Two-Round Threshold Signature from Algebraic One-More Learning with Errors

Thomas Espitau (PQShield) Shuichi Katsumata (PQShield/AIST) Kaoru Takemure (PQShield/AIST)

Our Lattice-based Threshold Signature Scheme

- Signing Protocol

2-Round with Offline-Online Efficiency

- Security

In the second second

- Efficiency
 - Signature Size \approx 11 KB,
 - Online Communication Cost \approx 14 KB

Background

T-out-of-*N* Threshold Signatures (Key Generation)

Verification key *vk* \$ Signing key *sk*

T-out-of-*N* Threshold Signatures (Key Generation)

• *T* or more key shares reconstruct *sk*

T-out-of-*N* Threshold Signatures (Key Generation)

• *T* or more key shares reconstruct *sk*

- No user knows *sk*
- Less than T key shares leak no information about sk

We assume that a trusted party executes distributed key generation as well as [BCK+22,dPKM+24] etc.

"Multi-Round" Signing Protocol

General Procedure:

*2-out-of-3

"Multi-Round" Signing Protocol

General Procedure:

1. One decides message *m* and signer set *SS*

*2-out-of-3

"Multi-Round" Signing Protocol

General Procedure:

- 1. One decides message *m* and signer set *SS*
- 2. Users in SS execute signing protocol

"Multi-Round" Signing Protocol

General Procedure:

- 1. One decides message *m* and signer set *SS*
- 2. Users in SS execute signing protocol

Signature σ

"Multi-Round" Signing Protocol

General Procedure:

- 1. One decides message *m* and signer set *SS*
- 2. Users in SS execute signing protocol

In some restricted environments, multi-round is performance bottleneck 😞

First Round: Pre-processing Phase

Second Round: Signing Phase

Second Round: Signing Phase

Second Round: Signing Phase

Can be executed in advance.

Second Round: Signing Phase

Can be executed in advance.

Recent Breakthrough

Previous: [BKP13], [BGG+18], [ASY22], [GKS23].

They rely on heavy tools like FHE and HTDC.

Very Recent:

Practical Lattice-based TS : Threshold Raccoon (TRaccoon) [EC:dPKM+24]

ISigl \approx 13 KB, Comm. Cost \approx 40 KB

Lattice-based TS based on **<u>3-Round DL-based TS Sparkle [CKM23]</u>**

Lattice-based TS based on <u>3-Round DL-based TS Sparkle [CKM23]</u>

Classical Setting

Sparkle [CKM23]:

- Schnorr signature
 - \Rightarrow Discrete Log (DL)
 - ⇒ Built from <u>Fiat-Shamir Transform</u>
- 3-round signing protocol

Lattice-based TS based on **3-Round** DL-based TS Sparkle [CKM23]

Classical Setting

Sparkle [CKM23]:

- Schnorr signature
 - \Rightarrow Discrete Log (DL)
 - ⇒ Built from <u>Fiat-Shamir Transform</u>
- 3-round signing protocol

Lattice Setting

TRaccoon:

- Raccoon signature (Dilithium-like)
 - \Rightarrow MLWE and MSIS
 - ⇒ Built from <u>Fiat-Shamir Transform</u>

Lattice-based TS based on **3-Round** DL-based TS Sparkle [CKM23]

Classical Setting

Sparkle [CKM23]:

- Schnorr signature
 - \Rightarrow Discrete Log (DL)
 - ⇒ Built from <u>Fiat-Shamir Transform</u>
- 3-round signing protocol

Lattice Setting

TRaccoon:

- Raccoon signature (Dilithium-like)
 - \Rightarrow MLWE and MSIS
 - ⇒ Built from <u>Fiat-Shamir Transform</u>
- 3-round signing protocol
 - \Rightarrow Masking Technique

Lattice specific technique

2-round

FROST [KG20, BCK+22]

Introducing Algebraic One-More MLWE

Instance:
$$g, X_0, X_1, \dots, X_Q$$

 g, X_0, X_1, \dots, X_Q
 $x = (x_0, x_1, \dots, x_Q)$
 $x = (x_0, x_1, \dots, x_Q)$

Adversary \mathcal{A}

Challenger C

Instance:
$$g, X_0, X_1, ..., X_Q$$

 $X_i = g^{x_i}, x_i \in \mathbb{Z}_p$
 $g, X_0, X_1, ..., X_Q$
 $g, X_0, X_1, ..., X_Q$
 $(x = (x_0, x_1, ..., x_Q)$
 $(x = (x_0, x_1$

C has to solve DL(Y) to answer queries \Rightarrow Unfalsifiable

Algebraic One-More DL [NRS21]

 $\Rightarrow \mathcal{A}$ is allowed to make only **algebraic queries.**

Algebraic One-More DL [NRS21]

 $\Rightarrow \mathcal{A}$ is allowed to make only **algebraic queries.**

 g, X_0, X_1, \dots, X_Q

Instance:
$$g, X_0, X_1, \dots, X_Q \subset X_i = g^{x_i}, x_i \in \mathbb{Z}_p$$

 $\boldsymbol{x} = (x_0, x_1, \dots, x_Q)$

Adversary \mathcal{A}

Challenger C

Algebraic One-More DL [NRS21]

 $\Rightarrow \mathcal{A}$ is allowed to make only algebraic queries.

nstance:
$$g, X_0, X_1, \dots, X_Q$$
 $X_i = g^{x_i}, x_i \in \mathbb{Z}_p$
 g, X_0, X_1, \dots, X_Q
 $b \in \mathbb{Z}_p^{Q+1}$
 $z = \langle x, b \rangle$ Q times
 Q times
Challenger C
$\Rightarrow \mathcal{A}$ is allowed to make only algebraic queries.

Instance:
$$g, X_0, X_1, \dots, X_Q$$

 $X_i = g^{x_i}, x_i \in \mathbb{Z}_p$
 g, X_0, X_1, \dots, X_Q
 $b \in \mathbb{Z}_p^{Q+1}$
 $z = (x, b)$
 $Q \text{ times}$
 $Q \text{ times}$

 $\Rightarrow \mathcal{A}$ is allowed to make only algebraic queries.

Instance:
$$g, X_0, X_1, ..., X_Q$$

 $X_i = g^{x_i}, x_i \in \mathbb{Z}_p$
 $g, X_0, X_1, ..., X_Q$
 $g, X_0, X_1, ..., X_Q$
 $b \in \mathbb{Z}_p^{Q+1}$
 $z = \langle x, b \rangle$
Adversary \mathcal{A}
 $X_0', x_1', ..., x_Q'$
 \mathcal{A} win if $X_i = g^{x_i'}$ for all i

 $\Rightarrow \mathcal{A}$ is allowed to make only **algebraic queries.**

Instance:
$$g, X_0, X_1, ..., X_Q$$

 $X_i = g^{x_i}, x_i \in \mathbb{Z}_p$
 $g, X_0, X_1, ..., X_Q$
 $g, X_0, X_1, ..., X_Q$
 $b \in \mathbb{Z}_p^{Q+1}$
 $z = \langle x, b \rangle$
Adversary \mathcal{A}
 $x'_0, x'_1, ..., x'_Q$
 \mathcal{A} win if $X_i = g^{x'_i}$ for all i

C can compute $z = \langle x, b \rangle$ efficiently to answer queries \Rightarrow Falsifiable

 $\Rightarrow \mathcal{A}$ is allowed to make only **algebraic queries.**

C can compute $z = \langle x, b \rangle$ efficiently to answer queries \Rightarrow Falsifiable

Is this problem hard?

Is this problem hard?

No! We have attacks against this problem.

- Assume Q = 1
 - $B \ll \text{modulus } q$
 - $\|\boldsymbol{s}_i\|_{\infty} < B$

$$T = [t_0 t_1]$$

- Assume Q = 1
 - $B \ll \text{modulus } q$
 - $\|\boldsymbol{s}_i\|_{\infty} < B$

- Assume Q = 1
 - $B \ll \text{modulus } q$
 - $\|\boldsymbol{s}_i\|_{\infty} < B$
 - 1. $\mathbf{z} \mod B = \mathbf{s}_0$

2. Recover s_1 from s_0 and z

Assume • Q = 1• $B \ll \text{modulus } q$ • $\|\boldsymbol{s}_i\|_{\infty} < B$ $\boldsymbol{T} = [\boldsymbol{t}_0 \boldsymbol{t}_1]$ b = (1, B) $\mathbf{z} \mod B = \mathbf{s}_0$ 1. 2. Recover s_1 from s_0 and z $\mathbf{z} = \mathbf{s}_0 + B \cdot \mathbf{s}_1$ Adversary \mathcal{A} Since $||s_0||, ||s_1||, B \ll q$, "=" holds over \mathbb{Z} **s**₀, **s**₁ \mathcal{A} wins!

How do we establish the hardness under specific \mathcal{L} ?

Classical Setting:

- ⇒ Use Generic Group Model (GGM)
- \Rightarrow (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

How do we establish the hardness under specific \mathcal{L} ?

Classical Setting:

- ⇒ Use Generic Group Model (GGM)
- \Rightarrow (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

Lattice Setting:

⇒ No model like GGM!!

How do we establish the hardness?

How do we establish the hardness under specific \mathcal{L} ?

Classical Setting:

- ⇒ Use Generic Group Model (GGM)
- \Rightarrow (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

Lattice Setting:

⇒ No model like GGM!!

How do we establish the hardness?

We heuristically establish it in two steps:

- 1. "Selective" AOM-MLWE with specific \mathcal{L} is hard under standard assumptions.
- 2. Practical cryptanalysis against **adaptive** adversary.

What is sel-AOMMLWE?

 \mathcal{A} has to output a query matrix $\mathcal{B} \in \mathcal{L}$ at the beginning of the game.

Why selective?

Previous insecure example induces <u>a statistical attack.</u>

 \Rightarrow reveals obvious "weak" parameters

It does not exploit adaptive query.

What is sel-AOMMLWE?

 \mathcal{A} has to output a query matrix $\mathcal{B} \in \mathcal{L}$ at the beginning of the game.

Why selective?

Previous insecure example induces <u>a statistical attack</u>.

 \Rightarrow reveals obvious "weak" parameters

It does not exploit adaptive query.

Goal of this step: To show sel-AOM-MLWE with specific \mathcal{L} is hard

i.e., needs to exploit adaptive query to break

What is sel-AOMMLWE?

 \mathcal{A} has to output a query matrix $\mathcal{B} \in \mathcal{L}$ at the beginning of the game.

Why selective?

Previous insecure example induces <u>a statistical attack</u>.

 \Rightarrow reveals obvious "weak" parameters

It does not exploit adaptive query.

Goal of this step: To show sel-AOM-MLWE with specific \mathcal{L} is hard

i.e., needs to exploit adaptive query to break

We showed that

The sel-AOM-LWE with certain \mathcal{L} is hard under MLWE + MSIS.

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

From LWE queries, obtain
$$\{s_0 + s_i\}_{i \in [Q]}$$

 Sum $Q \cdot s_0 + \sum_{i=1}^{Q} s_i$

Ω

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

From LWE queries, obtain $\{s_0 + s_i\}_{i \in [Q]}$ Sum $Q \cdot s_0 + \sum_{i=1}^{Q} s_i$ By Gaussian convolution, this is \sqrt{Q} times smaller than $Q \cdot s_0$

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

Generalize this strategy to all accepted queries in \mathcal{L} .

Heuristically show that for \mathcal{A} following this strategy

An adaptive \mathcal{A} is *no stronger* than a selective \mathcal{A} .

Two-Round Threshold Raccoon

Construct by combining FROST + TRaccoon

Construct by combining FROST + TRaccoon

FROST:

DL-based 2-round TS

TRaccoon: Lattice-based 3-round TS

Construct by combining FROST + TRaccoon

FROST: DL-based 2-round TS **2-round Signing Protocol:** Offline-online efficiency

TRaccoon: Lattice-based 3-round TS

Construct by combining FROST + TRaccoon

Construction

Construct by combining FROST + TRaccoon

We proved the unforgeability under AOM-MLWE.

Proof strategy is almost the same as FROST's proof, but...

Check if query matrix made by reduction is contained in our ALC!!

Security

We proved the unforgeability under AOM-MLWE.

Proof strategy is almost the same as FROST's proof, but...

Check if query matrix made by reduction is contained in our ALC!!

Under $T \leq$ 1024 setting, for 128-bit security,

Scheme	vk	Sig	Online Comm./User	Offline Comm./User
3-round	3.9 KB	12.7 KB	40.8 KB	-
2-round	5.5 KB	10.8 KB	14.1 KB	262 KB
	Almost the same		Efficient!	Overhead

Thank You!

Important Future Work: ➤ To prove the hardness of adaptive AOM-MLWE.

Concurrent Works:

- "Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding" [C: KTR24] (Next Talk!!)
- "Flood and submerse: Verifiable short secret sharing and application to robust threshold signatures on lattices" [C: EPN24] (Talk was this morning!!)
- "Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures" [Eprint:CATZ24]

Recent Related Works:

 "Ringtail: Practical <u>Two-Round</u> Threshold Signatures <u>from Learning with Errors</u>" [Eprint:BKL+24] (* partially offline-online efficient)