Threshold Encryption with
Silent Setup

Sanjam Garg, Dimitris Kolonelos, Guru Vamsi Policharla, Mingyuan Wang




Threshold Encryption

Goal: Encrypt a message to n parties, such that



Threshold Encryption

Goal: Encrypt a message to n parties, such that

- Can be decrypted by any 7 out of n parties



Threshold Encryption

Goal: Encrypt a message to n parties, such that
- Can be decrypted by any 7 out of n parties

- Semantic security holds against any subset of < 7 parties



Threshold Encryption

Goal: Encrypt a message to n parties, such that
- Can be decrypted by any 7 out of n parties
- Semantic security holds against any subset of < 7 parties

-~ |Ciphertext| = O(1)



Threshold Encryption

Goal: Encrypt a message to n parties, such that

- Can be decrypted by any 7 out of n parties

- Semantic security holds against any subset of < 7 parties
-~ |Ciphertext| = O(1)

- Non-interactive decryption
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Textbook Solution

Threshold ElGamal seems quite nice:
~ Short public key: (g, h = g*%)

~ Short ciphertexts: (g', h" - M) Almost universal issue
© Short partial decryption: gI¥] Today: Silent Threshold Encryption

.. but it’s not perfect

O(n”) DKG for setup with each committee

DKG more expensive in asynchronous settings + < 7/3 corruption
Threshold fixed at the time of setup
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Silent Threshold Encryption
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How do we compare?

Threshold ElGamal: Silent Threshold:
> Needs a DKG ~ Long individual public key: O(n)
~ Short public key: O(1) ~ Short aggregated key: O(1)
~ Short secret key: O(1) - Short secret key: O(1)
~ Short ciphertexts: 1G + | key | -~ Short ciphertexts: 2G, + 7G, + | key |
- Short partial decryption: 1G -~ Short partial decryption: 1G,

o Reduces to DDH o Relies on GGM
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Related Work

(Flexible) Distributed Broadcast Encryption: FN94, WQZD10, BZ14,
FWW23, KMW23, GLWW23

Adaptive Threshold: DP08, HLR10

Silent Threshold Encryption: RSY21 (i)

Silent Threshold Signatures: DCX+23, GJM+24
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e = withess e = statement
Compile WE — Silent Threshold Encryption:

-~ Setup: Each party sample’s pk; independently
- Encrypt: WE.Encrypt msg with a random string fag
- Decrypt: Partial decryptions are signatures on fag.

- Aggregate: Run WE.Decrypt, to recover msg



A Witness Encryption Solution

Suppose we have a WE for the relation:

“I know 7 signatures from some subset of {pk;},cr,; on tag”

e = Withess e = statement

BLS signatures

We build a concretely efficient WE for the relation above
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support efficient WE?
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Relations with “Linear” verifiers

Express the verification circuit for R;(x, w) = 1 as a set of PPEs.

He(xiv X;) - He(xi, w;) - He(wl-, X;) - He(wxj) = Cp

Compiler [BC16]: Linear PPE — WE



WE for Silent Threshold Encryption

Problem reduced to building linear verifier for:

“| know 7 signatures from some subset of { pk;} on tag”

—> Silent Threshold Encryption!

Rest of the talk: building a linear verifier



Our ‘uction
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Cool, but what’s so special?
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n-out-of-n — r-out-of-n

“| know 1 signatures from some subset of {pk;} on tag”

High level plan:

1. Aggregate the subset of public keys that signhed

pkg = Hpkibi, where b, € {0,1}

1€|n]

2. \Verity signature under aggregate public key

e(g))
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Sumcheck [BCR+19, CNR+22]

Given two polynomials f(x), i(x), prove that 2 (1) - h(i) = .
i€H

Sufficient to show there exist polynomials O, (x) and O, (x):

- Linear verification given
dex(0,(0) <IH1 -

deg(0,(x)) < deg(f(x) - h(x)) — | H|
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Aggregate via Sumcheck [DCX+23, GJM+24]

Interpolate Secret Keys: SK(x)

Interpolate “Selector” Polynomial: B(x)

Run Sumcheck on SK(x) - B(x)!

SK(x) - B(x) = aSK + O,(x) - x + O,(x) - Zs(x) %GCK via pairings
e(gSK®, gBO)y e 2) - e(g2, g7) - (gL, g%

sket skt

Note: Doing this in the “exponent” need an additional O(n) terms (g*%, g*k% g*@" . . g%
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n-out-of-n — r-out-of-n

“| know 7 signatures from any subset of n parties on fag”

| —— Univariate Sumcheck [DCX+23, GJM+24]

(g, )
‘ {bi ‘ bi 75 0 ‘ > 1 Can be reduced to a degree check (linear &)

Compile to a witness encryption & ™e






Evaluation (512 Parties)

KeyGen [One-Time]: 125 ms (24 KB in size)
Encrypt: 7 ms, 768 bytes.
Partial Decrypt: 2.5 ms, 96 bytes

Reconstruct: 130 ms

https://github.com/guruvamsi-policharla/silent-threshold-encryption




Thank you!

Paper: ia.cr/2024/263

Blogpost:




