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Factoring

 Given an -bit integer , find its prime factorisation in  time. 
    (In cryptography, e.g. RSA:  is a product of two equal-sized primes.)

n N < 2n 𝗉𝗈𝗅𝗒(n)
N = pq

“The problem of distinguishing prime numbers from composite numbers and of 
resolving the latter into their prime factors is known to be one of the most 
important and useful in arithmetic.”

• Hugely important in cryptography 

• Important application of a (future) quantum computer



Factoring

 Given an -bit integer , find its prime factorisation in  time. 
    (In cryptography, e.g. RSA:  is a product of two equal-sized primes.)

n N < 2n 𝗉𝗈𝗅𝗒(n)
N = pq

Best known: Number field sieve which runs in  time    2 Õ ( 3 n)
    (Pollard 1988; Buhler-Lenstra-Pomerance 1993)

Much work on fast classical algorithms: 
    cf. survey by Pomerance (“A Tale of Two Sieves”)
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Enter quantum circuits!

Algorithm Number of gates Number of qubits Number of runs

Shor 1994 O(n2 log n) O(n log n) O(1)

N

Quantum circuit

Repeat  timesO(1)

N, 𝖺𝗎𝗑 Outputs from all runs p, q

“Idling is just as expensive 
as doing operations… 
memory isn’t cheap.”

Poly-time classical pre-processing Poly-time classical post-processing
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Enter quantum circuits!

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

O(n2 log n) O(n log n) O(1)

O(n3/2 log n) O(n1/2)

• Shor’s algorithm also naturally extends to discrete logarithms over any group. 

• Follow-up work by Ekerå and Gärtner: Regev’s speedup can be adapted to discrete logarithms 
over  ℤ*N
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Our Result 1: Reducing Qubit Complexity

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our Result:  
The Best of Both Worlds

O(n2 log n) O(n log n) O(1)

O(n3/2 log n) O(n3/2) O(n1/2)

O(n3/2 log n) O(n log n) O(n1/2)

Concretely for , using schoolbook multiplication: 

• Regev:  qubits 

• Our result:  qubits

n = 2048

≈ 3n3/2 ≈ 278000

≈ 10.4n ≈ 21300
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Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our result

O(n2 log n) O(n log n)

O(n3/2 log n) O(n3/2)

O(n3/2 log n) O(n log n)

 clean runsO(1)

 clean runsO(n1/2)



Our Result 2: Better Noise-Tolerance

• Shor: needs to run  gates without logical error → per-gate error prob. O(n2 log n ⋅ 1) = Õ (n2) Õ (n−2)
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Our Result 2: Better Noise-Tolerance

• Shor: needs to run  gates without logical error → per-gate error prob. O(n2 log n ⋅ 1) = Õ (n2) Õ (n−2)

• Regev’s classical post-processing: all  runs need to be free of logical errorsO(n1/2)

• Total # of gates is  → per-gate error prob. no better than Shor!O(n3/2 log n ⋅ n1/2) = Õ (n2)

• Our result: Improved post-processing to tolerate a constant failure probability per run

• Similar result in a concurrent work by Ekerå and Gärtner.
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Our Results 1 and 2: Summary

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our result

O(n2 log n) O(n log n)

O(n3/2 log n) O(n3/2)

O(n3/2 log n) O(n log n)

 clean runsO(1)

 clean runsO(n1/2)

 dirty runsO(n1/2)



Shor and Regev: A Sketch



Shor overview: finding square roots of 1

• Goal: find  such that  

•  divides  but not either factor individually 

• Hence  is a nontrivial divisor of  

• Most factoring algorithms - quantum or classical - boil down to this

z ≢ ± 1 mod N z2 ≡ 1 mod N

N z2 − 1 = (z − 1)(z + 1)

gcd(z − 1, N) N



Shor overview: reduction to period-finding

Let’s focus on . ( , but we don’t know this yet)N = 3763 = 53 × 71
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Shor overview: reduction to period-finding

Let’s focus on . ( , but we don’t know this yet)N = 3763 = 53 × 71

• Choose a random square as a base e.g. 4

• Powers of : 4 mod 3763 40 = 1, 41 = 4, 42 = 16, 64, 256, 1024, 333, 1332, …
• Eventually repeats

• Let  be the first positive index where r 4r ≡ 1 mod 3763

• But , so  is a square root of 4r = (2r)2 2r 1 mod 3763

• With some luck:  so this would give us a factor!2r ≢ ± 1 mod 3763
• “Luck” is with respect to the randomly chosen base



Shor overview: quantum period finding

We can find this period quickly with a quantum computer! 

1. Superposition over many values of  

a.  may be as large as  but we only need  qubits 

b.  turns out to be the crucial metric for circuit size too

z

z N log N ≤ n

log z



Shor overview: quantum period finding

We can find this period quickly with a quantum computer! 

1. Superposition over many values of  

2. Compute  in superposition 

a. This will basically give us the above picture

z

4z mod 3763



Shor overview: quantum period finding

We can find this period quickly with a quantum computer! 

1. Superposition over many values of  

2. Compute  in superposition 

3. This signal has frequency  (  is the period), which is exactly what we want to 
recover! 

a. Apply QFT to the  register and measure to find a noisy multiple of  

b. Classical post-processing → recover 

z

4z mod 3763

1/r r

z 1/r

r



Regev’s key idea: add dimensions

Before: exploited periodicity of 

 
Now: let’s look at 

z ↦ 4z mod 3763.

(z1, z2) ↦ 4z19z2 mod 3763.
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Regev’s key idea: add dimensions

Q: How does this help us?

A: There are many “2D periods” now.

Crucially, these periods are much closer to 
 than in Shor!(0, 0)

Quantum circuit follows the same blueprint as 
Shor.
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Regev’s algorithm: efficiency

• Size of periods  (we considered )≈ 2n/d d = 2

• Regev’s circuit: compute  in 
superposition for 

az1
1 …azd

d mod N
zi ≤ 2n/d

• Repeated squaring → at least  
multiplications needed

n/d

• Regev magic → actually enough! (Assuming the 
’s are small)ai

• In comparison, Shor needs  multiplications 
→ we save a factor of 

n
d
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Regev’s algorithm: efficiency

• Size of periods  → faster≈ 2n/d d ×

• Q: Why not set ?d = n

• Would give a  size quantum 
circuit for factoring

O(n log n)

• A: Classical post-processing needs to solve 
a -dimensional lattice problem with 
approximation factor 

d
2O(n/d)

• Sweet spot:  (LLL)d = n



Our Result 1: Improving 
Space Complexity
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The qubit problem

• Performance bottleneck: computing (z1, …, zd) ↦ az1
1 …azd

d mod N

• Repeated squaring  cannot be done in place!mod N

• Instead, Regev has to square out-of-place:

|a⟩ ↝ |a, a2⟩ ↝ |a, a2, a4⟩ ↝ |a, a2, a4, a8⟩

Each squaring adds  qubits →  qubits total.n O ( n
d

× n) = O(n3/2)



Aside: qubit complexity of Shor

• Does this mean Shor also requires  qubits? No!O ( n
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• Can precompute  classicallya1, a2, a4, a8, a16, …
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Aside: qubit complexity of Shor

• Does this mean Shor also requires  qubits? No!O ( n
d

× n) = O(n2)

• Can precompute  classicallya1, a2, a4, a8, a16, …
• Quantum part: instead of squaring, multiply these together

• Why doesn’t the same precomputation trick work for Regev?

• # of precomputed bits:  bases,  exponents, -bit answers → d n/d n O(n2)

• Any circuit using these results should require  gatesO(n2)
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Idea 1: Fibonacci exponentiation

• What if we used two accumulators?

|a, b⟩ → |a, ab mod N⟩
• Observation by Kaliski 2017:

|a, a⟩ ↝ |a, a2⟩ ↝ |a3, a2⟩ ↝ |a3, a5⟩ ↝ |a8, a5⟩

We can efficiently compute  for any Fibonacci number !aFk Fk
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Idea 2: multiplying in-place using inverses

• How to implement ?|a, b⟩ → |a, ab mod N⟩

• Not reversible if ! (e.g. )gcd(a, N) > 1 2 × 1 ≡ 2 × 4 mod 6

• Solution based on ideas by Shor: “certify” that  by providing gcd(a, N) = 1
a−1 mod N

• So instead, we implement |a, a−1, b, b−1⟩ → |a, a−1, ab, (ab)−1⟩



Idea 3: greedy Fibonacci decomposition 

• Compute  using Fibonacci exponentiation → need to decompose  as a 
sum of Fibonacci numbers, in superposition

az mod N z



Idea 3: greedy Fibonacci decomposition 

• Compute  using Fibonacci exponentiation → need to decompose  as a 
sum of Fibonacci numbers, in superposition

az mod N z

• Zeckendorf 1972: straightforward greedy algorithm 

• Cost of this greedy procedure:  gates,  space overheadO(n3/2) O(n)
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• Regev’s original circuit:  qubits,  multiplications  

• With our space optimisations:  qubits,  multiplications  

      

≈ 3n3/2 ≈ 6n1/2 mod N

≈ 10.4n ≈ 45.7n1/2 mod N

Concrete Results and Summary



Our Space Improvement

• Regev’s original circuit:  qubits,  multiplications  

• With our space optimisations:  qubits,  multiplications  

      

≈ 3n3/2 ≈ 6n1/2 mod N

≈ 10.4n ≈ 45.7n1/2 mod N

Concrete Results and Summary

Squaring  cannot be implemented in place, while 
multiplication  can → can exponentiate with two 
registers using Fibonacci exponentiation, without consuming 
additional space per step.

mod  N
mod  N



Our Result 2: Improving Noise 
Tolerance



Output of Regev’s Circuit

• Define the following lattices:

ℒ = {z ∈ ℤd : az1
1 …azd

d ≡ 1 mod N}
ℒ* = {y ∈ ℝd : ⟨y, z⟩ ∈ ℤ∀z ∈ ℒ}

• Regev’s circuit: outputs a vector from , plus exponentially small  noiseℒ* ℓ2



Output of Regev’s Circuit

• Define the following lattices:

ℒ = {z ∈ ℤd : az1
1 …azd

d ≡ 1 mod N}
ℒ* = {y ∈ ℝd : ⟨y, z⟩ ∈ ℤ∀z ∈ ℒ}

• Regev’s circuit: outputs a vector from , plus exponentially small  noiseℒ* ℓ2

• Role of the dual lattice is analogous to Shor’s and Simon’s algorithms 

• Shor: ,  

• Simon (in ): 

ℒ = {0, r,  2r, …} ℒ* = {0, 1/r,  2/r, …}

ℤn
2 ℒ = {0n, s}, ℒ* = {y ∈ ℤn

2 : ⟨y, s⟩ = 0}



Regev’s classical post-processing

Regev: given  
samples from  with 

 noise, roughly outputs 
a basis for 

O(d)
ℒ *

ℓ2
ℒ



Regev’s classical post-processing

Regev: given  
samples from  with 

 noise, roughly outputs 
a basis for 

O(d)
ℒ *

ℓ2
ℒ

With logical errors: some 
Hamming errors as well 
(say uniform over )[0, 1]d



Regev’s classical post-processing

Regev: given  
samples from  with 

 noise, roughly outputs 
a basis for 

O(d)
ℒ *

ℓ2
ℒ

With logical errors: some 
Hamming errors as well 
(say uniform over )[0, 1]d

Our result: we can detect 
and filter out these 
Hamming errors, then use 
Regev’s procedure to 
handle the  errorsℓ2
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that only have  errors 
will share small 
approximate linear 
relations
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The Main Idea

Observation: the samples 
that only have  errors 
will share small 
approximate linear 
relations

ℓ2 Moreover, w.h.p. there is no 
small approximate linear 
relation that includes a dirty 
sample (Hamming error)
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Formulation as a Lattice Problem

• Finding an approximate linear relation between  is really an 
“approximate SIS” problem:

v1, v2, …, vm ∈ [0, 1]d

Find short  such that  is shortb ∈ ℤm [v1 v2 … vm] ⋅ b mod 1 ∈ [0, 1]d

• Can be solved with exponential approximation error using LLL

• Our full algorithm:

• Solve the above problem to obtain b

• W.h.p., for any  such that ,  is only an  errori ∈ [m] bi ≠ 0 vi ℓ2

• Repeat until we have enough “good indices” , and feed these samples to Regev’s 
post-processing procedure

i
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• Regev’s original algorithm:  multiplications per run,  runs without 
logical error 

• Requires a multiplication circuit with logical error probability

≈ 6n1/2 ≈ n1/2

≈ 0.17n−1

• Our algorithm:  multiplications,  runs with logical error 
probability of  per run 

• Requires a multiplication circuit with logical error probability

≈ 12.0n1/2 ≈ 10.8n1/2

≈ 0.09

≈ 0.0077n−1/2

• Crossover point* is n ≈ 500

* if considering the error per multiplication per qubit instead, crossover point would be closer to 2000
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Our Final Post-Processing Result

• Regev’s original algorithm:  multiplications per run,  runs without 
logical error → need multiplication with error prob.  

• Our algorithm:  multiplications,  runs with logical error 
probability of  per run → need multiplication with error prob.  

• Crossover point is 

≈ 6n1/2 ≈ n1/2

≈ 0.17n−1

≈ 12.0n1/2 ≈ 10.8n1/2

≈ 0.09 ≈ 0.0077n−1/2

n ≈ 500

Concrete Results and Summary

The “good” samples (  errors) will share (approximate) linear 
relations that we can search for using LLL → filter out 
Hamming errors.

ℓ2
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Future direction: why  gates?Õ(n3/2)

• With polynomial-time classical post-processing: seems like an artifact of Regev’s 
specific algorithm

• What if we allowed superpolynomial-time classical post-processing?

• Classical post-processing as slow as  is still faster than the number field 
sieve!

2O(n1/3−ϵ)

• In this case, can set  in Regev’s algorithm and obtain a circuit of size 
, but can we do better?

d = n2/3−ϵ

Õ(n4/3+ϵ)



Future direction: concrete efficiency

Q: Does Regev’s algorithm (and its follow-ups by us and Ekerå-
Gärtner) bring us closer to breaking RSA-2048?



Future direction: concrete efficiency

Q: Does Regev’s algorithm (and its follow-ups by us and Ekerå-
Gärtner) bring us closer to breaking RSA-2048?

A: It might with further optimisations, but not yet.
Several constant and polylog-factor optimisations to Shor make it very effective for 

small problem sizes.



Bonus Slides



Modelling Hamming Errors

• Regev’s circuit without logical errors: a point close to  

• With logical errors: we assume uniform over  for simplicity 
• Does not neatly map to particular types of quantum errors (X, Z etc.) 

• Heuristic justification: circuit is complicated enough → any error should be “heavily 
scrambled” by later gates 

• We also provide a more general condition for the error distribution: “linear 
combinations of Hamming errors should not fall unreasonably close to ”

ℒ*

[0, 1]d

ℒ*



Regev’s Number-Theoretic Assumption

• Regev: relies on  having periods of size  

• But these periods could just yield a trivial square root of 1  

• Regev relies on a conjecture that at least one small period yields a non-trivial square 
root of 1 

• Follow-up work by Pilatte proves* Regev’s conjecture 

* proves correctness for a variant of Regev’s algorithm that is worse by polylog factors and likely impractical

(z1, …, zd) ↦ az1
1 …azd

d mod N 2O(n/d)

mod N


