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Our Lattice-based Threshold Signature Scheme

- Signing Protocol
= 2-Round with Offline-Online Efficiency

- Security
~ New Assumption : Algebraic One-More MLWE

- Efficiency
Signature Size = 11 KB,
Online Communication Cost = 14 KB
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T-out-of-IN Threshold Signatures (Key Generation)

Verification key vk
)
Signing key sk

T or more key shares reconstruct sk

* No user knows sk
. . . » Lessthan T key shares leak no
a n ﬂ information about sk

¥ We assume that a trusted party executes distributed key
generation as well as [BCK+22,dPKM+24] etc.
% 2-out-of-3
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“Multi-Round” Signing Protocol

General Procedure:
1.  One decides message m and
signer set SS
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T-out-of-IN Threshold Signatures (Signing)

.:> m, SS
|

Multi-Round Communication

x

“Multi-Round” Signing Protocol

sk, sk, sks

% 2-out-of-3

General Procedure:

1.  One decides message m and

signer set SS
2. Usersin SS execute signing protocol
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T-out-of-IN Threshold Signatures (Signing)

“Multi-Round” Signing Protocol

. General Procedure:
——> mSS
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H signer set SS
2. Usersin SS execute signing protocol
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T-out-of-IN Threshold Signatures (Signing)

“Multi-Round” Signing Protocol

. General Procedure:
——> mSS

1.  One decides message m and
H signer set SS
2. Usersin SS execute signing protocol
)

(
. .<:>. |:> Signature ¢

sk, sk, sks

\ / | In some restricted environments,
SS ={2,3} . )
multi-round is performance bottleneck &=

Multi-Round Communication

% 2-out-of-3
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Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase
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First Round: Pre-processing Phase Second Round: Signing Phase
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Can be executed in advance.
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Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase

Second Round: Signing Phase
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Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase

: I:> m,SS, {ppi}iESS

® © 0 o
an Lo A

mySS

o
o a

PP1 pPDp2

| |
ZYUB

0]
Can be executed in advance.

17



Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase

: I:> m,SS, {ppi}iESS

® © 0 o
an Lo A

mySS

o
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PP1 pPDp2

| |
ZYJB
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Can be executed in advance. Non-interactive!
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Recent Breakthrough

Previous: [BKP13], [BGG+18], [ASY22], [GKS23].

They rely on heavy tools like FHE and HTDC.

Very Recent:

Practical Lattice-based TS : Threshold Raccoon (TRaccoon) [EC.dPKM+24]

- [T

w/0 heavy tools
ISigl = 13 KB, Comm. Cost = 40 KB
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TRaccoon [EC.dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKMZ23]
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TRaccoon [EC.dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Classical Setting

Sparkle [CKM23]:

» Schnorr signature

= Discrete Log (DL)

= Built from Fiat-Shamir Transform
» 3-round signing protocol
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TRaccoon [EC.dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Classical Setting Lattice Setting
Sparkle [CKM23]: TRaccoon:
> Schnorr signature » Raccoon signature (Dilithium-like)
= Discrete Log (DL) = MLWE and MSIS
= Built from Fiat-Shamir Transform = Built from Fiat-Shamir Transform

» 3-round signing protocol
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TRaccoon [EC.dPKM+24]

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Classical Setting Lattice Setting
Sparkle [CKM23]: TRaccoon:
> Schnorr signature » Raccoon signature (Dilithium-like)
= Discrete Log (DL) = MLWE and MSIS
= Built from Fiat-Shamir Transform = Built from Fiat-Shamir Transform
» 3-round signing protocol » 3-round signing protocol
= Masking Technique
/¥

Lattice specific technique
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Open Problem

Classical Setting

Sparkle [CKM23]

3-round

Lattice Setting

TRaccoon [dPKM+24]
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Sparkle [CKM23] TRaccoon [dPKM+24]

FROST [KG20, BCK+22]
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Open Problem

Classical Setting

Sparkle [CKM23]

(Algebraic)
One-More DL

T

FROST [KG20, BCK+22]

3-round

Lattice Setting

TRaccoon [dPKM+24]

[ This Work ]
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Introducing Algebraic One-More MLWE



One-More DL [BNPS02, BNPSO3, BMVOS]

Instance: g, Xo, X1, ..., Xo 4)( g%, x; €T,

X = (xo,xl, ,.'X'Q)

g'XO'XII---;XQ ~]

Adversary A Challenger C




One-More DL [BNPSO02, BNPSO3, BMVO0S]

Instance: g, Xy, X3, -

=

Adversary A

XQ{X

g™, x; € Ly,
x = (xq, X1, - xQ)
9, Xo, X1, ..., Xq
Y
DL(Y) Q times ii

Challenger €
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One-More DL [BNPSO02, BNPSO3, BMVO0S]

Instance: g, Xo, X1, ..., Xo QXL- = g%, x; € Z,,

) 9, X0, X1, .., Xq ~J
Y
DL(Y) Q times
Adversary A ) Challenger C

\ 4

A winif X; = gxl{ for all i
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One-More DL [BNPSO02, BNPSO3, BMVO0S]

Instance: g, Xo, X1, ..., Xo QXL- = g%, x; € Z,,

) 9, X0, X1, .., Xq ~J
Y
DL(Y) Q times
Adversary A ) Challenger C

»

A winif X; = gxl{ for all i
C has to solve DL(Y) to answer queries = Unfalsifiable
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Algebraic One-More DL [NRS21]

= A Is allowed to make only algebraic queries.
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Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g, Xy, X3, ..., Xp 4 Xi =g*, x; €Ly, X = (X0, X1, e, Xq)
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Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g,Xo,Xl, ’XQ 4 Xi = gxi, X; € Zp

9 Xo Xy Xg
beztt
b; p
j z=DL(X}")
z =(x,b)

Adversary A <

X = (Xg, X1, e Xg)

Q times

Challenger C
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= A IS allowed to make only algebraic queries.
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Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g, Xy, X3, ..., Xp 4 Xi =g*, x; €Ly, X = (X0, X1, e, Xq)
\/—
) 9, X0, X1, -, Xg
b ezt
j z=DL(X}") :
: z = (x, b) Q times
Adversary A < Challenger C

!/ !/ !/
01 Q , AwinifX; = g*i forall i

C can compute z = (x, b) efficiently to answer queries = Falsifiable
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Algebraic One-More DL [NRS21]

= A IS allowed to make only algebraic queries.

Instance: g, Xy, X1, ..., X <~ Xi = g™, x; €Zy x = (Xg, X1, -, XQ)

() g, X, X1, -, Xp ﬁ\

AOM-DL = 2-Round TS FROST

Lattice-based variant? C

\_

JC VVIIT I A — Y v TUI dll{

C can compute z = (x, b) efficiently to answer queries =
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Naive Attempt

) _ kx(Q+1)
Instance: A € R’gX*’,T = [tot1 - ty] € R, <

s; is short
S = [s0S1 - S¢]
T =AS

A

Adversary A

Challenger C
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Naive Attempt

: kKxt g _ kx(Q+1)
Instance: A € RF™, T = [tot; - ty] ER, <

s; is short
= Al T ||Si S = [soS51 " Sq]
T =AS

Q+1
beR,
Az=Tb
Zz=3Sb Q times

Adversary A Challenger C

»

A wins if T = AS' and S’ is short

Is this problem hard?
No! We have attacks against this problem.



Insecure Example: Large Algebraic Query

Assume « (=1
* B K modulusq
* |Isillo <B

T = [tot4]

A

Adversary A
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Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulusq
* ”Si”oo <B T = [tyt,]

A

b=(1,B)

v

Z:SO‘l‘B'Sl

A

Adversary A Since ||soll, Is1]l, B < q,
“=" holds over Z
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Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulusq
* ”Si”oo <B T = [tyt,]

A

v

1. zmodB = s, b=(15)
Z:SO‘l‘B'Sl

A

Adversary A Since ||soll, Is1]l, B < q,
“=" holds over Z
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Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulusq
* ”Si”oo <B T = [tyt,]

A

v

A

1. zmodB = s, b=(15)
2. Recover s, from sy and z Z=S,+B-s;

Adversary A Since ||soll, Is1]l, B < q,
“=" holds over Z
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Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulusq
* ”Si”oo <B T = [tyt,]

A

1. zmodB = s, b=(15)

2. Recover s, from sy and z Z=S,+B-s;

v

A

Adversary A Since ||soll, Is1]l, B < q,
“=" holds over Z

[ A wins! ]7 S0, 51

v
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Insecure Example: Large Algebraic Query

Assume « (Q =1
* B K< modulus q
* [lIsillo <B

1. zmodB = s,
2. Recover s, from sy and z

Lattice-specific attack exploiting “smal

|”

ALQISE

secret

T = [tot4]

A

b=(1,B)

Z:SO‘l‘B'Sl

v

A

ry A Since ||soll, [s1]l, B «< g,
“:” holds Over Z

[ A wins! ]7 S0, 51

v
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Insecure Example: Large Algebraic Query

Assume o

Q=1

B < modulus q

Isill < B

1. zmodB = s,
2. Recover s, from sy and z

ALQISE

Lattice-specific attack exploiting “small” secret

Since s; « Z, in classical setting,
Attack does not work well.

ry A

T = [tot4]

A

b=(1,B)
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Insecure Example: Large Algebraic Query

Assume o

Q=1

B < modulus q

Isill < B

1. zmodB = s,
2. Recover s, from sy and z

ALQ&&

Lattice-specific attack exploiting “small” secret

Since s; « Z, in classical setting,
Attack does not work well.

ry A

T = [tot4]

A

b=(1,B)

Z:SO‘l‘B'Sl

v

A

Since ”SO”r “SllllB << CI;
“=" holds over Z

[ A wins! ]7 S0, 51

We have to restrict the shape of LWE queries to ensure hardness!
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Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC): L © REIQ“)XQ
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Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC). L < :REIQH)XQ

T

A

Q+1
b, € RS

z, = Sh, Q times

Adversary A Challenger C
SI

> Awins if T = AS' and S’ is short
New condition:
B=|b,-by| €L
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Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC). L < SQEIQH)XQ

T

A

VA | ’

A

Adversary A

1) Define L

@ Prove the hardness of AOM-MLWE with £

New condition: —~_~

B=|b,-by| €L
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Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC). L < SQEIQH)XQ

T

A

VA | ’

A

Adversary A

@ Define £L = protocol-specific

@ Prove the hardness of AOM-MLWE with £

New condition: —~_~

B=|b,-by| €L
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Accepted Linear Combination

We have to restrict the shape of queries to ensure hardness.

» “Accepted Linear Combination” (ALC). L < SQEIQH)XQ

T

A

VA | ’

A

Adversary A

@ Define £L = protocol-specific

@ Prove the hardness of AOM-MLWE with £

New condition: —~_~

B=|b,-by| €L
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How do we establish the hardness under specific L?

Classical Setting:
= Use Generic Group Model (GGM)
= (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].
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Lattice Setting:
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How do we establish the hardness under specific L?

Classical Setting:
= Use Generic Group Model (GGM)
= (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

Lattice Setting:
= No model like GGM!!

How do we establish the hardness?

We heuristically establish it in two steps:
1. “Selective” AOM-MLWE with specific £ is hard under standard assumptions.

2. Practical cryptanalysis against adaptive adversary.
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Step 1. Hardness of Selective AOM-MLWE with L

What is sel-AOMMLWE?
A has to output a query matrix B € L at the beginning of the game.

Why selective?

Previous insecure example induces a statistical attack. ﬁ It does not exploit

. « ” adaptive query.
= reveals obvious “weak” parameters PIVe query
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i.e., needs to exploit adaptive query to break
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Step 1. Hardness of Selective AOM-MLWE with L

What is selAOMMLWE?
A has to output a query matrix B € L at the beginning of the game.

Why selective?

It does not exploit
adaptive query.

Previous insecure example induces a statistical attack. ﬁ

= reveals obvious “weak” parameters

Goal of this step: | To show sel-AOM-MLWE with specific L is hard

i.e., needs to exploit adaptive query to break

We showed that

The sel-AOM-LWE with certain L is hard under MLWE + MSIS.
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Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:
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Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:

Sum Q
From LWE queries, obtain {so + S;}ic[gq) —— 0 -s, + Z s;
i=1
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Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:

Sum

From LWE queries, obtain {so + Si}ic[gq) ——— Q-so+ ) s;

1
N
By Gaussian convolution,

this is \/6 times smaller than Q - s

e

L=
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Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:

Sum Q
From LWE queries, obtain {sg + $;}ie[gq] —— .S + 2 s;
i=1
N
A new easier LWE instance By Gaussian convolution,

— . . .
e — this is \/anmes smaller than Q - s

Secret size \/5 times smaller than before.
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Step 2: Practical Cryptanalysis against Adaptive A

Consider a generic attack for certain L.

A’s strategy in simple example:

Sum
From LWE queries, obtain {so + S;}ic[gq) —— 0 -s, +

e

S;

=1

N

A new easier LWE instance

T —

By Gaussian convolution,

this is \/6 times smaller than Q - s

Secret size \/5 times smaller than before.

Generalize this strategy to all accepted queries in L.
Heuristically show that for A following this strategy

An adaptive A is no stronger than a selective A.
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Two-Round Threshold Raccoon



Construction

Construct by combining FROST + TRaccoon
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DL-based 2-round TS

TRaccoon:
Lattice-based 3-round TS
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Construction

Construct by combining FROST + TRaccoon

FROST:

DL-based 2-round TS

Lattice-based 3-round TS

TRaccoon:

2-round Signing Protocol:
Offline-online efficiency

N/

Masking Technique:
To prevent lattice-specific attack

2-round Threshold Raccoon
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Security

We proved the unforgeability under AOM-MLWE.
Proof strategy is almost the same as FROST’s proof, but...

Check if query matrix made by reduction is contained in our ALC!!
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Security

We proved the unforgeability under AOM-MLWE.

Proof strategy is almost the same as FROST's proof, but...

Check if query matrix made by reduction is contained in our ALC!!

Our ALC ;
( e
B,
_ )| B,
ETS‘{ PmW]
\ L

Row vector

cg,

’ Pcolumn C R?X(Q_l)

By

Block diagonal

Vi € [Q'], (¢i, B;) € Crs x Brs,
(PI'OW7 Pcolumn) € ,P(2;)_1
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Performances

Under T <1024 setting, for 128-bit security,

. Online Offline
SEEmE VK| ISig| Comm./User Comm./User
3-round 3.9 KB 12.7 KB 40.8 KB -
2-round 5.5 KB 10.8 KB 14.1 KB 262 KB
—
Almost the same Efficient! \ Overhead
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Thank Youl!

Important Future Work:
> To prove the hardness of adaptive AOM-MLWE.

Concurrent Works:

> “Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding”
[C: KTR24] (Next Talk!!)

> “Flood and submerse: Verifiable short secret sharing and application to robust threshold
signatures on lattices” [C: EPN24] (Talk was this morning!!)

> “Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures” [Eprint: CATZ24]

Recent Related Works:

> “Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors” [Eprint:BKL+24]
(% partially offline-online efficient)
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