Two-Round Threshold Signature from
Algebraic One-More Learning with Errors

Thomas Espitau Shuichi Katsumata Kaoru Takemure
(PQShield) (PQShield/AIST) (PQShield/AIST)

- PaSHIELD a2 AIST

Our Lattice-based Threshold Signature Scheme

- Signing Protocol
= 2-Round with Offline-Online Efficiency

- Security
~ New Assumption : Algebraic One-More MLWE

- Efficiency
Signature Size = 11 KB,
Online Communication Cost = 14 KB

Background

T-out-of-IN Threshold Signatures (Key Generation)

Verification key vk
)
Signing key sk

% 2-out-of-3

T-out-of-IN Threshold Signatures (Key Generation)

Verification key vk
()
Signing key sk
« T or more key shares reconstruct sk

% 2-out-of-3

T-out-of-IN Threshold Signatures (Key Generation)

Verification key vk
)
Signing key sk

T or more key shares reconstruct sk

* No user knows sk
. . . » Lessthan T key shares leak no
a n ﬂ information about sk

¥ We assume that a trusted party executes distributed key
generation as well as [BCK+22,dPKM+24] etc.
% 2-out-of-3

6

T-out-of-IN Threshold Signatures (Signing)

% 2-out-of-3

T-out-of-IN Threshold Signatures (Signing)

“Multi-Round” Signing Protocol

General Procedure:

% 2-out-of-3

T-out-of-IN Threshold Signatures (Signing)

“Multi-Round” Signing Protocol

General Procedure:
1. One decides message m and
signer set SS

% 2-out-of-3

T-out-of-IN Threshold Signatures (Signing)

.:> m, SS
|

Multi-Round Communication

x

“Multi-Round” Signing Protocol

sk, sk, sks

% 2-out-of-3

General Procedure:

1. One decides message m and

signer set SS
2. Usersin SS execute signing protocol

10

T-out-of-IN Threshold Signatures (Signing)

“Multi-Round” Signing Protocol

. General Procedure:
——> mSS

1. One decides message m and
H signer set SS
2. Usersin SS execute signing protocol
)

(
. .<:>. |:> Signature ¢

sk, sk, sks

Multi-Round Communication

% 2-out-of-3
1

T-out-of-IN Threshold Signatures (Signing)

“Multi-Round” Signing Protocol

. General Procedure:
——> mSS

1. One decides message m and
H signer set SS
2. Usersin SS execute signing protocol
)

(
. .<:>. |:> Signature ¢

sk, sk, sks

\ / | In some restricted environments,
SS ={2,3} .)
multi-round is performance bottleneck &=

Multi-Round Communication

% 2-out-of-3

12

Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase

13

Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase

mySS

e o
o a

PP1 pPDp2

@
A

14

Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase

mySS

e o
o a

PP1 pPDp2

@
A

Can be executed in advance.

15

Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase

Second Round: Signing Phase

: I:> m,SS, {ppi}iESS

[,

mySS

o
o a

PP1 PD2

Can be executed in advance.

® |
an

16

Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase

: I:> m,SS, {ppi}iESS

® © 0 o
an Lo A

mySS

o
o a

PP1 pPDp2

| |
ZYUB

0]
Can be executed in advance.

17

Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase

: I:> m,SS, {ppi}iESS

® © 0 o
an Lo A

mySS

o
o a

PP1 pPDp2

| |
ZYJB

o

Can be executed in advance. Non-interactive!

18

Recent Breakthrough

Previous: [BKP13], [BGG+18], [ASY22], [GKS23].

They rely on heavy tools like FHE and HTDC.

Very Recent:

Practical Lattice-based TS : Threshold Raccoon (TRaccoon) [EC.dPKM+24]

- [T

w/0 heavy tools
ISigl = 13 KB, Comm. Cost = 40 KB

19

TRaccoon [EC.dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKMZ23]

20

TRaccoon [EC.dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Classical Setting

Sparkle [CKM23]:

» Schnorr signature

= Discrete Log (DL)

= Built from Fiat-Shamir Transform
» 3-round signing protocol

21

TRaccoon [EC.dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Classical Setting Lattice Setting
Sparkle [CKM23]: TRaccoon:
> Schnorr signature » Raccoon signature (Dilithium-like)
= Discrete Log (DL) = MLWE and MSIS
= Built from Fiat-Shamir Transform = Built from Fiat-Shamir Transform

» 3-round signing protocol

22

TRaccoon [EC.dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Classical Setting Lattice Setting
Sparkle [CKM23]: TRaccoon:
> Schnorr signature » Raccoon signature (Dilithium-like)
= Discrete Log (DL) = MLWE and MSIS
= Built from Fiat-Shamir Transform = Built from Fiat-Shamir Transform
» 3-round signing protocol » 3-round signing protocol
= Masking Technique
/¥

Lattice specific technique

23

Open Problem

Classical Setting

Sparkle [CKM23]

3-round

Lattice Setting

TRaccoon [dPKM+24]

24

Open Problem

Classical Setting 3-round Lattice Setting

Sparkle [CKM23] TRaccoon [dPKM+24]

FROST [KG20, BCK+22]

25

Open Problem

Classical Setting 3-round Lattice Setting
Sparkle [CKM23] TRaccoon [dPKM+24]

(Algebraic) 2-round

One-More DL

T

FROST [KG20, BCK+22]

Open Problem

Classical Setting 3-round Lattice Setting
Sparkle [CKM23] TRaccoon [dPKM+24]

(Algebraic) 2-round

One-More DL

T

FROST [KG20, BCK+22] [This Work]

27

Open Problem

Classical Setting

Sparkle [CKM23]

(Algebraic)
One-More DL

T

FROST [KG20, BCK+22]

3-round

Lattice Setting

TRaccoon [dPKM+24]

[This Work]

28

Introducing Algebraic One-More MLWE

One-More DL [BNPS02, BNPSO3, BMVOS]

Instance: g, Xo, X1, ..., Xo 4)(g%, x; €T,

X = (xo,xl, ,.'X'Q)

g'XO'XII---;XQ ~]

Adversary A Challenger C

One-More DL [BNPSO02, BNPSO3, BMVO0S]

Instance: g, Xy, X3, -

=

Adversary A

XQ{X

g™, x; € Ly,
x = (xq, X1, - xQ)
9, Xo, X1, ..., Xq
Y
DL(Y) Q times ii

Challenger €

31

One-More DL [BNPSO02, BNPSO3, BMVO0S]

Instance: g, Xo, X1, ..., Xo QXL- = g%, x; € Z,,

) 9, X0, X1, .., Xq ~J
Y
DL(Y) Q times
Adversary A) Challenger C

\ 4

A winif X; = gxl{ for all i

32

One-More DL [BNPSO02, BNPSO3, BMVO0S]

Instance: g, Xo, X1, ..., Xo QXL- = g%, x; € Z,,

) 9, X0, X1, .., Xq ~J
Y
DL(Y) Q times
Adversary A) Challenger C

»

A winif X; = gxl{ for all i
C has to solve DL(Y) to answer queries = Unfalsifiable

33

Algebraic One-More DL [NRS21]

= A Is allowed to make only algebraic queries.

34

Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g, Xy, X3, ..., Xp 4 Xi =g*, x; €Ly, X = (Xg,%1, e, XQ)

9, X0, X1, ., Xg

Adversary A Challenger C

Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g, Xy, X3, ..., Xp 4 Xi =g*, x; €Ly, X = (X0, X1, e, Xq)
\/—
) 9, X0, X1, 0, X
Q+1
b € 7y
z = (x, b) Q times

Adversary A « Challenger C

Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g,Xo,Xl, ’XQ 4 Xi = gxi, X; € Zp

9 Xo Xy Xg
beztt
b; p
j z=DL(X}")
z =(x,b)

Adversary A <

X = (Xg, X1, e Xg)

Q times

Challenger C

37

Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g, Xy, X3, ..., Xp 4 Xi =g*, x; €Ly, X = (X0, X1, e, Xq)
\/—
) 9, X0, X1, -, Xg
b ezt
j z=DL(X}") :
: z = (x, b) Q times
Adversary A < Challenger C

!/ !/ !/
-1 Q . A winif X; = g%i forall i
i — Y

Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g, Xy, X3, ..., Xp 4 Xi =g*, x; €Ly, X = (X0, X1, e, Xq)
\/—
) 9, X0, X1, -, Xg
b ezt
j z=DL(X}") :
: z = (x, b) Q times
Adversary A < Challenger C

!/ !/ !/
01 Q , AwinifX; = g*i forall i

C can compute z = (x, b) efficiently to answer queries = Falsifiable

39

Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g, Xy, X1, ..., X <~ Xi = g™, x; €Zy x = (Xg, X1, -, XQ)

() g, X, X1, -, Xp ﬁ\

AOM-DL = 2-Round TS FROST

Lattice-based variant? C

_

JC VVIIT I A — Y v TUI dll{

C can compute z = (x, b) efficiently to answer queries =

40

Naive Attempt

) _ kx(Q+1)
Instance: A € R’gX*’,T = [tot1 - ty] € R, <

s; is short
S = [s0S1 - S¢]
T =AS

A

Adversary A

Challenger C

4

Naive Attempt

: kKxt g _ kx(Q+1)
Instance: A € RF™, T = [tot; - ty] ER, <

s; is short
= Al T ||Si S = [soS51 " Sq]

T=AS

T

A

Q+1
b € R

Zz=3Sb Q times
Adversary A Challenger C

A

Naive Attempt

: kKxt g _ kx(Q+1)
Instance: A € RF™, T = [tot; - ty] ER, <

s; is short
= Al T ||Si S = [soS51 " Sq]

T=AS

T

b e ROt
ﬁ Az=Thb 4
Zz=3Sb Q times

Adversary A Challenger C

Naive Attempt

Instance: A € REX, T = [tot, - ty] € R';X(Q+1)< s; is short

= Al T ||Si S = [soS51 " Sq]
T =AS
T

b e ROt
ﬁ Az=Thb d
Zz=3Sb Q times

Adversary A Challenger C
SI

»

A wins if T = AS' and S’ is short

Naive Attempt

Instance: A € REX, T = [tot, - ty] € RSX(Q+1)< s; is short

= Al T ||Si S = [soS51 " Sq]
T =AS
T

Q+1
beR,
Az=Tb
Zz=3Sb Q times

Adversary A Challenger C
SI

»

A wins if T = AS' and S’ is short

Is this problem hard?

Naive Attempt

: kKxt g _ kx(Q+1)
Instance: A € RF™, T = [tot; - ty] ER, <

s; is short
= Al T ||Si S = [soS51 " Sq]
T =AS

Q+1
beR,
Az=Tb
Zz=3Sb Q times

Adversary A Challenger C

»

A wins if T = AS' and S’ is short

Is this problem hard?
No! We have attacks against this problem.

Insecure Example: Large Algebraic Query

Assume « (=1
* B K modulusq
* |Isillo <B

T = [tot4]

A

Adversary A

47

Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulusq
* ”Si”oo <B T = [tyt,]

A

b=(1,B)

v

Z:SO‘l‘B'Sl

A

Adversary A Since ||soll, Is1]l, B < q,
“=" holds over Z

48

Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulusq
* ”Si”oo <B T = [tyt,]

A

v

1. zmodB = s, b=(15)
Z:SO‘l‘B'Sl

A

Adversary A Since ||soll, Is1]l, B < q,
“=" holds over Z

49

Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulusq
* ”Si”oo <B T = [tyt,]

A

v

A

1. zmodB = s, b=(15)
2. Recover s, from sy and z Z=S,+B-s;

Adversary A Since ||soll, Is1]l, B < q,
“=" holds over Z

50

Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulusq
* ”Si”oo <B T = [tyt,]

A

1. zmodB = s, b=(15)

2. Recover s, from sy and z Z=S,+B-s;

v

A

Adversary A Since ||soll, Is1]l, B < q,
“=" holds over Z

[A wins!]7 S0, 51

v

51

Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulus q
* [lIsillo <B

1. zmodB = s,
2. Recover s, from sy and z

Lattice-specific attack exploiting “smal

|”

ALQISE

secret

T = [tot4]

A

b=(1,B)

Z:SO‘l‘B'Sl

v

A

ry A Since ||soll, [s1]l, B «< g,
“:” holds Over Z

[A wins!]7 S0, 51

v

52

Insecure Example: Large Algebraic Query

Assume o

Q=1

B < modulus q

Isill < B

1. zmodB = s,
2. Recover s, from sy and z

ALQISE

Lattice-specific attack exploiting “small” secret

Since s; « Z, in classical setting,
Attack does not work well.

ry A

T = [tot4]

A

b=(1,B)

Z:SO‘l‘B'Sl

v

A

Since ”SO”r ||51||IB << CI;
“=" holds over Z

[A wins!]7 S0, 51

v

Insecure Example: Large Algebraic Query

Assume o

Q=1

B < modulus q

Isill < B

1. zmodB = s,
2. Recover s, from sy and z

ALQ&&

Lattice-specific attack exploiting “small” secret

Since s; « Z, in classical setting,
Attack does not work well.

ry A

T = [tot4]

A

b=(1,B)

Z:SO‘l‘B'Sl

v

A

Since ”SO”r “SllllB << CI;
“=" holds over Z

[A wins!]7 S0, 51

We have to restrict the shape of LWE queries to ensure hardness!

v

Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC): L © REIQ“)XQ

55

Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC). L < :REIQH)XQ

T

A

Q+1
b, € RS

z, = Sh, Q times

Adversary A Challenger C
SI

> Awins if T = AS' and S’ is short
New condition:
B=|b,-by| €L

56

Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC). L < SQEIQH)XQ

T

A

VA | ’

A

Adversary A

1) Define L

@ Prove the hardness of AOM-MLWE with £

New condition: —~_~

B=|b,-by| €L

57

Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC). L < SQEIQH)XQ

T

A

VA | ’

A

Adversary A

@ Define £L = protocol-specific

@ Prove the hardness of AOM-MLWE with £

New condition: —~_~

B=|b,-by| €L

58

Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC). L < SQEIQH)XQ

T

A

VA | ’

A

Adversary A

@ Define £L = protocol-specific

@ Prove the hardness of AOM-MLWE with £

New condition: —~_~

B=|b,-by| €L

59

How do we establish the hardness under specific L?

Classical Setting:
= Use Generic Group Model (GGM)
= (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

60

How do we establish the hardness under specific L?

Classical Setting:
= Use Generic Group Model (GGM)
= (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

Lattice Setting:
= No model like GGM!!

How do we establish the hardness?

61

How do we establish the hardness under specific L?

Classical Setting:
= Use Generic Group Model (GGM)
= (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

Lattice Setting:
= No model like GGM!!

How do we establish the hardness?

We heuristically establish it in two steps:
1. “Selective” AOM-MLWE with specific £ is hard under standard assumptions.

2. Practical cryptanalysis against adaptive adversary.

62

Step 1. Hardness of Selective AOM-MLWE with L

What is sel-AOMMLWE?
A has to output a query matrix B € L at the beginning of the game.

Why selective?

Previous insecure example induces a statistical attack. ﬁ It does not exploit

. « ” adaptive query.
= reveals obvious “weak” parameters PIVe query

Step 1. Hardness of Selective AOM-MLWE with L

What is selAOMMLWE?
A has to output a query matrix B € L at the beginning of the game.

Why selective?
Previous insecure example induces a statistical attack. ﬁ It does not exploit

. « ” adaptive query.
= reveals obvious “weak” parameters PIVe query

Goal of this step: | To show sel-AOM-MLWE with specific L is hard

i.e., needs to exploit adaptive query to break

64

Step 1. Hardness of Selective AOM-MLWE with L

What is selAOMMLWE?
A has to output a query matrix B € L at the beginning of the game.

Why selective?

It does not exploit
adaptive query.

Previous insecure example induces a statistical attack. ﬁ

= reveals obvious “weak” parameters

Goal of this step: | To show sel-AOM-MLWE with specific L is hard

i.e., needs to exploit adaptive query to break

We showed that

The sel-AOM-LWE with certain L is hard under MLWE + MSIS.

65

Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:

66

Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:

Sum Q
From LWE queries, obtain {so + S;}ic[gq) —— 0 -s, + Z s;
i=1

67

Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:

Sum

From LWE queries, obtain {so + Si}ic[gq) ——— Q-so+) s;

1
N
By Gaussian convolution,

this is \/6 times smaller than Q - s

e

L=

68

Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:

Sum Q
From LWE queries, obtain {sg + $;}ie[gq] —— .S + 2 s;
i=1
N
A new easier LWE instance By Gaussian convolution,

— . . .
e — this is \/anmes smaller than Q - s

Secret size \/5 times smaller than before.

69

Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:

Sum
From LWE queries, obtain {so + S;}ic[gq) —— 0 -s, +

e

S;

=1

N

A new easier LWE instance

T —

By Gaussian convolution,

this is \/6 times smaller than Q - s

Secret size \/5 times smaller than before.

Generalize this strategy to all accepted queries in L.
Heuristically show that for A following this strategy

An adaptive A is no stronger than a selective A.

70

Two-Round Threshold Raccoon

Construction

Construct by combining FROST + TRaccoon

72

Construction

Construct by combining FROST + TRaccoon

FROST:
DL-based 2-round TS

TRaccoon:
Lattice-based 3-round TS

73

Construction

Construct by combining FROST + TRaccoon

FROST: TRaccoon:
DL-based 2-round TS Lattice-based 3-round TS

Offline-online efficiency

2-round Signing Protocol: r

Construction

Construct by combining FROST + TRaccoon

FROST:

DL-based 2-round TS

Lattice-based 3-round TS

TRaccoon:

2-round Signing Protocol:
Offline-online efficiency

N/

Masking Technique:
To prevent lattice-specific attack

75

Construction

Construct by combining FROST + TRaccoon

FROST:

DL-based 2-round TS

Lattice-based 3-round TS

TRaccoon:

2-round Signing Protocol:
Offline-online efficiency

N/

Masking Technique:
To prevent lattice-specific attack

2-round Threshold Raccoon

76

Security

We proved the unforgeability under AOM-MLWE.
Proof strategy is almost the same as FROST’s proof, but...

Check if query matrix made by reduction is contained in our ALC!!

77

Security

We proved the unforgeability under AOM-MLWE.

Proof strategy is almost the same as FROST's proof, but...

Check if query matrix made by reduction is contained in our ALC!!

Our ALC ;
(e
B,
_)| B,
ETS‘{ PmW]
\ L

Row vector

cg,

’ Pcolumn C R?X(Q_l)

By

Block diagonal

Vi € [Q'], (¢i, B;) € Crs x Brs,
(PI'OW7 Pcolumn) € ,P(2;)_1

78

Performances

Under T <1024 setting, for 128-bit security,

. Online Offline
SEEmE VK| ISig| Comm./User Comm./User
3-round 3.9 KB 12.7 KB 40.8 KB -
2-round 5.5 KB 10.8 KB 14.1 KB 262 KB
—
Almost the same Efficient! \ Overhead

79

Thank Youl!

Important Future Work:
> To prove the hardness of adaptive AOM-MLWE.

Concurrent Works:

> “Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding”
[C: KTR24] (Next Talk!!)

> “Flood and submerse: Verifiable short secret sharing and application to robust threshold
signatures on lattices” [C: EPN24] (Talk was this morning!!)

> “Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures” [Eprint: CATZ24]

Recent Related Works:

> “Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors” [Eprint:BKL+24]
(% partially offline-online efficient)

80

	スライド 1: Two-Round Threshold Signature from Algebraic One-More Learning with Errors
	スライド 2: Our Lattice-based Threshold Signature Scheme
	スライド 3: Background
	スライド 4: T-out-of-N Threshold Signatures (Key Generation)
	スライド 5: T-out-of-N Threshold Signatures (Key Generation)
	スライド 6: T-out-of-N Threshold Signatures (Key Generation)
	スライド 7: T-out-of-N Threshold Signatures (Signing)
	スライド 8: T-out-of-N Threshold Signatures (Signing)
	スライド 9: T-out-of-N Threshold Signatures (Signing)
	スライド 10: T-out-of-N Threshold Signatures (Signing)
	スライド 11: T-out-of-N Threshold Signatures (Signing)
	スライド 12: T-out-of-N Threshold Signatures (Signing)
	スライド 13: Nice Property: Offline-Online Efficiency
	スライド 14: Nice Property: Offline-Online Efficiency
	スライド 15: Nice Property: Offline-Online Efficiency
	スライド 16: Nice Property: Offline-Online Efficiency
	スライド 17: Nice Property: Offline-Online Efficiency
	スライド 18: Nice Property: Offline-Online Efficiency
	スライド 19: Recent Breakthrough
	スライド 20: TRaccoon [EC:dPKM+24]
	スライド 21: TRaccoon [EC:dPKM+24]
	スライド 22: TRaccoon [EC:dPKM+24]
	スライド 23: TRaccoon [EC:dPKM+24]
	スライド 24: Open Problem
	スライド 25: Open Problem
	スライド 26: Open Problem
	スライド 27: Open Problem
	スライド 28: Open Problem
	スライド 29: Introducing Algebraic One-More MLWE
	スライド 30: One-More DL [BNPS02, BNPS03, BMV08]
	スライド 31: One-More DL [BNPS02, BNPS03, BMV08]
	スライド 32: One-More DL [BNPS02, BNPS03, BMV08]
	スライド 33: One-More DL [BNPS02, BNPS03, BMV08]
	スライド 34: Algebraic One-More DL [NRS21]
	スライド 35: Algebraic One-More DL [NRS21]
	スライド 36: Algebraic One-More DL [NRS21]
	スライド 37: Algebraic One-More DL [NRS21]
	スライド 38: Algebraic One-More DL [NRS21]
	スライド 39: Algebraic One-More DL [NRS21]
	スライド 40: Algebraic One-More DL [NRS21]
	スライド 41: Naive Attempt
	スライド 42: Naive Attempt
	スライド 43: Naive Attempt
	スライド 44: Naive Attempt
	スライド 45: Naive Attempt
	スライド 46: Naive Attempt
	スライド 47: Insecure Example: Large Algebraic Query
	スライド 48: Insecure Example: Large Algebraic Query
	スライド 49: Insecure Example: Large Algebraic Query
	スライド 50: Insecure Example: Large Algebraic Query
	スライド 51: Insecure Example: Large Algebraic Query
	スライド 52: Insecure Example: Large Algebraic Query
	スライド 53: Insecure Example: Large Algebraic Query
	スライド 54: Insecure Example: Large Algebraic Query
	スライド 55: Accepted Linear Combination
	スライド 56: Accepted Linear Combination
	スライド 57: Accepted Linear Combination
	スライド 58: Accepted Linear Combination
	スライド 59: Accepted Linear Combination
	スライド 60: How do we establish the hardness under specific スクリプト 大文字 L?
	スライド 61: How do we establish the hardness under specific スクリプト 大文字 L?
	スライド 62: How do we establish the hardness under specific スクリプト 大文字 L?
	スライド 63: Step 1: Hardness of Selective AOM-MLWE with ℒ
	スライド 64: Step 1: Hardness of Selective AOM-MLWE with ℒ
	スライド 65: Step 1: Hardness of Selective AOM-MLWE with ℒ
	スライド 66: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 67: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 68: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 69: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 70: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 71: Two-Round Threshold Raccoon
	スライド 72: Construction
	スライド 73: Construction
	スライド 74: Construction
	スライド 75: Construction
	スライド 76: Construction
	スライド 77: Security
	スライド 78: Security
	スライド 79: Performances
	スライド 80: Thank You!

