
Two-Round Threshold Signature from

Algebraic One-More Learning with Errors

Thomas Espitau
(PQShield)

Kaoru Takemure
(PQShield/AIST)

Shuichi Katsumata
(PQShield/AIST)

Our Lattice-based Threshold Signature Scheme

- Signing Protocol
2-Round with Offline-Online Efficiency

- Security
New Assumption : Algebraic One-More MLWE

- Efficiency

Signature Size ≈ 11 KB,

Online Communication Cost ≈ 14 KB

2

Background

3

T-out-of-N Threshold Signatures (Key Generation)

Verification key 𝑣𝑘
⇕

Signing key 𝑠𝑘

※2-out-of-3

4

T-out-of-N Threshold Signatures (Key Generation)

Verification key 𝑣𝑘
⇕

Signing key 𝑠𝑘

※2-out-of-3

𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

• 𝑇 or more key shares reconstruct 𝑠𝑘

5

T-out-of-N Threshold Signatures (Key Generation)

Verification key 𝑣𝑘
⇕

Signing key 𝑠𝑘

※2-out-of-3

※We assume that a trusted party executes distributed key
generation as well as [BCK+22,dPKM+24] etc.

• 𝑇 or more key shares reconstruct 𝑠𝑘

• No user knows 𝑠𝑘
• Less than T key shares leak no

information about 𝑠𝑘

6

𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

T-out-of-N Threshold Signatures (Signing)

※2-out-of-3

7

𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

T-out-of-N Threshold Signatures (Signing)

※2-out-of-3

8

“Multi-Round” Signing Protocol

General Procedure:

𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

T-out-of-N Threshold Signatures (Signing)

※2-out-of-3

9

𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

“Multi-Round” Signing Protocol

𝑚, 𝑆𝑆

𝑆𝑆 = 2,3

General Procedure:
1. One decides message 𝑚 and

signer set 𝑆𝑆

T-out-of-N Threshold Signatures (Signing)

※2-out-of-3

10

𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

“Multi-Round” Signing Protocol

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆

Multi-Round Communication

General Procedure:
1. One decides message 𝑚 and

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing protocol

T-out-of-N Threshold Signatures (Signing)

※2-out-of-3

11

𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

“Multi-Round” Signing Protocol

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆

Signature 𝜎

Multi-Round Communication

General Procedure:
1. One decides message 𝑚 and

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing protocol

T-out-of-N Threshold Signatures (Signing)

※2-out-of-3

12

𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

“Multi-Round” Signing Protocol

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆
General Procedure:
1. One decides message 𝑚 and

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing protocol

Signature 𝜎

In some restricted environments,
multi-round is performance bottleneck

Multi-Round Communication

Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase

13

14

𝑝𝑝1 𝑝𝑝2 𝑝𝑝3

𝑚, 𝑆𝑆

First Round: Pre-processing Phase Second Round: Signing Phase

Nice Property: Offline-Online Efficiency

Can be executed in advance.

15

𝑝𝑝1 𝑝𝑝2 𝑝𝑝3

𝑚, 𝑆𝑆

First Round: Pre-processing Phase Second Round: Signing Phase

Nice Property: Offline-Online Efficiency

Can be executed in advance.

16

𝑝𝑝1 𝑝𝑝2 𝑝𝑝3

𝑚, 𝑆𝑆 𝑚, 𝑆𝑆, 𝑝𝑝𝑖 𝑖∈𝑆𝑆

First Round: Pre-processing Phase Second Round: Signing Phase

Nice Property: Offline-Online Efficiency

Can be executed in advance.

𝜎2 𝜎3

𝜎

17

𝑝𝑝1 𝑝𝑝2 𝑝𝑝3

𝑚, 𝑆𝑆 𝑚, 𝑆𝑆, 𝑝𝑝𝑖 𝑖∈𝑆𝑆

First Round: Pre-processing Phase Second Round: Signing Phase

Nice Property: Offline-Online Efficiency

Can be executed in advance. Non-interactive!

𝜎2 𝜎3

𝜎

18

𝑝𝑝1 𝑝𝑝2 𝑝𝑝3

𝑚, 𝑆𝑆 𝑚, 𝑆𝑆, 𝑝𝑝𝑖 𝑖∈𝑆𝑆

First Round: Pre-processing Phase Second Round: Signing Phase

Nice Property: Offline-Online Efficiency

Recent Breakthrough

• w/o heavy tools
• |Sig| ≈ 13 KB, Comm. Cost ≈ 40 KB

Previous: [BKP13], [BGG+18], [ASY22], [GKS23].

They rely on heavy tools like FHE and HTDC.

Practical Lattice-based TS : Threshold Raccoon (TRaccoon) [EC:dPKM+24]

Very Recent:

19

TRaccoon [EC:dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

20

TRaccoon [EC:dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Sparkle [CKM23]:

➢ Schnorr signature
⇒ Discrete Log (DL)
⇒ Built from Fiat-Shamir Transform

➢ 3-round signing protocol

Classical Setting

21

TRaccoon [EC:dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Sparkle [CKM23]:

➢ Schnorr signature
⇒ Discrete Log (DL)
⇒ Built from Fiat-Shamir Transform

➢ 3-round signing protocol

TRaccoon:

➢ Raccoon signature (Dilithium-like)
⇒ MLWE and MSIS
⇒ Built from Fiat-Shamir Transform

Classical Setting Lattice Setting

22

TRaccoon [EC:dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Sparkle [CKM23]:

➢ Schnorr signature
⇒ Discrete Log (DL)
⇒ Built from Fiat-Shamir Transform

➢ 3-round signing protocol

TRaccoon:

➢ Raccoon signature (Dilithium-like)
⇒ MLWE and MSIS
⇒ Built from Fiat-Shamir Transform

➢ 3-round signing protocol
⇒ Masking Technique

Classical Setting Lattice Setting

23

Lattice specific technique

Open Problem

Classical Setting Lattice Setting3-round

Sparkle [CKM23] TRaccoon [dPKM+24]

24

Open Problem

Classical Setting Lattice Setting3-round

2-round

Sparkle [CKM23] TRaccoon [dPKM+24]

FROST [KG20, BCK+22]

25

Open Problem

Classical Setting Lattice Setting3-round

2-round

Sparkle [CKM23] TRaccoon [dPKM+24]

FROST [KG20, BCK+22]

26

(Algebraic)

One-More DL

This Work

Open Problem

Classical Setting Lattice Setting3-round

2-round

Sparkle [CKM23] TRaccoon [dPKM+24]

FROST [KG20, BCK+22]

27

(Algebraic)

One-More DL

This Work

Open Problem

Classical Setting Lattice Setting3-round

2-round

Sparkle [CKM23] TRaccoon [dPKM+24]

FROST [KG20, BCK+22]

28

(Algebraic)

One-More DL

Introducing Algebraic One-More MLWE

29

One-More DL [BNPS02, BNPS03, BMV08]

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

Adversary 𝒜 Challenger 𝐶

30

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)

One-More DL [BNPS02, BNPS03, BMV08]

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝑌

𝐷𝐿(𝑌)

𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

Adversary 𝒜 Challenger 𝐶

31

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)

One-More DL [BNPS02, BNPS03, BMV08]

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝑌

𝐷𝐿(𝑌)

𝑥0
′ , 𝑥1

′ , … , 𝑥𝑄
′

𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

𝒜 win if 𝑋𝑖 = 𝑔𝑥𝑖
′

for all 𝑖

Adversary 𝒜 Challenger 𝐶

32

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)

One-More DL [BNPS02, BNPS03, BMV08]

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝑌

𝐷𝐿(𝑌)

𝑥0
′ , 𝑥1

′ , … , 𝑥𝑄
′

𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

𝐶 has to solve 𝐷𝐿(𝑌) to answer queries ⇒ Unfalsifiable

𝒜 win if 𝑋𝑖 = 𝑔𝑥𝑖
′

for all 𝑖

Adversary 𝒜 Challenger 𝐶

33

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)

Algebraic One-More DL [NRS21]

⇒ 𝒜 is allowed to make only algebraic queries.

34

Algebraic One-More DL [NRS21]

Adversary 𝒜 Challenger 𝐶

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

⇒ 𝒜 is allowed to make only algebraic queries.

35

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

Algebraic One-More DL [NRS21]

Adversary 𝒜 Challenger 𝐶

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝒃 ∈ ℤ𝑝
𝑄+1

𝑧 = 𝒙, 𝒃

⇒ 𝒜 is allowed to make only algebraic queries.

36

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

Algebraic One-More DL [NRS21]

Adversary 𝒜 Challenger 𝐶

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝒃 ∈ ℤ𝑝
𝑄+1

𝑧 = 𝒙, 𝒃

⇒ 𝒜 is allowed to make only algebraic queries.

𝑧 = 𝐷𝐿 𝑋𝑖
𝑏𝑖

37

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

Algebraic One-More DL [NRS21]

Adversary 𝒜 Challenger 𝐶

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝒃 ∈ ℤ𝑝
𝑄+1

𝑧 = 𝒙, 𝒃

⇒ 𝒜 is allowed to make only algebraic queries.

𝑥0
′ , 𝑥1

′ , … , 𝑥𝑄
′

𝒜 win if 𝑋𝑖 = 𝑔𝑥𝑖
′

for all 𝑖

38

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

𝑧 = 𝐷𝐿 𝑋𝑖
𝑏𝑖

Algebraic One-More DL [NRS21]

Adversary 𝒜 Challenger 𝐶

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝒃 ∈ ℤ𝑝
𝑄+1

𝑧 = 𝒙, 𝒃

⇒ 𝒜 is allowed to make only algebraic queries.

𝑥0
′ , 𝑥1

′ , … , 𝑥𝑄
′

𝒜 win if 𝑋𝑖 = 𝑔𝑥𝑖
′

for all 𝑖

𝐶 can compute 𝑧 = 𝒙, 𝒃 efficiently to answer queries ⇒ Falsifiable
39

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

𝑧 = 𝐷𝐿 𝑋𝑖
𝑏𝑖

𝐶 can compute 𝑧 = 𝒙, 𝒃 efficiently to answer queries ⇒ Falsifiable

𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

Algebraic One-More DL [NRS21]

Adversary 𝒜 Challenger 𝐶

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝒃 ∈ ℤ𝑝
𝑄+1

𝑧 = 𝒙, 𝒃

⇒ 𝒜 is allowed to make only algebraic queries.

𝑔𝑧 = ∏𝑋𝑖
𝑏𝑖

𝑥0
′ , 𝑥1

′ , … , 𝑥𝑄
′

𝒜 win if 𝑋𝑖 = 𝑔𝑥𝑖
′

for all 𝑖

40

𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)

AOM-DL ⇒ 2-Round TS FROST

Lattice-based variant?

Naive Attempt

Instance: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝑻 = [𝒕0𝒕1⋯𝒕𝑄] ∈ ℛ𝑞

𝑘×(𝑄+1)

𝑻

Adversary 𝒜 Challenger 𝐶

𝒕𝑖 = 𝑨′ 𝑰 𝒔𝑖
𝒔𝑖 is short
𝑺 = [𝒔0𝒔1⋯𝒔𝑄]

𝑻 = 𝑨𝑺

41

Naive Attempt

Instance: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝑻 = [𝒕0𝒕1⋯𝒕𝑄] ∈ ℛ𝑞

𝑘×(𝑄+1)

𝑻

𝑄 times

Adversary 𝒜 Challenger 𝐶

𝒕𝑖 = 𝑨′ 𝑰 𝒔𝑖
𝒔𝑖 is short
𝑺 = [𝒔0𝒔1⋯𝒔𝑄]

𝑻 = 𝑨𝑺

𝒃 ∈ ℛ𝑞
𝑄+1

𝒛 = 𝑺𝒃

42

Naive Attempt

Instance: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝑻 = [𝒕0𝒕1⋯𝒕𝑄] ∈ ℛ𝑞

𝑘×(𝑄+1)

𝑻

𝑄 times

Adversary 𝒜 Challenger 𝐶

𝒕𝑖 = 𝑨′ 𝑰 𝒔𝑖
𝒔𝑖 is short
𝑺 = [𝒔0𝒔1⋯𝒔𝑄]

𝑻 = 𝑨𝑺

𝒃 ∈ ℛ𝑞
𝑄+1

𝑨𝒛 = 𝑻𝒃
𝒛 = 𝑺𝒃

43

Naive Attempt

Instance: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝑻 = [𝒕0𝒕1⋯𝒕𝑄] ∈ ℛ𝑞

𝑘×(𝑄+1)

𝑻

𝑄 times

𝑺′
Adversary 𝒜 Challenger 𝐶

𝒕𝑖 = 𝑨′ 𝑰 𝒔𝑖
𝒔𝑖 is short
𝑺 = [𝒔0𝒔1⋯𝒔𝑄]

𝑻 = 𝑨𝑺

𝒃 ∈ ℛ𝑞
𝑄+1

𝒛 = 𝑺𝒃

𝒜 wins if 𝑻 = 𝑨𝑺′ and 𝑺′ is short

44

𝑨𝒛 = 𝑻𝒃

Naive Attempt

Instance: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝑻 = [𝒕0𝒕1⋯𝒕𝑄] ∈ ℛ𝑞

𝑘×(𝑄+1)

𝑻

𝑄 times

𝑺′
Adversary 𝒜 Challenger 𝐶

𝒕𝑖 = 𝑨′ 𝑰 𝒔𝑖
𝒔𝑖 is short
𝑺 = [𝒔0𝒔1⋯𝒔𝑄]

𝑻 = 𝑨𝑺

𝒃 ∈ ℛ𝑞
𝑄+1

Is this problem hard?

𝒛 = 𝑺𝒃

𝒜 wins if 𝑻 = 𝑨𝑺′ and 𝑺′ is short

45

𝑨𝒛 = 𝑻𝒃

Naive Attempt

Instance: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝑻 = [𝒕0𝒕1⋯𝒕𝑄] ∈ ℛ𝑞

𝑘×(𝑄+1)

𝑻

𝑄 times

𝑺′
Adversary 𝒜 Challenger 𝐶

𝒕𝑖 = 𝑨′ 𝑰 𝒔𝑖
𝒔𝑖 is short
𝑺 = [𝒔0𝒔1⋯𝒔𝑄]

𝑻 = 𝑨𝑺

𝒃 ∈ ℛ𝑞
𝑄+1

Is this problem hard?
No! We have attacks against this problem.

𝒛 = 𝑺𝒃

𝒜 wins if 𝑻 = 𝑨𝑺′ and 𝑺′ is short

46

𝑨𝒛 = 𝑻𝒃

Insecure Example: Large Algebraic Query

𝑻 = [𝒕0𝒕𝟏]

Adversary 𝒜

47

Assume • 𝑄 = 1
• 𝐵 ≪ modulus 𝑞
• 𝒔𝑖 ∞ < 𝐵

Insecure Example: Large Algebraic Query

• 𝑄 = 1
• 𝐵 ≪ modulus 𝑞
• 𝒔𝑖 ∞ < 𝐵 𝑻 = [𝒕0𝒕𝟏]

Adversary 𝒜

48

Assume

𝒃 = (1, 𝐵)

𝒛 = 𝒔0 + 𝐵 ⋅ 𝒔1

Since 𝒔0 , 𝒔1 , 𝐵 ≪ 𝑞,
“=” holds over ℤ

Insecure Example: Large Algebraic Query

𝑻 = [𝒕0𝒕𝟏]

Adversary 𝒜

49

Assume

𝒃 = (1, 𝐵)

𝒛 = 𝒔0 + 𝐵 ⋅ 𝒔1

• 𝑄 = 1
• 𝐵 ≪ modulus 𝑞
• 𝒔𝑖 ∞ < 𝐵

Since 𝒔0 , 𝒔1 , 𝐵 ≪ 𝑞,
“=” holds over ℤ

1. 𝒛 mod 𝐵 = 𝒔0

Insecure Example: Large Algebraic Query

𝑻 = [𝒕0𝒕𝟏]

Adversary 𝒜

50

Assume

𝒃 = (1, 𝐵)

𝒛 = 𝒔0 + 𝐵 ⋅ 𝒔1

• 𝑄 = 1
• 𝐵 ≪ modulus 𝑞
• 𝒔𝑖 ∞ < 𝐵

Since 𝒔0 , 𝒔1 , 𝐵 ≪ 𝑞,
“=” holds over ℤ

1. 𝒛 mod 𝐵 = 𝒔0
2. Recover 𝒔1 from 𝒔0 and 𝒛

Insecure Example: Large Algebraic Query

𝑻 = [𝒕0𝒕𝟏]

Adversary 𝒜

51

Assume

𝒃 = (1, 𝐵)

𝒛 = 𝒔0 + 𝐵 ⋅ 𝒔1

𝒔0, 𝒔1𝒜 wins!

• 𝑄 = 1
• 𝐵 ≪ modulus 𝑞
• 𝒔𝑖 ∞ < 𝐵

Since 𝒔0 , 𝒔1 , 𝐵 ≪ 𝑞,
“=” holds over ℤ

1. 𝒛 mod 𝐵 = 𝒔0
2. Recover 𝒔1 from 𝒔0 and 𝒛

Insecure Example: Large Algebraic Query

𝑻 = [𝒕0𝒕𝟏]

Adversary 𝒜

52

Assume

𝒃 = (1, 𝐵)

𝒛 = 𝒔0 + 𝐵 ⋅ 𝒔1

𝒔0, 𝒔1𝒜 wins!

• 𝑄 = 1
• 𝐵 ≪ modulus 𝑞
• 𝒔𝑖 ∞ < 𝐵

Since 𝒔0 , 𝒔1 , 𝐵 ≪ 𝑞,
“=” holds over ℤ

1. 𝒛 mod 𝐵 = 𝒔0
2. Recover 𝒔1 from 𝒔0 and 𝒛

Lattice-specific attack exploiting “small” secret

Insecure Example: Large Algebraic Query

𝑻 = [𝒕0𝒕𝟏]

Adversary 𝒜

53

Assume

𝒃 = (1, 𝐵)

𝒛 = 𝒔0 + 𝐵 ⋅ 𝒔1

𝒔0, 𝒔1𝒜 wins!

• 𝑄 = 1
• 𝐵 ≪ modulus 𝑞
• 𝒔𝑖 ∞ < 𝐵

Since 𝒔0 , 𝒔1 , 𝐵 ≪ 𝑞,
“=” holds over ℤ

1. 𝒛 mod 𝐵 = 𝒔0
2. Recover 𝒔1 from 𝒔0 and 𝒛

Lattice-specific attack exploiting “small” secret

Since 𝑠𝑖 ← ℤ𝑞 in classical setting,
Attack does not work well.

Insecure Example: Large Algebraic Query

𝑻 = [𝒕0𝒕𝟏]

Adversary 𝒜

54

Assume

𝒃 = (1, 𝐵)

𝒛 = 𝒔0 + 𝐵 ⋅ 𝒔1

We have to restrict the shape of LWE queries to ensure hardness!

• 𝑄 = 1
• 𝐵 ≪ modulus 𝑞
• 𝒔𝑖 ∞ < 𝐵

Since 𝒔0 , 𝒔1 , 𝐵 ≪ 𝑞,
“=” holds over ℤ

𝒔0, 𝒔1𝒜 wins!

1. 𝒛 mod 𝐵 = 𝒔0
2. Recover 𝒔1 from 𝒔0 and 𝒛

Lattice-specific attack exploiting “small” secret

Since 𝑠𝑖 ← ℤ𝑞 in classical setting,
Attack does not work well.

Accepted Linear Combination

“Accepted Linear Combination” (ALC): ℒ ⊆ ℛ𝑞
𝑄+1 ×𝑄

We have to restrict the shape of queries to ensure hardness.

55

Accepted Linear Combination

“Accepted Linear Combination” (ALC): ℒ ⊆ ℛ𝑞
𝑄+1 ×𝑄

We have to restrict the shape of queries to ensure hardness.

𝑻

𝑄 times

𝑺′
Adversary 𝒜 Challenger 𝐶

𝒃𝑖 ∈ ℛ𝑞
𝑄+1

𝒛𝑖 = 𝑺𝒃𝑖

𝒜 wins if 𝑻 = 𝑨𝑺′ and 𝑺′ is short

New condition:

𝑩 = 𝒃1⋯𝒃𝑄 ∈ ℒ
56

Accepted Linear Combination

“Accepted Linear Combination” (ALC): ℒ ⊆ ℛ𝑞
𝑄+1 ×𝑄

We have to restrict the shape of queries to ensure hardness.

𝑻

𝑄 times

𝑺′
Adversary 𝒜 Challenger 𝐶

𝒃𝑖 ∈ ℛ𝑞
𝑄+1

𝒛𝑖 = 𝑺𝒃𝑖

𝒜 wins if 𝑻 = 𝑨𝑺′ and 𝑺′ is short

New condition:

𝑩 = 𝒃1⋯𝒃𝑄 ∈ ℒ
57

① Define ℒ

② Prove the hardness of AOM-MLWE with ℒ

Accepted Linear Combination

“Accepted Linear Combination” (ALC): ℒ ⊆ ℛ𝑞
𝑄+1 ×𝑄

We have to restrict the shape of queries to ensure hardness.

𝑻

𝑄 times

𝑺′
Adversary 𝒜 Challenger 𝐶

𝒃𝑖 ∈ ℛ𝑞
𝑄+1

𝒛𝑖 = 𝑺𝒃𝑖

𝒜 wins if 𝑻 = 𝑨𝑺′ and 𝑺′ is short

New condition:

𝑩 = 𝒃1⋯𝒃𝑄 ∈ ℒ
58

① Define ℒ ⇒ protocol-specific

② Prove the hardness of AOM-MLWE with ℒ

Accepted Linear Combination

“Accepted Linear Combination” (ALC): ℒ ⊆ ℛ𝑞
𝑄+1 ×𝑄

We have to restrict the shape of queries to ensure hardness.

𝑻

𝑄 times

𝑺′
Adversary 𝒜 Challenger 𝐶

𝒃𝑖 ∈ ℛ𝑞
𝑄+1

𝒛𝑖 = 𝑺𝒃𝑖

𝒜 wins if 𝑻 = 𝑨𝑺′ and 𝑺′ is short

New condition:

𝑩 = 𝒃1⋯𝒃𝑄 ∈ ℒ
59

① Define ℒ ⇒ protocol-specific

② Prove the hardness of AOM-MLWE with ℒ

How do we establish the hardness under specific ℒ?

Classical Setting:

⇒ Use Generic Group Model (GGM)

⇒ (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

60

How do we establish the hardness under specific ℒ?

Classical Setting:

⇒ Use Generic Group Model (GGM)

⇒ (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

Lattice Setting:

⇒ No model like GGM!!

How do we establish the hardness?

61

We heuristically establish it in two steps:

1. “Selective” AOM-MLWE with specific ℒ is hard under standard assumptions.

2. Practical cryptanalysis against adaptive adversary.

How do we establish the hardness under specific ℒ?

Classical Setting:

⇒ Use Generic Group Model (GGM)

⇒ (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

Lattice Setting:

⇒ No model like GGM!!

How do we establish the hardness?

62

Step 1: Hardness of Selective AOM-MLWE with ℒ

What is sel-AOMMLWE?

𝒜 has to output a query matrix ℬ ∈ ℒ at the beginning of the game.

Why selective?
Previous insecure example induces a statistical attack.
⇒ reveals obvious “weak” parameters

It does not exploit
adaptive query.

63

Step 1: Hardness of Selective AOM-MLWE with ℒ

To show sel-AOM-MLWE with specific ℒ is hardGoal of this step:

i.e., needs to exploit adaptive query to break

What is sel-AOMMLWE?

𝒜 has to output a query matrix ℬ ∈ ℒ at the beginning of the game.

64

Why selective?
Previous insecure example induces a statistical attack.
⇒ reveals obvious “weak” parameters

It does not exploit
adaptive query.

Step 1: Hardness of Selective AOM-MLWE with ℒ

The sel-AOM-LWE with certain ℒ is hard under MLWE + MSIS.

We showed that

What is sel-AOMMLWE?

𝒜 has to output a query matrix ℬ ∈ ℒ at the beginning of the game.

To show sel-AOM-MLWE with specific ℒ is hardGoal of this step:

i.e., needs to exploit adaptive query to break

65

Why selective?
Previous insecure example induces a statistical attack.
⇒ reveals obvious “weak” parameters

It does not exploit
adaptive query.

Step 2: Practical Cryptanalysis against Adaptive 𝒜

66

Consider a generic attack for certain ℒ.

𝒜’s strategy in simple example:

𝑄 ⋅ 𝒔0 +෍

𝑖=1

𝑄

𝒔𝑖

Step 2: Practical Cryptanalysis against Adaptive 𝒜

From LWE queries, obtain 𝒔0 + 𝒔𝑖 𝑖∈[𝑄]

Sum

67

Consider a generic attack for certain ℒ.

𝒜’s strategy in simple example:

𝑄 ⋅ 𝒔0 +෍

𝑖=1

𝑄

𝒔𝑖From LWE queries, obtain 𝒔0 + 𝒔𝑖 𝑖∈[𝑄]

Sum

By Gaussian convolution,

this is 𝑄 times smaller than 𝑄 ⋅ 𝒔0

68

Step 2: Practical Cryptanalysis against Adaptive 𝒜

Consider a generic attack for certain ℒ.

𝒜’s strategy in simple example:

𝑄 ⋅ 𝒔0 +෍

𝑖=1

𝑄

𝒔𝑖From LWE queries, obtain 𝒔0 + 𝒔𝑖 𝑖∈[𝑄]

Sum

By Gaussian convolution,

this is 𝑄 times smaller than 𝑄 ⋅ 𝒔0

A new easier LWE instance

Secret size 𝑄 times smaller than before.

69

Step 2: Practical Cryptanalysis against Adaptive 𝒜

Consider a generic attack for certain ℒ.

𝒜’s strategy in simple example:

𝑄 ⋅ 𝒔0 +෍

𝑖=1

𝑄

𝒔𝑖From LWE queries, obtain 𝒔0 + 𝒔𝑖 𝑖∈[𝑄]

Sum

By Gaussian convolution,

this is 𝑄 times smaller than 𝑄 ⋅ 𝒔0

A new easier LWE instance

Secret size 𝑄 times smaller than before.

Heuristically show that for 𝒜 following this strategy

An adaptive 𝒜 is no stronger than a selective 𝒜.

Generalize this strategy to all accepted queries in ℒ.

70

Step 2: Practical Cryptanalysis against Adaptive 𝒜

Consider a generic attack for certain ℒ.

𝒜’s strategy in simple example:

Two-Round Threshold Raccoon

71

Construction

Construct by combining FROST + TRaccoon

72

Construction

TRaccoon:
Lattice-based 3-round TS

FROST:
DL-based 2-round TS

Construct by combining FROST + TRaccoon

73

Construction

Construct by combining FROST + TRaccoon

2-round Signing Protocol:

Offline-online efficiency

FROST:
DL-based 2-round TS

TRaccoon:
Lattice-based 3-round TS

74

Construction

TRaccoon:
Lattice-based 3-round TS

FROST:
DL-based 2-round TS

Construct by combining FROST + TRaccoon

2-round Signing Protocol:

Offline-online efficiency

75

Masking Technique:

To prevent lattice-specific attack

Construction

TRaccoon:
Lattice-based 3-round TS

FROST:
DL-based 2-round TS

Construct by combining FROST + TRaccoon

2-round Threshold Raccoon

Masking Technique:

To prevent lattice-specific attack

2-round Signing Protocol:

Offline-online efficiency

76

Security

We proved the unforgeability under AOM-MLWE.

Proof strategy is almost the same as FROST’s proof, but…

77

Check if query matrix made by reduction is contained in our ALC!!

Security

We proved the unforgeability under AOM-MLWE.

Proof strategy is almost the same as FROST’s proof, but…

Our ALC :

78

Check if query matrix made by reduction is contained in our ALC!!

Block diagonal

Row vector

Performances

Scheme |vk| |Sig|
Online

Comm./User

Offline

Comm./User

3-round 3.9 KB 12.7 KB 40.8 KB -

2-round 5.5 KB 10.8 KB 14.1 KB 262 KB

Under T ≤ 1024 setting, for 128-bit security,

Almost the same Efficient! Overhead

79

Thank You!

Important Future Work:
➢ To prove the hardness of adaptive AOM-MLWE.

Concurrent Works:

➢ “Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding”
[C: KTR24] (Next Talk!!)

➢ “Flood and submerse: Verifiable short secret sharing and application to robust threshold
signatures on lattices” [C: EPN24] (Talk was this morning!!)

➢ “Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures” [Eprint:CATZ24]

Recent Related Works:

➢ “Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors” [Eprint:BKL+24]

80

(※ partially offline-online efficient)

	スライド 1: Two-Round Threshold Signature from Algebraic One-More Learning with Errors
	スライド 2: Our Lattice-based Threshold Signature Scheme
	スライド 3: Background
	スライド 4: T-out-of-N Threshold Signatures (Key Generation)
	スライド 5: T-out-of-N Threshold Signatures (Key Generation)
	スライド 6: T-out-of-N Threshold Signatures (Key Generation)
	スライド 7: T-out-of-N Threshold Signatures (Signing)
	スライド 8: T-out-of-N Threshold Signatures (Signing)
	スライド 9: T-out-of-N Threshold Signatures (Signing)
	スライド 10: T-out-of-N Threshold Signatures (Signing)
	スライド 11: T-out-of-N Threshold Signatures (Signing)
	スライド 12: T-out-of-N Threshold Signatures (Signing)
	スライド 13: Nice Property: Offline-Online Efficiency
	スライド 14: Nice Property: Offline-Online Efficiency
	スライド 15: Nice Property: Offline-Online Efficiency
	スライド 16: Nice Property: Offline-Online Efficiency
	スライド 17: Nice Property: Offline-Online Efficiency
	スライド 18: Nice Property: Offline-Online Efficiency
	スライド 19: Recent Breakthrough
	スライド 20: TRaccoon [EC:dPKM+24]
	スライド 21: TRaccoon [EC:dPKM+24]
	スライド 22: TRaccoon [EC:dPKM+24]
	スライド 23: TRaccoon [EC:dPKM+24]
	スライド 24: Open Problem
	スライド 25: Open Problem
	スライド 26: Open Problem
	スライド 27: Open Problem
	スライド 28: Open Problem
	スライド 29: Introducing Algebraic One-More MLWE
	スライド 30: One-More DL [BNPS02, BNPS03, BMV08]
	スライド 31: One-More DL [BNPS02, BNPS03, BMV08]
	スライド 32: One-More DL [BNPS02, BNPS03, BMV08]
	スライド 33: One-More DL [BNPS02, BNPS03, BMV08]
	スライド 34: Algebraic One-More DL [NRS21]
	スライド 35: Algebraic One-More DL [NRS21]
	スライド 36: Algebraic One-More DL [NRS21]
	スライド 37: Algebraic One-More DL [NRS21]
	スライド 38: Algebraic One-More DL [NRS21]
	スライド 39: Algebraic One-More DL [NRS21]
	スライド 40: Algebraic One-More DL [NRS21]
	スライド 41: Naive Attempt
	スライド 42: Naive Attempt
	スライド 43: Naive Attempt
	スライド 44: Naive Attempt
	スライド 45: Naive Attempt
	スライド 46: Naive Attempt
	スライド 47: Insecure Example: Large Algebraic Query
	スライド 48: Insecure Example: Large Algebraic Query
	スライド 49: Insecure Example: Large Algebraic Query
	スライド 50: Insecure Example: Large Algebraic Query
	スライド 51: Insecure Example: Large Algebraic Query
	スライド 52: Insecure Example: Large Algebraic Query
	スライド 53: Insecure Example: Large Algebraic Query
	スライド 54: Insecure Example: Large Algebraic Query
	スライド 55: Accepted Linear Combination
	スライド 56: Accepted Linear Combination
	スライド 57: Accepted Linear Combination
	スライド 58: Accepted Linear Combination
	スライド 59: Accepted Linear Combination
	スライド 60: How do we establish the hardness under specific スクリプト 大文字 L?
	スライド 61: How do we establish the hardness under specific スクリプト 大文字 L?
	スライド 62: How do we establish the hardness under specific スクリプト 大文字 L?
	スライド 63: Step 1: Hardness of Selective AOM-MLWE with ℒ
	スライド 64: Step 1: Hardness of Selective AOM-MLWE with ℒ
	スライド 65: Step 1: Hardness of Selective AOM-MLWE with ℒ
	スライド 66: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 67: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 68: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 69: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 70: Step 2: Practical Cryptanalysis against Adaptive スクリプト 大文字 A.
	スライド 71: Two-Round Threshold Raccoon
	スライド 72: Construction
	スライド 73: Construction
	スライド 74: Construction
	スライド 75: Construction
	スライド 76: Construction
	スライド 77: Security
	スライド 78: Security
	スライド 79: Performances
	スライド 80: Thank You!

