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SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))
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Building Concretely Efficient SNARKs [Tha22]

This Work

Build SNARKs from
Error-correcting Codes
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Code(-based) SNARKs

Why Code-based SNARKs?
Transparent setup
Plausible PQ security
Concretely efficient if the underlying code is concretely efficient

More on
this later

SNARKs from Codes are built upon the PIOP + PCS paradigm

Code
SNARK = PIOP + Code-based

PCS

Goal: design
Code-based Polynomial
Commitment Scheme
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PCS from any Linear Code

Ligero/Brakedown-based PCS

PCS
Framework

Linear
Code

PCS from any
linear code (derived

from [BCG20])

Pros
Plug-and-play with

any linear code

SNARK properties directly
linked to code properties

prover time =
encoding time field-agnostic

good code distance
= small proofs

Cons
sqrt proof

sizes

Prior work:
• concretely large proofs

[Brakedown]
• quasi-linear time, not
field-agnostic [Ligero]

Design + analysis of
new codes is difficult

Why field-agnostic?

Prover can experience ≈ 25× slow down if the SNARK doesn’t support field of
the underlying computation!
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Our Results: Bird’s Eye View

New Code-PCS from Expand-Accumulate Codes
via the Brakedown PCS Framework

Improved distance
analysis of binary

EA codes

1

Provide an alternate
distance analysis +
proof via classic

coding techniques

Better concrete
parameters than

[BCG+22]

Concretely efficient
SNARKs from EA

codes

3

Field-agnostic

Proof size + verifier
time comparable with

[Brakedown], only
≈ 1.2× prover

overhead

Generalize EA codes
to arbitrary finite

fields

2

Extend binary
analysis to FFs

Answers open
problem of [BCG+22]

Quasi-linear
encoding, concretly
large min distance
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Our Results: Comparison

Table 1: Performance of field-agnostic SNARKs based on linear codes for a statement
modeled as an arithmetic circuit of size M and depth d.

Prover Time Proof Size Verifier Time
[Brakedown] O(M) O(

√
M) O(

√
M)

[BaseFold] O(M logM) O(log2 M) O(log2 M)

This Work O(M logM) O(
√
M) O(

√
M)

Proof of ECDSA verification
[Brakedown] 0.17s 2.2MB 0.062s
[BaseFold] 0.273s 5.5MB 0.021s

Ours (provable) 0.23s 1.1MB 0.068s
Ours (conjectured) 0.23s 0.78MB 0.067s

Faster than Basefold Comparable to
Brakedown

Concretely smaller
proofs
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Remainder of the Talk

Error-correcting codes overview

EA Codes overview

IOWE technique for distance analysis

EA Code over any finite field analysis

Experimental results
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Linear Error-Correcting Codes

Definition 1 (Linear Codes)

Let F be a finite field. A [N,n, d] linear error correcting code C for
n ⩽ N is a n-dimensional subspace of FN such that the minimum
distance of C, denoted as ∆(C), is d, where
∆(C) := miny∈C\{0N}{wt(y)}.

Equivalently
C : Fn → FN such that C(x) := xG for rank-n G ∈ Fn×N and x ∈ Fn.

Parameters of Interest

Rate: R = n/N

Encoding Time: Time to compute x ·G
Relative Distance: δ(C) := ∆(C)/N
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Parameters of Interest

Rate: R = n/N

Encoding Time: Time to compute x ·G
Relative Distance: δ(C) := ∆(C)/N
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Expand-Accumulate Codes [BCG+22]

Random sparse E

n

N

F F
F F F

F F
F

E increases wt(x)
w.h.p. (expander)

Accumulator A

N

N

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1

C(x) := xEA

How to sample E?
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Sampling Expander Matrix

(Generalized) Bernoulli
Ei,j ← Berp(F),∀i, j

Berp(F) :=

{︄
x

$← F \ {0} w.p. p

0 w.p. 1− p

[BCG+22] prove δ(EA) = Θ(1) for F2 and
p = Θ(log(N)/N), conjecture same for F>2

Fixed Row Weights
Ei ← Fixed(N, t,F),∀i ∈ [n]

Fixed(N, t,F) := U({y ∈ FN : wt(y) = t})

[BCG+22] conjecture δ(EA) = Θ(1) for F and
t = Θ(log(N))
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EA Codes: Our Approach

Juxtaposed EA Code
C[E1,E2](x) := (xE1A)∥(xE2A)

E1 ← Fixed(n,N, t,F) and E2 ← Bern×N
p (F)

R = n/N = Θ(1), t = Θ(log(N)), p = t/N
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Juxtaposed EA Codes: Our Results

Theorem 1
Over any F, for R = n/N constant, there exist constants δ ∈ (0, 1/2) and
c∗ > 5 such that for t = Θ(log(N)) and p = t/N , the juxtaposed EA code
C[E1,E2] over F has constant relative distance δ with at least
1− 1/poly(N5−c∗) probability.

If F = F2, then the above holds for c∗ > 4 with probability at least
1− 1/poly(N4−c∗)

Notes
We consider juxtaposed EA codes due to limitations in our analysis of E1.

We conjecture both E1A and E2A are good codes.

Parameters in above theorem are nowhere near tight; can be tightened up
with better Stirling approximations.
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IOWE Technique

Input-Output Weight Enumerator

C

Deterministic

x ∈ Fn

wt(x) = w

y ∈ FN

wt(y) = h

Definition 2 (IOWE)

CN
w,h :=

⃓⃓⃓⃓
{x ∈ Fn : wt(x) = w ∧ wt(C(x)) = h}

⃓⃓⃓⃓

14 / 28



IOWE Technique

Input-Output Weight Enumerator

C

Deterministic

x ∈ Fn

wt(x) = w

y ∈ FN

wt(y) = h

Definition 2 (IOWE)

CN
w,h :=

⃓⃓⃓⃓
{x ∈ Fn : wt(x) = w ∧ wt(C(x)) = h}

⃓⃓⃓⃓

14 / 28



IOWE Technique

Input-Output Weight Enumerator

C

Deterministic

x ∈ Fn

wt(x) = w

y ∈ FN

wt(y) = h

Definition 2 (IOWE)

CN
w,h :=

⃓⃓⃓⃓
{x ∈ Fn : wt(x) = w ∧ wt(C(x)) = h}

⃓⃓⃓⃓

14 / 28



IOWE Technique

Input-Output Weight Enumerator

C

Deterministic

x ∈ Fn

wt(x) = w

y ∈ FN

wt(y) = h

Definition 2 (IOWE)

CN
w,h :=

⃓⃓⃓⃓
{x ∈ Fn : wt(x) = w ∧ wt(C(x)) = h}

⃓⃓⃓⃓

14 / 28



IOWE Technique

Input-Output Weight Enumerator

C

Deterministic

x ∈ Fn

wt(x) = w

y ∈ FN

wt(y) = h

Definition 2 (IOWE)

CN
w,h :=

⃓⃓⃓⃓
{x ∈ Fn : wt(x) = w ∧ wt(C(x)) = h}

⃓⃓⃓⃓

14 / 28



IOWE Technique

Input-Output Weight Enumerator

C

Deterministic

x ∈ Fn

wt(x) = w

y ∈ FN

wt(y) = h

Definition 2 (IOWE)

CN
w,h :=

⃓⃓⃓⃓
{x ∈ Fn : wt(x) = w ∧ wt(C(x)) = h}

⃓⃓⃓⃓

14 / 28



IOWE Technique

Input-Output Weight Enumerator

C

Deterministic

x ∈ Fn

wt(x) = w

y ∈ FN

wt(y) = h

Definition 2 (IOWE)

CN
w,h :=

⃓⃓⃓⃓
{x ∈ Fn : wt(x) = w ∧ wt(C(x)) = h}

⃓⃓⃓⃓

14 / 28



IOWE Technique

Input-Output Weight Enumerator

C

Deterministic

x ∈ Fn

wt(x) = w

y ∈ FN

wt(y) = h

Definition 2 (IOWE)

CN
w,h :=

⃓⃓⃓⃓
{x ∈ Fn : wt(x) = w ∧ wt(C(x)) = h}

⃓⃓⃓⃓
14 / 28



IOWE Technique

Uniform
distribution over

SN
w (F) = {z ∈ FN : wt(z) = w}

Cx ∈ Fn

wt(x) = w

y ∈ FN

wt(y) = h

Pr[wt(C(x)) = h : x
$← SN

w (F)] =
CN
w,h(︁
n
w

)︁
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IOWE Technique for EA Codes

IOWE: AN
w,h

pr,w

E

x ∈ Fn

wt(x) = r

random expander

A

c ∈ FN

c = yA

wt(c) = h

deterministic
accumulator

y ∈ FN

y = xE

wt(y) = w

Properties of E

pr,w = PrE[wt(xE) = w | wt(x) = r]

If wt(y) = w, then y ∼ U({z ∈ FN : wt(z) = w})

16 / 28
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IOWE Technique for EA Codes

IOWE: AN
w,h

pr,w

Ex ∈ Fn

wt(x) = r

random expander

A c ∈ FN

c = yA

wt(c) = h

deterministic
accumulator

y ∈ FN

y = xE

wt(y) = w

Distance Analysis (Binary Case)

Pr
E
[∃x ∈ Fn

2 \ {0n} : wt(xEA) ⩽ δN ] ⩽

n∑︂
r=1

(︃
n

r

)︃
·

N∑︂
w=1

pr,w ·
δN∑︂
h=1

AN
w,h

/︁(︃N
w

)︃
17 / 28



Accumulator IOWE

Binary IOWE Accumulator [DJM98]

AN,2
w,h =

(︃
h− 1

⌈w/2⌉ − 1

)︃(︃
N − h

⌊w/2⌋

)︃

Theorem 2
For finite field Fq, N ∈ N, and w, h ∈ [N ], the IOWE of the N ×N
accumulator matrix over Fq is

AN,q
w,h =

w−1∑︂
i=0

(︃
h− 1⌈︁

w−i
2

⌉︁
− 1

)︃(︃
N − h⌊︁
w−i
2

⌋︁)︃(︃h− ⌈︁
w−i
2

⌉︁
i

)︃
(q − 1)⌈

w−i
2 ⌉(q − 2)i.
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Distance of EA Codes over Finite Fields

Given IOWE AN,q
w,h, we can directly bound the distance of the EA

code over any F

, right?

Distance Analysis (Fq Case)
n∑︂

r=1

(︃
n

r

)︃
(q − 1)r

N∑︂
w=1

pr,w

δN∑︂
h=1

AN,q
w,h

/︁(︃N
w

)︃
(q − 1)w =

n∑︂
r=1

(︃
n

r
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Overcoming the Union Bound

Main Observation
Naively applying the Union Bound does not work!

Overcoming the Union Bound
We can carefully refine the Union Bound step-by-step rather than
applying it in one-shot.

Intuition: carefully partition unions of events until we can apply a
truncated Union Bound on events that depend on the field size q.
Final distance bound we analyze is:
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Looks like binary case; able to bound this!
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Experiments

Implementation of PCS + SNARK in Rust
SNARK relies on Spartan PIOP [Set20]
Artifact available:
https://artifacts.iacr.org/crypto/2024/a10/

Parameters
Distance δ = 1/10 with probability 2−100, calculated numerically
Rate R = 1/2, n ∈ 2{10,11,12}, N = n/R

Sparsity t ⩾ 18 log(N)

F is the scalar field of the BN254 curve unless otherwise stated.
“Brakedown-improved” refers to using the improved Brakedown
parameters due to [Hab23]
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Experiments

Table 2: Performance of different SNARKs for ECDSA verification. Native field
is the scalar field of the secp256k1 curve.

R1CS Size Scheme Prover time Proof size Verifier time
221 (non-native) Ligero 103s 20 MB 57 s
221 (non-native) Aurora 534s 148 KB 15.2 s
221 (non-native) Groth16 149s 128 B 2 ms
216 (native) Brakedown 0.17s 2.2 MB 62 ms
216 (native) Brakedown-Improved 0.17s 1.1 MB 64 ms
216 (native) Ours (provable) 0.23s 1.1 MB 68 ms
216 (native) Ours (conjectured) 0.23s 778 KB 67 ms

Comparable to
BrakedownConcretely

small
proofs

Slightly slower
than Brakedown
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Summary

New Code-PCS from Expand-Accumulate Codes
via the Brakedown PCS Framework

Improved distance
analysis of binary

EA codes

1

Provide an alternate
distance analysis +
proof via classic

coding techniques

Better concrete
parameters than

[BCG+22]

Concretely efficient
SNARKs from EA

codes

3

Field-agnostic

Proof size + verifier
time comparable with

[GLS+23], only
≈ 1.2× prover

overhead

Generalize EA codes
to arbitrary finite

fields

2

Extend binary
analysis to FFs

Answers open
problem of [BCG+22]

Quasi-linear
encoding, concretly
large min distance
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Thank you!
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