
MIT CSAIL

Space-Efficient and Noise-Robust
Quantum Factoring

Seyoon Ragavan and Vinod Vaikuntanathan

Factoring

 Given an -bit integer , find its prime factorisation in time.
 (In cryptography, e.g. RSA: is a product of two equal-sized primes.)

n N < 2n 𝗉𝗈𝗅𝗒(n)
N = pq

“The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most
important and useful in arithmetic.”

• Hugely important in cryptography

• Important application of a (future) quantum computer

Factoring

 Given an -bit integer , find its prime factorisation in time.
 (In cryptography, e.g. RSA: is a product of two equal-sized primes.)

n N < 2n 𝗉𝗈𝗅𝗒(n)
N = pq

Best known: Number field sieve which runs in time 2 Õ (3 n)
 (Pollard 1988; Buhler-Lenstra-Pomerance 1993)

Much work on fast classical algorithms:
 cf. survey by Pomerance (“A Tale of Two Sieves”)

Enter quantum circuits!

Algorithm Number of gates Number of qubits Number of runs

Shor 1994 O(n2 log n) O(n log n) O(1)

N

Poly-time classical pre-processing Poly-time classical post-processingQuantum circuit

Repeat timesO(1)

N, 𝖺𝗎𝗑 Outputs from all runs p, q

Enter quantum circuits!

Algorithm Number of gates Number of qubits Number of runs

Shor 1994 O(n2 log n) O(n log n) O(1)

N

Quantum circuit

Repeat timesO(1)

N, 𝖺𝗎𝗑 Outputs from all runs p, q

“Idling is just as expensive
as doing operations…
memory isn’t cheap.”

Poly-time classical pre-processing Poly-time classical post-processing

Enter quantum circuits!
Why improve this?

Algorithm Number of gates Number of qubits Number of runs

Shor 1994 O(n2 log n) O(n log n) O(1)

Enter quantum circuits!

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

O(n2 log n) O(n log n) O(1)

O(n3/2 log n) O(n1/2)

Enter quantum circuits!

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

O(n2 log n) O(n log n) O(1)

O(n3/2 log n) O(n1/2)

• Shor’s algorithm also naturally extends to discrete logarithms over any group.

• Follow-up work by Ekerå and Gärtner: Regev’s speedup can be adapted to discrete logarithms
over ℤ*N

Enter quantum circuits!

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

O(n2 log n) O(n log n) O(1)

O(n3/2 log n) O(n3/2) O(n1/2)

Our Result 1: Reducing Qubit Complexity

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our Result:
The Best of Both Worlds

O(n2 log n) O(n log n) O(1)

O(n3/2 log n) O(n3/2) O(n1/2)

O(n3/2 log n) O(n log n) O(n1/2)

Our Result 1: Reducing Qubit Complexity

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our Result:
The Best of Both Worlds

O(n2 log n) O(n log n) O(1)

O(n3/2 log n) O(n3/2) O(n1/2)

O(n3/2 log n) O(n log n) O(n1/2)

Concretely for , using schoolbook multiplication:

• Regev: qubits

• Our result: qubits

n = 2048

≈ 3n3/2 ≈ 278000

≈ 10.4n ≈ 21300

Our Result 2: Better Noise-Tolerance

• Shor: needs to run gates without logical error → per-gate error prob. O(n2 log n ⋅ 1) = Õ (n2) Õ (n−2)

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our result

O(n2 log n) O(n log n)

O(n3/2 log n) O(n3/2)

O(n3/2 log n) O(n log n)

 clean runsO(1)

 clean runsO(n1/2)

Our Result 2: Better Noise-Tolerance

• Shor: needs to run gates without logical error → per-gate error prob. O(n2 log n ⋅ 1) = Õ (n2) Õ (n−2)

• Regev’s classical post-processing: all runs need to be free of logical errorsO(n1/2)

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our result

O(n2 log n) O(n log n)

O(n3/2 log n) O(n3/2)

O(n3/2 log n) O(n log n)

 clean runsO(1)

 clean runsO(n1/2)

Our Result 2: Better Noise-Tolerance

• Shor: needs to run gates without logical error → per-gate error prob. O(n2 log n ⋅ 1) = Õ (n2) Õ (n−2)

• Regev’s classical post-processing: all runs need to be free of logical errorsO(n1/2)

• Total # of gates is → per-gate error prob. no better than Shor!O(n3/2 log n ⋅ n1/2) = Õ (n2)

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our result

O(n2 log n) O(n log n)

O(n3/2 log n) O(n3/2)

O(n3/2 log n) O(n log n)

 clean runsO(1)

 clean runsO(n1/2)

Our Result 2: Better Noise-Tolerance

• Shor: needs to run gates without logical error → per-gate error prob. O(n2 log n ⋅ 1) = Õ (n2) Õ (n−2)

• Regev’s classical post-processing: all runs need to be free of logical errorsO(n1/2)

• Total # of gates is → per-gate error prob. no better than Shor!O(n3/2 log n ⋅ n1/2) = Õ (n2)

• Our result: Improved post-processing to tolerate a constant failure probability per run

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our result

O(n2 log n) O(n log n)

O(n3/2 log n) O(n3/2)

O(n3/2 log n) O(n log n)

 clean runsO(1)

 clean runsO(n1/2)

 dirty runsO(n1/2)

Our Result 2: Better Noise-Tolerance

• Shor: needs to run gates without logical error → per-gate error prob. O(n2 log n ⋅ 1) = Õ (n2) Õ (n−2)

• Regev’s classical post-processing: all runs need to be free of logical errorsO(n1/2)

• Total # of gates is → per-gate error prob. no better than Shor!O(n3/2 log n ⋅ n1/2) = Õ (n2)

• Our result: Improved post-processing to tolerate a constant failure probability per run

• Per-gate error probability only needs to be , better than both Shor and Regev!Õ (n−3/2)

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our result

O(n2 log n) O(n log n)

O(n3/2 log n) O(n3/2)

O(n3/2 log n) O(n log n)

 clean runsO(1)

 clean runsO(n1/2)

 dirty runsO(n1/2)

Our Result 2: Better Noise-Tolerance

• Shor: needs to run gates without logical error → per-gate error prob. O(n2 log n ⋅ 1) = Õ (n2) Õ (n−2)

• Regev’s classical post-processing: all runs need to be free of logical errorsO(n1/2)

• Total # of gates is → per-gate error prob. no better than Shor!O(n3/2 log n ⋅ n1/2) = Õ (n2)

• Our result: Improved post-processing to tolerate a constant failure probability per run

• Similar result in a concurrent work by Ekerå and Gärtner.

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our result

O(n2 log n) O(n log n)

O(n3/2 log n) O(n3/2)

O(n3/2 log n) O(n log n)

 clean runsO(1)

 clean runsO(n1/2)

 dirty runsO(n1/2)

Our Results 1 and 2: Summary

Algorithm Number of gates Number of qubits Number of runs

Shor 1994

Regev 2023

Our result

O(n2 log n) O(n log n)

O(n3/2 log n) O(n3/2)

O(n3/2 log n) O(n log n)

 clean runsO(1)

 clean runsO(n1/2)

 dirty runsO(n1/2)

Shor and Regev: A Sketch

Shor overview: finding square roots of 1

• Goal: find such that

• divides but not either factor individually

• Hence is a nontrivial divisor of

• Most factoring algorithms - quantum or classical - boil down to this

z ≢ ± 1 mod N z2 ≡ 1 mod N

N z2 − 1 = (z − 1)(z + 1)

gcd(z − 1, N) N

Shor overview: reduction to period-finding

Let’s focus on . (, but we don’t know this yet)N = 3763 = 53 × 71

Shor overview: reduction to period-finding

Let’s focus on . (, but we don’t know this yet)N = 3763 = 53 × 71

• Choose a random square as a base e.g. 4

• Powers of : 4 mod 3763 40 = 1, 41 = 4, 42 = 16, 64, 256, 1024, 333, 1332, …
• Eventually repeats

• Let be the first positive index where r 4r ≡ 1 mod 3763

Shor overview: reduction to period-finding

Let’s focus on . (, but we don’t know this yet)N = 3763 = 53 × 71

• Choose a random square as a base e.g. 4

• Powers of : 4 mod 3763 40 = 1, 41 = 4, 42 = 16, 64, 256, 1024, 333, 1332, …
• Eventually repeats

• Let be the first positive index where r 4r ≡ 1 mod 3763

• But , so is a square root of 4r = (2r)2 2r 1 mod 3763

• With some luck: so this would give us a factor!2r ≢ ± 1 mod 3763

Shor overview: reduction to period-finding

Let’s focus on . (, but we don’t know this yet)N = 3763 = 53 × 71

• Choose a random square as a base e.g. 4

• Powers of : 4 mod 3763 40 = 1, 41 = 4, 42 = 16, 64, 256, 1024, 333, 1332, …
• Eventually repeats

• Let be the first positive index where r 4r ≡ 1 mod 3763

• But , so is a square root of 4r = (2r)2 2r 1 mod 3763

• With some luck: so this would give us a factor!2r ≢ ± 1 mod 3763
• “Luck” is with respect to the randomly chosen base

Shor overview: quantum period finding

We can find this period quickly with a quantum computer!

1. Superposition over many values of

a. may be as large as but we only need qubits

b. turns out to be the crucial metric for circuit size too

z

z N log N ≤ n

log z

Shor overview: quantum period finding

We can find this period quickly with a quantum computer!

1. Superposition over many values of

2. Compute in superposition

a. This will basically give us the above picture

z

4z mod 3763

Shor overview: quantum period finding

We can find this period quickly with a quantum computer!

1. Superposition over many values of

2. Compute in superposition

3. This signal has frequency (is the period), which is exactly what we want to
recover!

a. Apply QFT to the register and measure to find a noisy multiple of

b. Classical post-processing → recover

z

4z mod 3763

1/r r

z 1/r

r

Regev’s key idea: add dimensions

Before: exploited periodicity of

Now: let’s look at

z ↦ 4z mod 3763.

(z1, z2) ↦ 4z19z2 mod 3763.

Regev’s key idea: add dimensions

Q: How does this help us?

Regev’s key idea: add dimensions

Q: How does this help us?

A: There are many “2D periods” now.

Crucially, these periods are much closer to
 than in Shor!(0, 0)

Regev’s key idea: add dimensions

Q: How does this help us?

A: There are many “2D periods” now.

Crucially, these periods are much closer to
 than in Shor!(0, 0)

Quantum circuit follows the same blueprint as
Shor.

Regev’s algorithm: efficiency

• Size of periods (we considered)≈ 2n/d d = 2

Regev’s algorithm: efficiency

• Size of periods (we considered)≈ 2n/d d = 2

• Regev’s circuit: compute in
superposition for

az1
1 …azd

d mod N
zi ≤ 2n/d

Regev’s algorithm: efficiency

• Size of periods (we considered)≈ 2n/d d = 2

• Regev’s circuit: compute in
superposition for

az1
1 …azd

d mod N
zi ≤ 2n/d

• Repeated squaring → at least
multiplications needed

n/d

Regev’s algorithm: efficiency

• Size of periods (we considered)≈ 2n/d d = 2

• Regev’s circuit: compute in
superposition for

az1
1 …azd

d mod N
zi ≤ 2n/d

• Repeated squaring → at least
multiplications needed

n/d

• Regev magic → actually enough! (Assuming the
’s are small)ai

Regev’s algorithm: efficiency

• Size of periods (we considered)≈ 2n/d d = 2

• Regev’s circuit: compute in
superposition for

az1
1 …azd

d mod N
zi ≤ 2n/d

• Repeated squaring → at least
multiplications needed

n/d

• Regev magic → actually enough! (Assuming the
’s are small)ai

• In comparison, Shor needs multiplications
→ we save a factor of

n
d

Regev’s algorithm: efficiency

• Size of periods → faster≈ 2n/d d ×

Regev’s algorithm: efficiency

• Size of periods → faster≈ 2n/d d ×

• Q: Why not set ?d = n

• Would give a size quantum
circuit for factoring

O(n log n)

Regev’s algorithm: efficiency

• Size of periods → faster≈ 2n/d d ×

• Q: Why not set ?d = n

• Would give a size quantum
circuit for factoring

O(n log n)

• A: Classical post-processing needs to solve
a -dimensional lattice problem with
approximation factor

d
2O(n/d)

• Sweet spot: (LLL)d = n

Our Result 1: Improving
Space Complexity

The qubit problem

• Performance bottleneck: computing (z1, …, zd) ↦ az1
1 …azd

d mod N

• Repeated squaring cannot be done in place!mod N

The qubit problem

• Performance bottleneck: computing

• Repeated squaring cannot be done in place!

• Quantum circuits need to be reversible, but squaring is not e.g.

(z1, …, zd) ↦ az1
1 …azd

d mod N

mod N

mod N −1,1

The qubit problem

• Performance bottleneck: computing (z1, …, zd) ↦ az1
1 …azd

d mod N

• Repeated squaring cannot be done in place!mod N

• Instead, Regev has to square out-of-place:

|a⟩ ↝ |a, a2⟩ ↝ |a, a2, a4⟩ ↝ |a, a2, a4, a8⟩

The qubit problem

• Performance bottleneck: computing (z1, …, zd) ↦ az1
1 …azd

d mod N

• Repeated squaring cannot be done in place!mod N

• Instead, Regev has to square out-of-place:

|a⟩ ↝ |a, a2⟩ ↝ |a, a2, a4⟩ ↝ |a, a2, a4, a8⟩

Each squaring adds qubits → qubits total.n O (n
d

× n) = O(n3/2)

Aside: qubit complexity of Shor

• Does this mean Shor also requires qubits? No!O (n
d

× n) = O(n2)

• Can precompute classicallya1, a2, a4, a8, a16, …
• Quantum part: instead of squaring, multiply these together

Aside: qubit complexity of Shor

• Does this mean Shor also requires qubits? No!O (n
d

× n) = O(n2)

• Can precompute classicallya1, a2, a4, a8, a16, …
• Quantum part: instead of squaring, multiply these together

• Unlike squaring, multiplication can be done reversibly (not obvious… stay tuned)

Aside: qubit complexity of Shor

• Does this mean Shor also requires qubits? No!O (n
d

× n) = O(n2)

• Can precompute classicallya1, a2, a4, a8, a16, …
• Quantum part: instead of squaring, multiply these together

• Why doesn’t the same precomputation trick work for Regev?

Aside: qubit complexity of Shor

• Does this mean Shor also requires qubits? No!O (n
d

× n) = O(n2)

• Can precompute classicallya1, a2, a4, a8, a16, …
• Quantum part: instead of squaring, multiply these together

• Why doesn’t the same precomputation trick work for Regev?

• # of precomputed bits: bases, exponents, -bit answers → d n/d n O(n2)

Aside: qubit complexity of Shor

• Does this mean Shor also requires qubits? No!O (n
d

× n) = O(n2)

• Can precompute classicallya1, a2, a4, a8, a16, …
• Quantum part: instead of squaring, multiply these together

• Why doesn’t the same precomputation trick work for Regev?

• # of precomputed bits: bases, exponents, -bit answers → d n/d n O(n2)

• Any circuit using these results should require gatesO(n2)

Idea 1: Fibonacci exponentiation

• What if we used two accumulators?

|a, b⟩ → |a, ab mod N⟩

Idea 1: Fibonacci exponentiation

• What if we used two accumulators?

|a, b⟩ → |a, ab mod N⟩
• Observation by Kaliski 2017:

|a, a⟩ ↝ |a, a2⟩ ↝ |a3, a2⟩ ↝ |a3, a5⟩ ↝ |a8, a5⟩

Idea 1: Fibonacci exponentiation

• What if we used two accumulators?

|a, b⟩ → |a, ab mod N⟩
• Observation by Kaliski 2017:

|a, a⟩ ↝ |a, a2⟩ ↝ |a3, a2⟩ ↝ |a3, a5⟩ ↝ |a8, a5⟩

We can efficiently compute for any Fibonacci number !aFk Fk

Idea 2: multiplying in-place using inverses

• How to implement ?|a, b⟩ → |a, ab mod N⟩

• Not reversible if ! (e.g.)gcd(a, N) > 1 2 × 1 ≡ 2 × 4 mod 6

Idea 2: multiplying in-place using inverses

• How to implement ?|a, b⟩ → |a, ab mod N⟩

• Not reversible if ! (e.g.)gcd(a, N) > 1 2 × 1 ≡ 2 × 4 mod 6

• Solution based on ideas by Shor: “certify” that by providing gcd(a, N) = 1
a−1 mod N

Idea 2: multiplying in-place using inverses

• How to implement ?|a, b⟩ → |a, ab mod N⟩

• Not reversible if ! (e.g.)gcd(a, N) > 1 2 × 1 ≡ 2 × 4 mod 6

• Solution based on ideas by Shor: “certify” that by providing gcd(a, N) = 1
a−1 mod N

• So instead, we implement |a, a−1, b, b−1⟩ → |a, a−1, ab, (ab)−1⟩

Idea 3: greedy Fibonacci decomposition

• Compute using Fibonacci exponentiation → need to decompose as a
sum of Fibonacci numbers, in superposition

az mod N z

Idea 3: greedy Fibonacci decomposition

• Compute using Fibonacci exponentiation → need to decompose as a
sum of Fibonacci numbers, in superposition

az mod N z

• Zeckendorf 1972: straightforward greedy algorithm

• Cost of this greedy procedure: gates, space overheadO(n3/2) O(n)

Our Space Improvement

• Regev’s original circuit: qubits, multiplications

• With our space optimisations: qubits, multiplications

≈ 3n3/2 ≈ 6n1/2 mod N

≈ 10.4n ≈ 45.7n1/2 mod N

Concrete Results and Summary

Our Space Improvement

• Regev’s original circuit: qubits, multiplications

• With our space optimisations: qubits, multiplications

≈ 3n3/2 ≈ 6n1/2 mod N

≈ 10.4n ≈ 45.7n1/2 mod N

Concrete Results and Summary

Squaring cannot be implemented in place, while
multiplication can → can exponentiate with two
registers using Fibonacci exponentiation, without consuming
additional space per step.

mod N
mod N

Our Result 2: Improving Noise
Tolerance

Output of Regev’s Circuit

• Define the following lattices:

ℒ = {z ∈ ℤd : az1
1 …azd

d ≡ 1 mod N}
ℒ* = {y ∈ ℝd : ⟨y, z⟩ ∈ ℤ∀z ∈ ℒ}

• Regev’s circuit: outputs a vector from , plus exponentially small noiseℒ* ℓ2

Output of Regev’s Circuit

• Define the following lattices:

ℒ = {z ∈ ℤd : az1
1 …azd

d ≡ 1 mod N}
ℒ* = {y ∈ ℝd : ⟨y, z⟩ ∈ ℤ∀z ∈ ℒ}

• Regev’s circuit: outputs a vector from , plus exponentially small noiseℒ* ℓ2

• Role of the dual lattice is analogous to Shor’s and Simon’s algorithms

• Shor: ,

• Simon (in):

ℒ = {0, r, 2r, …} ℒ* = {0, 1/r, 2/r, …}

ℤn
2 ℒ = {0n, s}, ℒ* = {y ∈ ℤn

2 : ⟨y, s⟩ = 0}

Regev’s classical post-processing

Regev: given
samples from with

 noise, roughly outputs
a basis for

O(d)
ℒ *

ℓ2
ℒ

Regev’s classical post-processing

Regev: given
samples from with

 noise, roughly outputs
a basis for

O(d)
ℒ *

ℓ2
ℒ

With logical errors: some
Hamming errors as well
(say uniform over)[0, 1]d

Regev’s classical post-processing

Regev: given
samples from with

 noise, roughly outputs
a basis for

O(d)
ℒ *

ℓ2
ℒ

With logical errors: some
Hamming errors as well
(say uniform over)[0, 1]d

Our result: we can detect
and filter out these
Hamming errors, then use
Regev’s procedure to
handle the errorsℓ2

The Main Idea

Observation: the samples
that only have errors
will share small
approximate linear
relations

ℓ2

The Main Idea

Observation: the samples
that only have errors
will share small
approximate linear
relations

ℓ2 Moreover, w.h.p. there is no
small approximate linear
relation that includes a dirty
sample (Hamming error)

Formulation as a Lattice Problem

• Finding an approximate linear relation between is really an
“approximate SIS” problem:

v1, v2, …, vm ∈ [0, 1]d

Find short such that is shortb ∈ ℤm [v1 v2 … vm] ⋅ b mod 1 ∈ [0, 1]d

Formulation as a Lattice Problem

• Finding an approximate linear relation between is really an
“approximate SIS” problem:

v1, v2, …, vm ∈ [0, 1]d

Find short such that is shortb ∈ ℤm [v1 v2 … vm] ⋅ b mod 1 ∈ [0, 1]d

• Can be solved with exponential approximation error using LLL

Formulation as a Lattice Problem

• Finding an approximate linear relation between is really an
“approximate SIS” problem:

v1, v2, …, vm ∈ [0, 1]d

Find short such that is shortb ∈ ℤm [v1 v2 … vm] ⋅ b mod 1 ∈ [0, 1]d

• Can be solved with exponential approximation error using LLL

• Our full algorithm:

• Solve the above problem to obtain b

Formulation as a Lattice Problem

• Finding an approximate linear relation between is really an
“approximate SIS” problem:

v1, v2, …, vm ∈ [0, 1]d

Find short such that is shortb ∈ ℤm [v1 v2 … vm] ⋅ b mod 1 ∈ [0, 1]d

• Can be solved with exponential approximation error using LLL

• Our full algorithm:

• Solve the above problem to obtain b

• W.h.p., for any such that , is only an errori ∈ [m] bi ≠ 0 vi ℓ2

Formulation as a Lattice Problem

• Finding an approximate linear relation between is really an
“approximate SIS” problem:

v1, v2, …, vm ∈ [0, 1]d

Find short such that is shortb ∈ ℤm [v1 v2 … vm] ⋅ b mod 1 ∈ [0, 1]d

• Can be solved with exponential approximation error using LLL

• Our full algorithm:

• Solve the above problem to obtain b

• W.h.p., for any such that , is only an errori ∈ [m] bi ≠ 0 vi ℓ2

• Repeat until we have enough “good indices” , and feed these samples to Regev’s
post-processing procedure

i

Our Final Post-Processing Result

• Regev’s original algorithm: multiplications per run, runs without
logical error

• Requires a multiplication circuit with logical error probability

≈ 6n1/2 ≈ n1/2

≈ 0.17n−1

Concrete Results and Summary

Our Final Post-Processing Result

• Regev’s original algorithm: multiplications per run, runs without
logical error

• Requires a multiplication circuit with logical error probability

≈ 6n1/2 ≈ n1/2

≈ 0.17n−1

• Our algorithm: multiplications, runs with logical error
probability of per run

• Requires a multiplication circuit with logical error probability

≈ 12.0n1/2 ≈ 10.8n1/2

≈ 0.09

≈ 0.0077n−1/2

Concrete Results and Summary

Our Final Post-Processing Result

• Regev’s original algorithm: multiplications per run, runs without
logical error

• Requires a multiplication circuit with logical error probability

≈ 6n1/2 ≈ n1/2

≈ 0.17n−1

• Our algorithm: multiplications, runs with logical error
probability of per run

• Requires a multiplication circuit with logical error probability

≈ 12.0n1/2 ≈ 10.8n1/2

≈ 0.09

≈ 0.0077n−1/2

• Crossover point* is n ≈ 500

* if considering the error per multiplication per qubit instead, crossover point would be closer to 2000

Concrete Results and Summary

Our Final Post-Processing Result

• Regev’s original algorithm: multiplications per run, runs without
logical error → need multiplication with error prob.

• Our algorithm: multiplications, runs with logical error
probability of per run → need multiplication with error prob.

• Crossover point is

≈ 6n1/2 ≈ n1/2

≈ 0.17n−1

≈ 12.0n1/2 ≈ 10.8n1/2

≈ 0.09 ≈ 0.0077n−1/2

n ≈ 500

Concrete Results and Summary

The “good” samples (errors) will share (approximate) linear
relations that we can search for using LLL → filter out
Hamming errors.

ℓ2

Future direction: why gates?Õ(n3/2)

• With polynomial-time classical post-processing: seems like an artifact of Regev’s
specific algorithm

Future direction: why gates?Õ(n3/2)

• With polynomial-time classical post-processing: seems like an artifact of Regev’s
specific algorithm

• What if we allowed superpolynomial-time classical post-processing?

• Classical post-processing as slow as is still faster than the number field
sieve!

2O(n1/3−ϵ)

Future direction: why gates?Õ(n3/2)

• With polynomial-time classical post-processing: seems like an artifact of Regev’s
specific algorithm

• What if we allowed superpolynomial-time classical post-processing?

• Classical post-processing as slow as is still faster than the number field
sieve!

2O(n1/3−ϵ)

• In this case, can set in Regev’s algorithm and obtain a circuit of size
, but can we do better?

d = n2/3−ϵ

Õ(n4/3+ϵ)

Future direction: concrete efficiency

Q: Does Regev’s algorithm (and its follow-ups by us and Ekerå-
Gärtner) bring us closer to breaking RSA-2048?

Future direction: concrete efficiency

Q: Does Regev’s algorithm (and its follow-ups by us and Ekerå-
Gärtner) bring us closer to breaking RSA-2048?

A: It might with further optimisations, but not yet.
Several constant and polylog-factor optimisations to Shor make it very effective for

small problem sizes.

Bonus Slides

Modelling Hamming Errors

• Regev’s circuit without logical errors: a point close to

• With logical errors: we assume uniform over for simplicity
• Does not neatly map to particular types of quantum errors (X, Z etc.)

• Heuristic justification: circuit is complicated enough → any error should be “heavily
scrambled” by later gates

• We also provide a more general condition for the error distribution: “linear
combinations of Hamming errors should not fall unreasonably close to ”

ℒ*

[0, 1]d

ℒ*

Regev’s Number-Theoretic Assumption

• Regev: relies on having periods of size

• But these periods could just yield a trivial square root of 1

• Regev relies on a conjecture that at least one small period yields a non-trivial square
root of 1

• Follow-up work by Pilatte proves* Regev’s conjecture

* proves correctness for a variant of Regev’s algorithm that is worse by polylog factors and likely impractical

(z1, …, zd) ↦ az1
1 …azd

d mod N 2O(n/d)

mod N

