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Our Lattice-based Threshold Signature Scheme

- Signing Protocol
2-Round with Offline-Online Efficiency

- Security
New Assumption : Algebraic One-More MLWE

- Efficiency

Signature Size ≈ 11 KB,  

Online Communication Cost ≈ 14 KB

2



Background
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T-out-of-N Threshold Signatures (Key Generation)

Verification key 𝑣𝑘
⇕

Signing key 𝑠𝑘

※2-out-of-3
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T-out-of-N Threshold Signatures (Key Generation)

Verification key 𝑣𝑘
⇕

Signing key 𝑠𝑘

※2-out-of-3

※We assume that a trusted party executes distributed key 
generation as well as [BCK+22,dPKM+24] etc.

• 𝑇 or more key shares reconstruct 𝑠𝑘

• No user knows 𝑠𝑘
• Less than T key shares leak no 

information about 𝑠𝑘
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T-out-of-N Threshold Signatures (Signing)

※2-out-of-3
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“Multi-Round” Signing Protocol

General Procedure:

𝑠𝑘1 𝑠𝑘2 𝑠𝑘3



T-out-of-N Threshold Signatures (Signing)
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𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

“Multi-Round” Signing Protocol

𝑚, 𝑆𝑆

𝑆𝑆 = 2,3

General Procedure:
1. One decides message 𝑚 and 

signer set 𝑆𝑆
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“Multi-Round” Signing Protocol

𝑆𝑆 = 2,3
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Multi-Round Communication

General Procedure:
1. One decides message 𝑚 and 

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing protocol
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“Multi-Round” Signing Protocol

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆

Signature 𝜎

Multi-Round Communication

General Procedure:
1. One decides message 𝑚 and 

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing protocol



T-out-of-N Threshold Signatures (Signing)
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𝑠𝑘1 𝑠𝑘2 𝑠𝑘3

“Multi-Round” Signing Protocol

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆
General Procedure:
1. One decides message 𝑚 and 

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing protocol

Signature 𝜎

In some restricted environments,
multi-round is performance bottleneck 

Multi-Round Communication



Nice Property: Offline-Online Efficiency

First Round: Pre-processing Phase Second Round: Signing Phase
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Can be executed in advance.
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Can be executed in advance.

𝜎2 𝜎3

𝜎
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𝑝𝑝1 𝑝𝑝2 𝑝𝑝3
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Can be executed in advance. Non-interactive!

𝜎2 𝜎3

𝜎
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Recent Breakthrough

• w/o heavy tools
• |Sig| ≈ 13 KB, Comm. Cost ≈ 40 KB

Previous: [BKP13], [BGG+18], [ASY22], [GKS23].

They rely on heavy tools like FHE and HTDC.

Practical Lattice-based TS : Threshold Raccoon (TRaccoon) [EC:dPKM+24] 

Very Recent:

19



TRaccoon [EC:dPKM+24] 

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]
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TRaccoon [EC:dPKM+24] 

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Sparkle [CKM23]:

➢ Schnorr signature
⇒ Discrete Log (DL)
⇒ Built from Fiat-Shamir Transform 

➢ 3-round signing protocol

Classical Setting
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TRaccoon [EC:dPKM+24] 

Lattice-based TS based on 3-Round DL-based TS Sparkle [CKM23]

Sparkle [CKM23]:

➢ Schnorr signature
⇒ Discrete Log (DL)
⇒ Built from Fiat-Shamir Transform 

➢ 3-round signing protocol

TRaccoon:

➢ Raccoon signature (Dilithium-like)
⇒ MLWE and MSIS
⇒ Built from Fiat-Shamir Transform

➢ 3-round signing protocol
⇒ Masking Technique

Classical Setting Lattice Setting
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Lattice specific technique



Open Problem

Classical Setting Lattice Setting3-round

Sparkle [CKM23] TRaccoon [dPKM+24]
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Open Problem

Classical Setting Lattice Setting3-round

2-round

Sparkle [CKM23] TRaccoon [dPKM+24]

FROST [KG20, BCK+22]
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Introducing Algebraic One-More MLWE
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One-More DL [BNPS02, BNPS03, BMV08] 

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

Adversary 𝒜 Challenger 𝐶
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Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝑌

𝐷𝐿(𝑌)
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′
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′
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Adversary 𝒜 Challenger 𝐶
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One-More DL [BNPS02, BNPS03, BMV08] 

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝑌

𝐷𝐿(𝑌)

𝑥0
′ , 𝑥1

′ , … , 𝑥𝑄
′

𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

𝐶 has to solve 𝐷𝐿(𝑌) to answer queries ⇒ Unfalsifiable

𝒜 win if 𝑋𝑖 = 𝑔𝑥𝑖
′

for all 𝑖

Adversary 𝒜 Challenger 𝐶
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Algebraic One-More DL [NRS21] 

⇒ 𝒜 is allowed to make only algebraic queries.
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𝐶 can compute 𝑧 = 𝒙, 𝒃 efficiently to answer queries ⇒ Falsifiable

𝑋𝑖 = 𝑔𝑥𝑖 , 𝑥𝑖 ∈ ℤ𝑝

Algebraic One-More DL [NRS21] 

Adversary 𝒜 Challenger 𝐶

Instance: 𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑔, 𝑋0, 𝑋1, … , 𝑋𝑄

𝑄 times

𝒃 ∈ ℤ𝑝
𝑄+1

𝑧 = 𝒙, 𝒃

⇒ 𝒜 is allowed to make only algebraic queries.

𝑔𝑧 = ∏𝑋𝑖
𝑏𝑖
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′ , … , 𝑥𝑄
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𝒙 = (𝑥0, 𝑥1, … , 𝑥𝑄)

AOM-DL  ⇒ 2-Round TS FROST

Lattice-based variant?



Naive Attempt

Instance: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝑻 = [𝒕0𝒕1⋯𝒕𝑄] ∈ ℛ𝑞

𝑘×(𝑄+1)

𝑻

Adversary 𝒜 Challenger 𝐶

𝒕𝑖 = 𝑨′ 𝑰 𝒔𝑖
𝒔𝑖 is short
𝑺 = [𝒔0𝒔1⋯𝒔𝑄]

𝑻 = 𝑨𝑺
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Naive Attempt

Instance: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝑻 = [𝒕0𝒕1⋯𝒕𝑄] ∈ ℛ𝑞

𝑘×(𝑄+1)

𝑻
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𝑺′
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𝑻 = 𝑨𝑺

𝒃 ∈ ℛ𝑞
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𝒛 = 𝑺𝒃

𝒜 wins if 𝑻 = 𝑨𝑺′ and 𝑺′ is short
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Naive Attempt

Instance: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝑻 = [𝒕0𝒕1⋯𝒕𝑄] ∈ ℛ𝑞
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𝑻
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𝒕𝑖 = 𝑨′ 𝑰 𝒔𝑖
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𝑺 = [𝒔0𝒔1⋯𝒔𝑄]

𝑻 = 𝑨𝑺

𝒃 ∈ ℛ𝑞
𝑄+1

Is this problem hard? 
No! We have attacks against this problem.

𝒛 = 𝑺𝒃

𝒜 wins if 𝑻 = 𝑨𝑺′ and 𝑺′ is short
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Insecure Example: Large Algebraic Query

𝑻 = [𝒕0𝒕𝟏]

Adversary 𝒜
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“=” holds over ℤ
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Assume
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Assume

𝒃 = (1, 𝐵)
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𝑄+1 ×𝑄

We have to restrict the shape of queries to ensure hardness.
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How do we establish the hardness under specific ℒ?

Classical Setting: 

⇒ Use Generic Group Model (GGM)

⇒ (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].
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We heuristically establish it in two steps:

1. “Selective” AOM-MLWE with specific ℒ is hard under standard assumptions.

2. Practical cryptanalysis against adaptive adversary.
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Step 1: Hardness of Selective AOM-MLWE with ℒ

What is sel-AOMMLWE?

𝒜 has to output a query matrix ℬ ∈ ℒ at the beginning of the game. 

Why selective?
Previous insecure example induces a statistical attack.
⇒ reveals obvious “weak” parameters

It does not exploit 
adaptive query.
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Step 1: Hardness of Selective AOM-MLWE with ℒ

The sel-AOM-LWE with certain ℒ is hard under MLWE + MSIS.

We showed that

What is sel-AOMMLWE?

𝒜 has to output a query matrix ℬ ∈ ℒ at the beginning of the game. 

To show sel-AOM-MLWE with specific ℒ is hardGoal of this step:

i.e., needs to exploit adaptive query to break
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Step 2: Practical Cryptanalysis against Adaptive 𝒜
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Consider a generic attack for certain ℒ.

𝒜’s strategy in simple example:



𝑄 ⋅ 𝒔0 +෍

𝑖=1

𝑄

𝒔𝑖
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Sum 
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𝒜’s strategy in simple example:



𝑄 ⋅ 𝒔0 +෍

𝑖=1

𝑄

𝒔𝑖From LWE queries, obtain 𝒔0 + 𝒔𝑖 𝑖∈[𝑄]

Sum 

By Gaussian convolution,

this is 𝑄 times smaller than 𝑄 ⋅ 𝒔0

A new easier LWE instance

Secret size 𝑄 times smaller than before.

Heuristically show that for 𝒜 following this strategy

An adaptive 𝒜 is no stronger than a selective 𝒜.

Generalize this strategy to all accepted queries in ℒ.

70

Step 2: Practical Cryptanalysis against Adaptive 𝒜
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𝒜’s strategy in simple example:



Two-Round Threshold Raccoon
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Security

We proved the unforgeability under AOM-MLWE.

Proof strategy is almost the same as FROST’s proof, but…

77

Check if query matrix made by reduction is contained in our ALC!!



Security

We proved the unforgeability under AOM-MLWE.

Proof strategy is almost the same as FROST’s proof, but…

Our ALC :
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Check if query matrix made by reduction is contained in our ALC!!

Block diagonal

Row vector



Performances

Scheme |vk| |Sig|
Online 

Comm./User

Offline 

Comm./User

3-round 3.9 KB 12.7 KB 40.8 KB -

2-round 5.5 KB 10.8 KB 14.1 KB 262 KB

Under T ≤ 1024 setting, for 128-bit security,

Almost the same Efficient! Overhead
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Thank You!

Important Future Work:
➢ To prove the hardness of adaptive AOM-MLWE.

Concurrent Works:

➢ “Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding”
[C: KTR24] (Next Talk!!)

➢ “Flood and submerse: Verifiable short secret sharing and application to robust threshold 
signatures on lattices” [C: EPN24] (Talk was this morning!!)

➢ “Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures” [Eprint:CATZ24]

Recent Related Works:

➢ “Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors” [Eprint:BKL+24]
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(※ partially offline-online efficient)
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