt with a random string 𝗆𝗌𝗀 tag

= witness = statement

A Witness Encryption Solution
Suppose we have a WE for the relation:

“I know signatures from some subset of on ”t {pki}i∈[n] tag

Compile WE Silent Threshold Encryption:→
Setup: Each party sample’s independently pki

Encrypt: WE.Encrypt with a random string 𝗆𝗌𝗀 tag
Decrypt: Partial decryptions are signatures on .tag

= witness = statement

A Witness Encryption Solution
Suppose we have a WE for the relation:

“I know signatures from some subset of on ”t {pki}i∈[n] tag

Compile WE Silent Threshold Encryption:→
Setup: Each party sample’s independently pki

Encrypt: WE.Encrypt with a random string 𝗆𝗌𝗀 tag
Decrypt: Partial decryptions are signatures on .tag
Aggregate: Run WE.Decrypt, to recover 𝗆𝗌𝗀

= witness = statement

A Witness Encryption Solution
Suppose we have a WE for the relation:

“I know signatures from some subset of on ”t {pki}i∈[n] tag
= witness = statement

 We build a concretely efficient WE for the relation above

BLS signatures

What class of relations
support efficient WE?

Relations with “Linear” verifiers

Relations with “Linear” verifiers

Express the verification circuit for as a set of PPEs.RL(x, w) = 1

Relations with “Linear” verifiers

Express the verification circuit for as a set of PPEs.RL(x, w) = 1

∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) ⋅ ∏e(wi, wj) = cT

Relations with “Linear” verifiers

Express the verification circuit for as a set of PPEs.RL(x, w) = 1

∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) ⋅ ∏e(wi, wj) = cT

Relations with “Linear” verifiers

Express the verification circuit for as a set of PPEs.RL(x, w) = 1

∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) ⋅ ∏e(wi, wj) = cT

Compiler [BC16]: Linear PPE WE→

Problem reduced to building linear verifier for:

 Silent Threshold Encryption!

Rest of the talk: building a linear verifier 

⟹

“I know signatures from some subset of on ”t {pki} tag

WE for Silent Threshold Encryption

Our Construction

Recall: BLS Signature

Recall: BLS Signature
Public Key: gsk ∈ 𝔾1

Recall: BLS Signature
Public Key: gsk ∈ 𝔾1

Signature: σ = H(m)sk ∈ 𝔾2

Recall: BLS Signature
Public Key: gsk ∈ 𝔾1

Signature: σ = H(m)sk ∈ 𝔾2

Verification: e(g, σ) = e(pk, H(m))

Recall: BLS Signature
Public Key: gsk ∈ 𝔾1

Signature: σ = H(m)sk ∈ 𝔾2

Verification: e(g, σ) = e(pk, H(m))

Cool, but what’s so special?

Recall: BLS Signature
Public Key:

Signature:

Verification:

gsk

σ = H(m)sk

e(g, σ) = e(pk, H(m))

Recall: BLS Signature
Public Key:

Signature:

Verification:

gsk

σ = H(m)sk

Linear verifier for : “I know a signature under on ”n = 1 σ pk m

e(g, σ) = e(pk, H(m))

Recall: BLS Signature
Public Key: gsk

Signature: σ = H(m)sk

Linear Verification: e(g, σ) = e(pk, H(m))

Recall: BLS Signature
Public Key: gsk

Signature: σ = H(m)sk

Linear Verification: e(g, σ) = e(pk, H(m))

Aggregate Verification: Succinctly verify that signed by all m {pki}i∈[n]

Recall: BLS Signature
Public Key: gsk

Signature: σ = H(m)sk

Linear Verification: e(g, σ) = e(pk, H(m))

Aggregate Verification: Succinctly verify that signed by all m {pki}i∈[n]

e(g, ∏
i∈[n]

σi) = e(∏
i∈[n]

pki, H(m))

Recall: BLS Signature
Public Key: gsk

Signature: σ = H(m)sk

Linear Verification: e(g, σ) = e(pk, H(m))

Aggregate Verification: Succinctly verify that signed by all m {pki}i∈[n]

e(g, ∏
i∈[n]

σi) = e(∏
i∈[n]

pki, H(m))

Linear verifier for : “I know a signatures from all on ”t = n {σi} {pki}i∈[n] m

-out-of- -out-of-n n → t n

-out-of- -out-of-n n → t n
“I know signatures from some subset of on ”t {pki} tag

High level plan:

-out-of- -out-of-n n → t n
“I know signatures from some subset of on ”t {pki} tag

High level plan:

1. Aggregate the subset of public keys that signed

, where pkS = ∏
i∈[n]

pki
bi bi ∈ {0,1}

-out-of- -out-of-n n → t n
“I know signatures from some subset of on ”t {pki} tag

High level plan:

1. Aggregate the subset of public keys that signed

, where pkS = ∏
i∈[n]

pki
bi bi ∈ {0,1}

2. Verify signature under aggregate public key

e(g, σ𝖲) = e(pkS, H(tag))

-out-of- -out-of-n n → t n
“I know signatures from some subset of on ”t {pki} tag

High level plan:

1. Aggregate the subset of public keys that signed

, where pkS = ∏
i∈[n]

pki
bi bi ∈ {0,1}

2. Verify signature under aggregate public key

e(g, σ𝖲) = e(pkS, H(tag))Linear

Sumcheck [BCR+19, CNR+22]

Given two polynomials , prove that .f(x), h(x) ∑
i∈H

f(i) ⋅ h(i) = s

Sumcheck [BCR+19, CNR+22]

Given two polynomials , prove that .f(x), h(x) ∑
i∈H

f(i) ⋅ h(i) = s

Sufficient to show there exist polynomials and :Q1(x) Q2(x)

Sumcheck [BCR+19, CNR+22]

Given two polynomials , prove that .f(x), h(x) ∑
i∈H

f(i) ⋅ h(i) = s

Sufficient to show there exist polynomials and :Q1(x) Q2(x)

f(x) ⋅ h(x) = s/ |H | + Q1(x) ⋅ x + Q2(x) ⋅ ZH(x)

Sumcheck [BCR+19, CNR+22]

Given two polynomials , prove that .f(x), h(x) ∑
i∈H

f(i) ⋅ h(i) = s

Sufficient to show there exist polynomials and :Q1(x) Q2(x)

f(x) ⋅ h(x) = s/ |H | + Q1(x) ⋅ x + Q2(x) ⋅ ZH(x)

 deg(Q1(x)) < |H | − 1

Sumcheck [BCR+19, CNR+22]

Given two polynomials , prove that .f(x), h(x) ∑
i∈H

f(i) ⋅ h(i) = s

Sufficient to show there exist polynomials and :Q1(x) Q2(x)

f(x) ⋅ h(x) = s/ |H | + Q1(x) ⋅ x + Q2(x) ⋅ ZH(x)

 deg(Q1(x)) < |H | − 1

deg(Q2(x)) < deg(f(x) ⋅ h(x)) − |H |

Sumcheck [BCR+19, CNR+22]

Sumcheck [BCR+19, CNR+22]
Given two polynomials , prove that .

Sufficient to show there exist polynomials and :

f(x), h(x) ∑
i∈H

f(i) ⋅ h(i) = s

Q1(x) Q2(x)

e(gf(τ), gh(τ)) = e(gs/|H|, g) ⋅ e(gQ1(τ), gτ) ⋅ e(gQ2(τ), gZH(τ))

deg(Q1(x)) < |H | − 1

deg(Q2(x)) < deg(f(x) ⋅ h(x)) − |H |

Linear verification given 
a powers of tau CRS!

Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: 𝖲𝖪(𝗑)
= ski

Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: 𝖲𝖪(𝗑)

Interpolate “Selector” Polynomial: 𝖡(x)

y=1

y=0

= ski

= bi

Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: 𝖲𝖪(𝗑)

Interpolate “Selector” Polynomial: 𝖡(x)

Run Sumcheck on !𝖲𝖪(x) ⋅ 𝖡(x)

y=1

y=0

= ski

= bi

Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: 𝖲𝖪(𝗑)

Interpolate “Selector” Polynomial: 𝖡(x)

Run Sumcheck on !𝖲𝖪(x) ⋅ 𝖡(x)
𝖲𝖪(x) ⋅ 𝖡(x) = aSK + Q1(x) ⋅ x + Q2(x) ⋅ ZH(x)

y=1

y=0

= ski

= bi

Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: 𝖲𝖪(𝗑)

Interpolate “Selector” Polynomial: 𝖡(x)

Run Sumcheck on !𝖲𝖪(x) ⋅ 𝖡(x)
𝖲𝖪(x) ⋅ 𝖡(x) = aSK + Q1(x) ⋅ x + Q2(x) ⋅ ZH(x)

y=1

y=0

= ski

= bi

e(g𝖲𝖪(τ), g𝖡(τ)) = e(PKS, g) ⋅ e(gQ1(τ), gτ) ⋅ e(gQ2(τ), gZH(τ))

Check via pairings!

Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: 𝖲𝖪(𝗑)

Interpolate “Selector” Polynomial: 𝖡(x)

Run Sumcheck on !𝖲𝖪(x) ⋅ 𝖡(x)
𝖲𝖪(x) ⋅ 𝖡(x) = aSK + Q1(x) ⋅ x + Q2(x) ⋅ ZH(x)

y=1

y=0

= ski

= bi

e(g𝖲𝖪(τ), g𝖡(τ)) = e(PKS, g) ⋅ e(gQ1(τ), gτ) ⋅ e(gQ2(τ), gZH(τ))

Check via pairings!

Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: 𝖲𝖪(𝗑)

Interpolate “Selector” Polynomial: 𝖡(x)

Run Sumcheck on !𝖲𝖪(x) ⋅ 𝖡(x)

Note: Doing this in the “exponent” need an additional terms O(n) (gski, gski⋅τ, gski⋅τ2, …, gski⋅τn)

𝖲𝖪(x) ⋅ 𝖡(x) = aSK + Q1(x) ⋅ x + Q2(x) ⋅ ZH(x)

y=1

y=0

= ski

= bi

e(g𝖲𝖪(τ), g𝖡(τ)) = e(PKS, g) ⋅ e(gQ1(τ), gτ) ⋅ e(gQ2(τ), gZH(τ))

Check via pairings!

Aggregate via Sumcheck [DCX+23, GJM+24]

-out-of- -out-of-n n → t n

pkS = ∏
i∈[n]

pki
bi

e(g, σ𝖲) = e(pkS, H(tag))

“I know signatures from any subset of parties on ”t n tag

Univariate Sumcheck [DCX+23, GJM+24]

-out-of- -out-of-n n → t n

pkS = ∏
i∈[n]

pki
bi

e(g, σ𝖲) = e(pkS, H(tag))

“I know signatures from any subset of parties on ”t n tag

Univariate Sumcheck [DCX+23, GJM+24]

Linear

|{bi |bi ≠ 0 ∣ ≥ t

-out-of- -out-of-n n → t n

pkS = ∏
i∈[n]

pki
bi

e(g, σ𝖲) = e(pkS, H(tag))

“I know signatures from any subset of parties on ”t n tag

Univariate Sumcheck [DCX+23, GJM+24]

Linear

|{bi |bi ≠ 0 ∣ ≥ t Can be reduced to a degree check (linear 😃)

-out-of- -out-of-n n → t n

pkS = ∏
i∈[n]

pki
bi

e(g, σ𝖲) = e(pkS, H(tag))

“I know signatures from any subset of parties on ”t n tag

Univariate Sumcheck [DCX+23, GJM+24]

Linear

|{bi |bi ≠ 0 ∣ ≥ t Can be reduced to a degree check (linear 😃)

-out-of- -out-of-n n → t n

pkS = ∏
i∈[n]

pki
bi

e(g, σ𝖲) = e(pkS, H(tag))

Compile to a witness encryption 😃🍾

“I know signatures from any subset of parties on ”t n tag

Univariate Sumcheck [DCX+23, GJM+24]

Linear

Evaluation

Evaluation (512 Parties)

KeyGen [One-Time]: 125 ms (24 KB in size)

Encrypt: 7 ms, 768 bytes.

Partial Decrypt: 2.5 ms, 96 bytes

Reconstruct: 130 ms

https://github.com/guruvamsi-policharla/silent-threshold-encryption

Thank you!

Blogpost:

Paper: ia.cr/2024/263

