Two-Round Threshold Signature from Algebraic One-More Learning with Errors

Thomas Espitau (PQShield)

Shuichi Katsumata (PQShield/AIST)

Kaoru Takemure (PQShield/AIST)

Our Lattice-based Threshold Signature Scheme

- Signing Protocol
	- **2-Round with Offline-Online Efficiency**
- Security

New Assumption : **Algebraic One-More MLWE**

- Efficiency
	- Signature Size \approx 11 KB,
	- Online Communication Cost \approx 14 KB

Background

T-out-of-*N* Threshold Signatures (Key Generation)

Verification key vk ⇕ Signing key sk

T-out-of-*N* Threshold Signatures (Key Generation)

 \bullet T or more key shares reconstruct sk

T-out-of-*N* Threshold Signatures (Key Generation)

 \bullet T or more key shares reconstruct sk

- **No user knows** sk
- Less than T key shares leak no information about sk

※We assume that a trusted party executes distributed key generation as well as [BCK+22,dPKM+24] etc.

"**Multi-Round**" Signing Protocol

General Procedure:

"**Multi-Round**" Signing Protocol

General Procedure:

1. One decides message m and signer set SS

"**Multi-Round**" Signing Protocol

General Procedure:

- 1. One decides message m and signer set SS
- 2. Users in SS execute signing protocol

"**Multi-Round**" Signing Protocol

General Procedure:

- 1. One decides message m and signer set SS
- 2. Users in SS execute signing protocol

Signature σ

"**Multi-Round**" Signing Protocol

General Procedure:

- 1. One decides message m and signer set SS
- 2. Users in SS execute signing protocol

Signature σ

In some restricted environments, multi-round is performance bottleneck

First Round: Pre-processing Phase $\begin{array}{c} \downarrow \\ \downarrow \end{array}$ Second Round: Signing Phase

Previous: [BKP13], [BGG+18], [ASY22], [GKS23].

They rely on heavy tools like FHE and HTDC.

Very Recent:

Practical Lattice-based TS : **Threshold Raccoon (TRaccoon)** [EC:dPKM+24]

 $|Sig| \approx 13$ KB, Comm. Cost ≈ 40 KB

Classical Setting

Sparkle [CKM23]:

- ➢ Schnorr signature
	- ⇒ Discrete Log (DL)
	- ⇒ Built from Fiat-Shamir Transform
- \geq 3-round signing protocol

Classical Setting Lattice Setting

Sparkle [CKM23]:

- ➢ Schnorr signature
	- ⇒ Discrete Log (DL)
	- ⇒ Built from Fiat-Shamir Transform
- \geq 3-round signing protocol

TRaccoon:

- \triangleright Raccoon signature (Dilithium-like)
	- \Rightarrow MLWE and MSIS
	- ⇒ Built from Fiat-Shamir Transform

Classical Setting Lattice Setting

Sparkle [CKM23]:

- ➢ Schnorr signature
	- ⇒ Discrete Log (DL)
	- ⇒ Built from Fiat-Shamir Transform
- \geq 3-round signing protocol

TRaccoon:

- \triangleright Raccoon signature (Dilithium-like)
	- \Rightarrow MLWE and MSIS
	- ⇒ Built from Fiat-Shamir Transform
- ➢ 3-round signing protocol
	- ⇒ **Masking Technique**

Lattice specific technique

2-round

FROST [KG20, BCK+22]

Introducing Algebraic One-More MLWE

Instance:
$$
g, X_0, X_1, ..., X_Q
$$
 $\left\{\n \begin{array}{c}\n X_i = g^{x_i}, x_i \in \mathbb{Z}_p \\
g, X_0, X_1, ..., X_Q\n \end{array}\n \right\}$ \n

\n $g, X_0, X_1, ..., X_Q$

\n

Adversary A Challenger C

Instance:
$$
g, X_0, X_1, \ldots, X_Q
$$

$$
\underbrace{\begin{array}{c} X_i = g^{x_i}, x_i \in \mathbb{Z}_p \\ g, X_0, X_1, \ldots, X_Q \end{array}}_{\text{L}(Y)} \underbrace{\begin{array}{c} x = (x_0, x_1, \ldots, x_Q) \\ \hline \text{L}(Y) \end{array}}_{\text{Q times}}
$$
\nChallenger C

Instance:
$$
g, X_0, X_1, ..., X_Q
$$

$$
\underbrace{\begin{array}{c} \overline{x} = g^{x_i}, x_i \in \mathbb{Z}_p \\ g, X_0, X_1, ..., X_Q \end{array}}_{\text{f}} \underbrace{\begin{array}{c} \overline{x} = (x_0, x_1, ..., x_Q) \\ \overline{y} \\ \overline{y}
$$

C has to solve $DL(Y)$ to answer queries \Rightarrow Unfalsifiable

Algebraic One-More DL [NRS21]

 \Rightarrow A is allowed to make only **algebraic queries.**

Algebraic One-More DL [NRS21]

⇒ is allowed to make only **algebraic queries.**

 $g, X_0, X_1, ..., X_Q$

$$
\text{Instance: } g, X_0, X_1, \dots, X_Q \leq X_i = g^{x_i}, x_i \in \mathbb{Z}_p
$$

Adversary A Challenger C

Algebraic One-More DL [NRS21]

 \Rightarrow $\mathcal A$ is allowed to make only **algebraic queries.**

Instance:
$$
g, X_0, X_1, \ldots, X_Q
$$

$$
\underbrace{\begin{array}{c} X_i = g^{x_i}, x_i \in \mathbb{Z}_p \\ g, X_0, X_1, \ldots, X_Q \\ \hline \end{array}}_{\mathbf{B} \in \mathbb{Z}_p^{Q+1}} \underbrace{\begin{array}{c} x = (x_0, x_1, \ldots, x_Q) \\ \hline \end{array}}_{\text{C times}}
$$

\nAdversary A
\Rightarrow $\mathcal A$ is allowed to make only **algebraic queries.**

Instance:
$$
g, X_0, X_1, \ldots, X_Q \setminus \overline{X_i = g^{x_i}, x_i \in \mathbb{Z}_p}
$$

\n
$$
\underbrace{g, X_0, X_1, \ldots, X_Q}_{\text{Z} = DL(X_i^{b_i})}
$$
\nwhere g, X_0, X_1, \ldots, X_Q and g, X_0, X_1, \ldots, X_Q are the following matrices:

\n
$$
\underbrace{g, X_0, X_1, \ldots, X_Q}_{\text{Z} = (x, b)}
$$
\n
$$
\underbrace{g, X_0, X_1, \ldots, X_Q}_{\text{Z} = (x, b)}
$$
\n
$$
\underbrace{g, X_0, X_1, \ldots, X_Q}_{\text{Z} = (x, b)}
$$
\nThese g is the following matrices.

 \Rightarrow $\mathcal A$ is allowed to make only **algebraic queries.**

Instance:
$$
g, X_0, X_1, ..., X_Q
$$

$$
\begin{array}{c|c|c|c}\n & x = (x_0, x_1, ..., x_Q) \\
\hline\n & g, X_0, X_1, ..., X_Q \\
\hline\n & b \in \mathbb{Z}_p^{Q+1} \\
 & z = DL(X_i^{b_i}) & z = \langle x, b \rangle\n\end{array}
$$
\nQ times

\nChallenger C

\nx'_0, x'_1, ..., x'_Q

\nAns if $X_i = g^{x'_i}$ for all i

⇒ is allowed to make only **algebraic queries.**

Instance:
$$
g, X_0, X_1, ..., X_Q
$$

$$
\begin{array}{|l|l|}\n\hline\n\begin{array}{c}\ng, X_0, X_1, ..., X_Q & X_i \in \mathbb{Z}_p \\
\hline\n\end{array}\n\end{array}
$$

\nAnswersay A

\nHowever, A

\nHowever, A

\nHowever, A

\nHowever, A

\nTherefore, A is a function of g , $X_0, X_1, ..., X_Q$ and $X_0, X_1, ..., X_Q$ and $X_0, X_1', ..., X_Q'$ and $X_0, X_1', ..., X_Q'$ and $X_0, X_1', ..., X_Q'$ and X_0 are the following matrices.

C can compute $z = \langle x, b \rangle$ efficiently to answer queries \Rightarrow Falsifiable

 \Rightarrow A is allowed to make only **algebraic queries.**

C can compute $z = \langle x, b \rangle$ efficiently to answer queries \Rightarrow Falsifiable

Is this problem hard?

Is this problem hard?

No! We have attacks against this problem.

- Assume $Q = 1$
	- $B \ll \text{modulus } q$
	- $||s_i||_{\infty} < B$

$$
T=[t_0t_1]
$$

- Assume \bullet $Q=1$
	- $B \ll$ modulus q
	-

- Assume \bullet $Q=1$
	- $B \ll$ modulus q
	- $||s_i||_{\infty} < B$
	- 1. $\mathbf{z} \mod B = \mathbf{s}_0$
	- 2. Recover s_1 from s_0 and z

- Assume \bullet $Q=1$
	- $B \ll$ modulus q
	- $||s_i||_{\infty} < B$
	- 1. $\mathbf{z} \mod B = \mathbf{s}_0$
	- 2. Recover s_1 from s_0 and z

How do we establish the hardness under specific L ?

Classical Setting:

- ⇒ **Use Generic Group Model (GGM)**
- \Rightarrow (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

How do we establish the hardness under specific L ?

Classical Setting:

- ⇒ **Use Generic Group Model (GGM)**
- \Rightarrow (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

Lattice Setting:

⇒ **No model like GGM!!**

How do we establish the hardness?

How do we establish the hardness under specific L ?

Classical Setting:

- ⇒ **Use Generic Group Model (GGM)**
- \Rightarrow (A)OM-DL is as hard as DLP under the GGM [AC:BFP21].

Lattice Setting:

⇒ **No model like GGM!!**

How do we establish the hardness?

We *heuristically* establish it in *two steps*:

- 1. "**Selective**" AOM-MLWE with specific L is hard under standard assumptions.
- 2. Practical cryptanalysis against **adaptive** adversary.

Step 1: Hardness of Selective AOM-MLWE with $\mathcal L$

What is sel-AOMMLWE?

A has to output a query matrix $B \in \mathcal{L}$ at the beginning of the game.

Why selective?

Previous insecure example induces **a statistical attack**.

⇒ reveals obvious "weak" parameters

It does not exploit adaptive query.

What is sel-AOMMLWE?

A has to output a query matrix $B \in \mathcal{L}$ at the beginning of the game.

Why selective?

Previous insecure example induces **a statistical attack**.

⇒ reveals obvious "weak" parameters

It does not exploit adaptive query.

Goal of this step: \vert To show sel-AOM-MLWE with specific $\mathcal L$ is hard

i.e., needs to exploit adaptive query to break

What is sel-AOMMLWE?

A has to output a query matrix $B \in \mathcal{L}$ at the beginning of the game.

Why selective?

Previous insecure example induces **a statistical attack**.

⇒ reveals obvious "weak" parameters

It does not exploit adaptive query.

Goal of this step: \vert To show sel-AOM-MLWE with specific $\mathcal L$ is hard

i.e., needs to exploit adaptive query to break

We showed that

The sel-AOM-LWE with certain \mathcal{L} is **hard under MLWE + MSIS.**

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

From LWE queries, obtain
$$
\{s_0 + s_i\}_{i \in [Q]}
$$
 $\xrightarrow{\text{Sum}}$ $Q \cdot s_0 + \sum_{i=1}^{Q} s_i$

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

 $Q \cdot s_0 + \sum$ $i=1$ Q \mathbf{s}_i From LWE queries, obtain $\{s_0 + s_i\}_{i \in [Q]}$ Sum By Gaussian convolution, this is \sqrt{Q} times smaller than $Q \cdot s_0$

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

Consider a generic attack for certain \mathcal{L} .

 \mathcal{A} 's strategy in simple example:

Generalize this strategy to all accepted queries in \mathcal{L} .

Heuristically show that for A following this strategy

An adaptive A is *no stronger* than a selective A .

Two-Round Threshold Raccoon

Construct by combining FROST + TRaccoon

Construct by combining FROST + TRaccoon

FROST:

DL-based 2-round TS

TRaccoon: Lattice-based 3-round TS

Construct by combining FROST + TRaccoon

2-round Signing Protocol: Offline-online efficiency FROST: DL-based 2-round TS

TRaccoon: Lattice-based 3-round TS

Construct by combining FROST + TRaccoon

Construction

Construct by combining FROST + TRaccoon

We proved the unforgeability *under AOM-MLWE.*

Proof strategy is almost the same as FROST's proof, but…

Check **if query matrix made by reduction is contained in our ALC!!**

We proved the unforgeability *under AOM-MLWE.*

Proof strategy is almost the same as FROST's proof, but…

Check **if query matrix made by reduction is contained in our ALC!!**

Under $T \le 1024$ setting, for 128-bit security,

Thank You!

Important Future Work: ➢ To prove **the hardness of adaptive AOM-MLWE.**

Concurrent Works:

- ➢ "Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding" [C: KTR24] (Next Talk!!)
- ➢ "Flood and submerse: Verifiable short secret sharing and application to robust threshold signatures on lattices" [C: EPN24] (Talk was this morning!!)
- ➢ "Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures" [Eprint:CATZ24]

Recent Related Works:

➢ "Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors" [Eprint:BKL+24] (※ partially offline-online efficient)