FIELD-AGNOSTIC SNARKS FROM EXPAND-ACCUMULATE CODES CRYPTO 2024

Alexander R. Block¹ Zhiyong Fang² Jonathan Katz³ Justin Thaler⁴ Hendrik Waldner⁵ Yupeng Zhang⁶

> ¹Georgetown University and University of Maryland ²Texas A&M University ³Google and University of Maryland ⁴a16z crypto research and Georgetown University ⁵University of Maryland ⁶University of Illinois Urbana-Champaign

SNARKS

$\mathbf{S} \text{uccinct } \mathbf{N} \text{on-interactive } \mathbf{A} \mathbf{R} \text{guments of } \mathbf{K} \text{nowledge}$

Completeness: $\forall (x, w) \in \mathcal{R}_{\mathcal{L}}$:

$$\Pr[V(x,\pi) = 1 \mid \pi \leftarrow P(x,w)] = 1$$

 ε -Soundness: $\forall x \notin \mathcal{L}, \forall \text{ PPT } P^*$:

 $\Pr[V(x,\pi^*) = 1 \mid \pi^* \xleftarrow{\$} P^*(x)] \leqslant \varepsilon(x,\lambda)$

 ε -Knowledge Soundness: \exists PPT extractor \mathcal{E} such that $\forall x$ and \forall PPT P^* :

$$\Pr[(x, \mathcal{E}^{P^*}(x)) \in \mathcal{R}_{\mathcal{L}}] + \varepsilon(x, \lambda) \ge \\ \Pr[V(x, \pi^*) = 1 \mid \pi^* \stackrel{\$}{\leftarrow} P^*(x)]$$

Succinctness: $|\pi| = o_{\lambda}(|w|)$; ideally $O_{\lambda}(\text{polylog}(|w|))$

BUILDING CONCRETELY EFFICIENT SNARKS [THA22]

BUILDING CONCRETELY EFFICIENT SNARKS [THA22]

This Work

Build SNARKs from Error-correcting Codes

BUILDING CONCRETELY EFFICIENT SNARKS [THA22]

This Work

Build SNARKs from Error-correcting Codes

• Why Code-based SNARKs?

- Why Code-based SNARKs?
 - Transparent setup

- Why Code-based SNARKs?
 - Transparent setup
 - Plausible PQ security

- Why Code-based SNARKs?
 - Transparent setup
 - Plausible PQ security
 - Concretely efficient if the underlying code is concretely efficient

- Why Code-based SNARKs?
 - Transparent setup
 - Plausible PQ security
 - Concretely efficient if the underlying code is concretely efficient

More on

- Why Code-based SNARKs?
 - Transparent setup
 - Plausible PQ security
 - Concretely efficient if the underlying code is concretely efficient
- SNARKs from Codes are built upon the PIOP + PCS paradigm

More on

- Why Code-based SNARKs?
 - Transparent setup
 - Plausible PQ security
 - Concretely efficient if the underlying code is concretely efficient
- SNARKs from Codes are built upon the PIOP + PCS paradigm

More on

- Why Code-based SNARKs?
 - Transparent setup
 - Plausible PQ security
 - Concretely efficient if the underlying code is concretely efficient

■ SNARKs from Codes are built upon the PIOP + PCS paradigm

More on

- Why Code-based SNARKs?
 - Transparent setup
 - Plausible PQ security
 - Concretely efficient if the underlying code is concretely efficient

SNARKs from Codes are built upon the PIOP + PCS paradigm

More on

Ligero/Brakedown-based PCS

Why field-agnostic?

Why field-agnostic?

Prover can experience $\approx 25\times$ slow down if the SNARK doesn't support field of the underlying computation!

New Code-PCS from Expand-Accumulate Codes via the Brakedown PCS Framework

New Code-PCS from Expand-Accumulate Codes via the Brakedown PCS Framework

Improved distance analysis of binary EA codes

New Code-PCS from Expand-Accumulate Codes via the Brakedown PCS Framework

OUR RESULTS: BIRD'S EYE VIEW

OUR RESULTS: BIRD'S EYE VIEW

OUR RESULTS: BIRD'S EYE VIEW

Table 1: Performance of field-agnostic SNARKs based on linear codes for a statement modeled as an arithmetic circuit of size M and depth d.

	Prover Time	Proof Size	Verifier Time		
[Brakedown]	O(M)	$O(\sqrt{M})$	$O(\sqrt{M})$		
[BaseFold]	$O(M \log M)$	$O(\log^2 M)$	$O(\log^2 M)$		
This Work	$O(M \log M)$	$O(\sqrt{M})$	$O(\sqrt{M})$		
Proof of ECDSA verification					
[Brakedown]	0.17s	2.2MB	0.062s		
[BaseFold]	0.273s	$5.5 \mathrm{MB}$	0.021s		
Ours (provable)	0.23s	1.1MB	0.068s		
Ours (conjectured)	0.23s	0.78MB	0.067 s		

Table 1: Performance of field-agnostic SNARKs based on linear codes for a statement modeled as an arithmetic circuit of size M and depth d.

	Prover Time	Proof Size	Verifier Time		
[Brakedown]	O(M)	$O(\sqrt{M})$	$O(\sqrt{M})$		
[BaseFold]	$O(M \log M)$	$O(\log^2 M)$	$O(\log^2 M)$		
This Work	$O(M \log M)$	$O(\sqrt{M})$	$O(\sqrt{M})$		
Proof of ECDSA verification					
[Brakedown]	0.17s	2.2MB	0.062s		
[BaseFold]	0.273s	$5.5 \mathrm{MB}$	0.021s		
Ours (provable)	0.23s	1.1MB	0.068s		
Ours (conjectured)	0.23s	0.78MB	0.067s		

Faster than Basefold

Table 1: Performance of field-agnostic SNARKs based on linear codes for a statement modeled as an arithmetic circuit of size M and depth d.

	Prover Time	Proof Size	Verifier Time		
[Brakedown]	O(M)	$O(\sqrt{M})$	$O(\sqrt{M})$		
[BaseFold]	$O(M \log M)$	$O(\log^2 M)$	$O(\log^2 M)$		
This Work	$O(M \log M)$	$O(\sqrt{M})$	$O(\sqrt{M})$		
Proof of ECDSA verification					
[Brakedown]	0.17s	2.2MB	0.062s		
[BaseFold]	0.273s	$5.5 \mathrm{MB}$	0.021s		
Ours (provable)	0.23s	1.1MB	0.068s		
Ours (conjectured)	0.23s	0.78MB	0.067s		

Faster than Basefold

Concretely smaller proofs

Table 1: Performance of field-agnostic SNARKs based on linear codes for a statement modeled as an arithmetic circuit of size M and depth d.

	Prover Time	Proof Size	Verifier Time	
[Brakedown]	O(M)	$O(\sqrt{M})$	$O(\sqrt{M})$	
[BaseFold]	$O(M \log M)$	$O(\log^2 M)$	$O(\log^2 M)$	
This Work	$O(M \log M)$	$O(\sqrt{M})$	$O(\sqrt{M})$	
Proof of ECDSA verification				
[Brakedown]	0.17s	2.2MB	0.062s	
[BaseFold]	0.273s	$5.5 \mathrm{MB}$	0.021s	
Ours (provable)	0.23s	1.1MB	0.068s	
Ours (conjectured)	0.23s	0.78MB	0.067s	
Faster than	Basefold) Conc	retely smaller	Comparable to	
		proofs	Brakedown	

Remainder of the Talk

- Error-correcting codes overview
- EA Codes overview
- IOWE technique for distance analysis
- EA Code over any finite field analysis
- Experimental results

Definition 1 (Linear Codes)

Definition 1 (Linear Codes)

Let \mathbb{F} be a finite field. A [N, n, d] linear error correcting code C for $n \leq N$ is a *n*-dimensional subspace of \mathbb{F}^N such that the minimum distance of C, denoted as $\Delta(C)$, is d, where $\Delta(C) := \min_{y \in C \setminus \{0^N\}} \{ \mathsf{wt}(y) \}.$

Definition 1 (Linear Codes)

Let \mathbb{F} be a finite field. A [N, n, d] linear error correcting code C for $n \leq N$ is a *n*-dimensional subspace of \mathbb{F}^N such that the minimum distance of C, denoted as $\Delta(C)$, is d, where $\Delta(C) := \min_{y \in C \setminus \{0^N\}} \{ \mathsf{wt}(y) \}.$

Equivalently

$C \colon \mathbb{F}^n \to \mathbb{F}^N$ such that $C(x) \coloneqq x\mathbf{G}$ for rank- $n \mathbf{G} \in \mathbb{F}^{n \times N}$ and $x \in \mathbb{F}^n$.

Definition 1 (Linear Codes)

Let \mathbb{F} be a finite field. A [N, n, d] linear error correcting code C for $n \leq N$ is a *n*-dimensional subspace of \mathbb{F}^N such that the minimum distance of C, denoted as $\Delta(C)$, is d, where $\Delta(C) := \min_{y \in C \setminus \{0^N\}} \{ \mathsf{wt}(y) \}.$

Equivalently

$$C \colon \mathbb{F}^n \to \mathbb{F}^N$$
 such that $C(x) \coloneqq x\mathbf{G}$ for rank- $n \mathbf{G} \in \mathbb{F}^{n \times N}$ and $x \in \mathbb{F}^n$.

Parameters of Interest

Definition 1 (Linear Codes)

Let \mathbb{F} be a finite field. A [N, n, d] linear error correcting code C for $n \leq N$ is a *n*-dimensional subspace of \mathbb{F}^N such that the minimum distance of C, denoted as $\Delta(C)$, is d, where $\Delta(C) := \min_{y \in C \setminus \{0^N\}} \{ \mathsf{wt}(y) \}.$

Equivalently

$$C \colon \mathbb{F}^n \to \mathbb{F}^N$$
 such that $C(x) \coloneqq x\mathbf{G}$ for rank- $n \mathbf{G} \in \mathbb{F}^{n \times N}$ and $x \in \mathbb{F}^n$.

Parameters of Interest

• Rate:
$$R = n/N$$

Definition 1 (Linear Codes)

Let \mathbb{F} be a finite field. A [N, n, d] linear error correcting code C for $n \leq N$ is a *n*-dimensional subspace of \mathbb{F}^N such that the minimum distance of C, denoted as $\Delta(C)$, is d, where $\Delta(C) := \min_{y \in C \setminus \{0^N\}} \{ \mathsf{wt}(y) \}.$

Equivalently

$$C \colon \mathbb{F}^n \to \mathbb{F}^N$$
 such that $C(x) \coloneqq x\mathbf{G}$ for rank- $n \mathbf{G} \in \mathbb{F}^{n \times N}$ and $x \in \mathbb{F}^n$.

Parameters of Interest

• Rate:
$$R = n/N$$

Encoding Time: Time to compute $x \cdot \mathbf{G}$

Definition 1 (Linear Codes)

Let \mathbb{F} be a finite field. A [N, n, d] linear error correcting code C for $n \leq N$ is a *n*-dimensional subspace of \mathbb{F}^N such that the minimum distance of C, denoted as $\Delta(C)$, is d, where $\Delta(C) := \min_{y \in C \setminus \{0^N\}} \{ \mathsf{wt}(y) \}.$

Equivalently

$$C \colon \mathbb{F}^n \to \mathbb{F}^N$$
 such that $C(x) \coloneqq x\mathbf{G}$ for rank- $n \mathbf{G} \in \mathbb{F}^{n \times N}$ and $x \in \mathbb{F}^n$.

Parameters of Interest

- Rate: R = n/N
- **Encoding Time:** Time to compute $x \cdot \mathbf{G}$
- **Relative Distance:** $\delta(C) := \Delta(C)/N$

Accumulator \mathbf{A}

(Generalized) Bernoulli $\mathbf{E}_{i,j} \leftarrow \mathsf{Ber}_p(\mathbb{F}), \forall i, j$ $\mathsf{Ber}_p(\mathbb{F}) := \begin{cases} x \stackrel{\$}{\leftarrow} \mathbb{F} \setminus \{0\} & \text{w.p. } p \\ 0 & \text{w.p. } 1-p \end{cases}$

(Generalized) Bernoulli $\mathbf{E}_{i,j} \leftarrow \mathsf{Ber}_p(\mathbb{F}), \forall i, j$ $\mathsf{Ber}_p(\mathbb{F}) \coloneqq \begin{cases} x \xleftarrow{\$} \mathbb{F} \setminus \{0\} & \text{w.p. } p \\ 0 & \text{w.p. } 1-p \end{cases}$ $[\mathsf{BCG}^+22] \text{ prove } \delta(\mathbf{EA}) = \Theta(1) \text{ for } \mathbb{F}_2 \text{ and } p = \Theta(\log(N)/N), \text{ conjecture same for } \mathbb{F}_{>2}$

(Generalized) Bernoulli $\mathbf{E}_{i,j} \leftarrow \mathsf{Ber}_p(\mathbb{F}), \forall i, j$ $\mathsf{Ber}_p(\mathbb{F}) := \begin{cases} x \stackrel{\$}{\leftarrow} \mathbb{F} \setminus \{0\} & \text{w.p. } p \\ 0 & \text{w.p. } 1-p \end{cases}$ $[\mathsf{BCG}^+22] \text{ prove } \delta(\mathbf{EA}) = \Theta(1) \text{ for } \mathbb{F}_2 \text{ and } p = \Theta(\log(N)/N), \text{ conjecture same for } \mathbb{F}_{>2} \end{cases}$

Fixed Row Weights $\mathbf{E}_i \leftarrow \mathsf{Fixed}(N, t, \mathbb{F}), \forall i \in [n]$ $\mathsf{Fixed}(N, t, \mathbb{F}) := \mathbb{U}(\{y \in \mathbb{F}^N : \mathsf{wt}(y) = t\})$

(Generalized) Bernoulli $\mathbf{E}_{i,j} \leftarrow \mathsf{Ber}_p(\mathbb{F}), \forall i, j$ $\mathsf{Ber}_p(\mathbb{F}) := \begin{cases} x \stackrel{\$}{\leftarrow} \mathbb{F} \setminus \{0\} & \text{w.p. } p \\ 0 & \text{w.p. } 1-p \end{cases}$ $[\mathsf{BCG}^+22] \text{ prove } \delta(\mathbf{EA}) = \Theta(1) \text{ for } \mathbb{F}_2 \text{ and } p = \Theta(\log(N)/N), \text{ conjecture same for } \mathbb{F}_{>2} \end{cases}$

Fixed Row Weights $\mathbf{E}_i \leftarrow \mathsf{Fixed}(N, t, \mathbb{F}), \forall i \in [n]$ $\mathsf{Fixed}(N, t, \mathbb{F}) := \mathbb{U}(\{y \in \mathbb{F}^N : \mathsf{wt}(y) = t\})$ $[\mathsf{BCG}^+22]$ conjecture $\delta(\mathbf{EA}) = \Theta(1)$ for \mathbb{F} and $t = \Theta(\log(N))$ Juxtaposed EA Code $C[\mathbf{E}_1, \mathbf{E}_2](x) := (x\mathbf{E}_1\mathbf{A}) || (x\mathbf{E}_2\mathbf{A})$ $\mathbf{E}_1 \leftarrow \mathsf{Fixed}(n, N, t, \mathbb{F}) \text{ and } \mathbf{E}_2 \leftarrow \mathsf{Ber}_p^{n \times N}(\mathbb{F})$ $R = n/N = \Theta(1), t = \Theta(\log(N)), p = t/N$

Theorem 1

Over any \mathbb{F} , for R = n/N constant, there exist constants $\delta \in (0, 1/2)$ and $c^* > 5$ such that for $t = \Theta(\log(N))$ and p = t/N, the juxtaposed EA code $C[\mathbf{E}_1, \mathbf{E}_2]$ over \mathbb{F} has constant relative distance δ with at least $1 - 1/\operatorname{poly}(N^{5-c^*})$ probability.

If $\mathbb{F} = \mathbb{F}_2$, then the above holds for $c^* > 4$ with probability at least $1 - 1/\text{poly}(N^{4-c^*})$

Theorem 1

Over any \mathbb{F} , for R = n/N constant, there exist constants $\delta \in (0, 1/2)$ and $c^* > 5$ such that for $t = \Theta(\log(N))$ and p = t/N, the juxtaposed EA code $C[\mathbf{E}_1, \mathbf{E}_2]$ over \mathbb{F} has constant relative distance δ with at least $1 - 1/\operatorname{poly}(N^{5-c^*})$ probability.

If $\mathbb{F} = \mathbb{F}_2$, then the above holds for $c^* > 4$ with probability at least $1 - 1/\text{poly}(N^{4-c^*})$

Notes

• We consider juxtaposed EA codes due to limitations in our analysis of \mathbf{E}_1 .

Theorem 1

Over any \mathbb{F} , for R = n/N constant, there exist constants $\delta \in (0, 1/2)$ and $c^* > 5$ such that for $t = \Theta(\log(N))$ and p = t/N, the juxtaposed EA code $C[\mathbf{E}_1, \mathbf{E}_2]$ over \mathbb{F} has constant relative distance δ with at least $1 - 1/\operatorname{poly}(N^{5-c^*})$ probability.

If $\mathbb{F} = \mathbb{F}_2$, then the above holds for $c^* > 4$ with probability at least $1 - 1/\text{poly}(N^{4-c^*})$

Notes

- We consider juxtaposed EA codes due to limitations in our analysis of \mathbf{E}_1 .
- We conjecture both $\mathbf{E}_1 \mathbf{A}$ and $\mathbf{E}_2 \mathbf{A}$ are good codes.

Theorem 1

Over any \mathbb{F} , for R = n/N constant, there exist constants $\delta \in (0, 1/2)$ and $c^* > 5$ such that for $t = \Theta(\log(N))$ and p = t/N, the juxtaposed EA code $C[\mathbf{E}_1, \mathbf{E}_2]$ over \mathbb{F} has constant relative distance δ with at least $1 - 1/\operatorname{poly}(N^{5-c^*})$ probability.

If $\mathbb{F} = \mathbb{F}_2$, then the above holds for $c^* > 4$ with probability at least $1 - 1/\text{poly}(N^{4-c^*})$

Notes

- We consider juxtaposed EA codes due to limitations in our analysis of \mathbf{E}_1 .
- We conjecture both $\mathbf{E}_1 \mathbf{A}$ and $\mathbf{E}_2 \mathbf{A}$ are good codes.
- Parameters in above theorem are nowhere near tight; can be tightened up with better Stirling approximations.

Input-Output Weight Enumerator

Input-Output Weight Enumerator

Input-Output Weight Enumerator

Definition 2 (IOWE)

$$C^N_{w,h} \coloneqq \left| \{ x \in \mathbb{F}^n \colon \mathsf{wt}(x) = w \land \mathsf{wt}(C(x)) = h \} \right|$$

Properties of ${f E}$

Properties of \mathbf{E}

$$p_{r,w} = \Pr_{\mathbf{E}}[\mathsf{wt}(x\mathbf{E}) = w \mid \mathsf{wt}(x) = r]$$

Properties of **E** • $p_{r,w} = \Pr_{\mathbf{E}}[\mathsf{wt}(x\mathbf{E}) = w \mid \mathsf{wt}(x) = r]$ • If $\mathsf{wt}(y) = w$, then $y \sim \mathbb{U}(\{z \in \mathbb{F}^N : \mathsf{wt}(z) = w\})$

Distance Analysis (Binary Case) $\Pr_{\mathbf{E}} [\exists x \in \mathbb{F}_{2}^{n} \setminus \{0^{n}\} : \mathsf{wt}(x\mathbf{EA}) \leqslant \delta N] \leqslant$ $\sum_{r=1}^{n} \binom{n}{r} \cdot \sum_{w=1}^{N} p_{r,w} \cdot \sum_{h=1}^{\delta N} A_{w,h}^{N} / \binom{N}{w}$

ACCUMULATOR IOWE

Binary IOWE Accumulator [DJM98]

$$A_{w,h}^{N,2} = \binom{h-1}{\lceil w/2 \rceil - 1} \binom{N-h}{\lfloor w/2 \rfloor}$$

ACCUMULATOR IOWE

Binary IOWE Accumulator [DJM98]

$$A_{w,h}^{N,2} = \binom{h-1}{\lfloor w/2 \rfloor - 1} \binom{N-h}{\lfloor w/2 \rfloor}$$

Theorem 2

For finite field \mathbb{F}_q , $N \in \mathbb{N}$, and $w, h \in [N]$, the IOWE of the $N \times N$ accumulator matrix over \mathbb{F}_q is

$$A_{w,h}^{N,q} = \sum_{i=0}^{w-1} \binom{h-1}{\left\lceil \frac{w-i}{2} \right\rceil - 1} \binom{N-h}{\left\lfloor \frac{w-i}{2} \right\rfloor} \binom{h-\left\lceil \frac{w-i}{2} \right\rceil}{i} (q-1)^{\left\lceil \frac{w-i}{2} \right\rceil} (q-2)^{i}.$$

Given IOWE $A_{w,h}^{N,q},$ we can directly bound the distance of the EA code over any $\mathbb F$

■ Given IOWE A^{N,q}_{w,h}, we can directly bound the distance of the EA code over any F, right?

Given IOWE A^{N,q}_{w,h}, we can directly bound the distance of the EA code over any 𝔽, right?

Distance Analysis (
$$\mathbb{F}_q$$
 Case)

$$\sum_{r=1}^n \binom{n}{r} (q-1)^r \sum_{w=1}^N p_{r,w} \sum_{h=1}^{\delta N} A_{w,h}^{N,q} / \binom{N}{w} (q-1)^w =$$

Given IOWE A^{N,q}_{w,h}, we can directly bound the distance of the EA code over any 𝔽, right?

Distance Analysis (
$$\mathbb{F}_q$$
 Case)

$$\sum_{r=1}^n \binom{n}{r} (q-1)^r \sum_{w=1}^N p_{r,w} \sum_{h=1}^{\delta N} A_{w,h}^{N,q} / \binom{N}{w} (q-1)^w =$$

$$\sum_{r=1}^n \binom{n}{r} (q-1)^r \sum_{w=1}^N p_{r,w} \sum_{h=1}^{\delta N}$$

$$\frac{\sum_{i=0}^{w-1} \binom{h-1}{\lfloor \frac{w-i}{2} \rfloor - 1} \binom{N-h}{\lfloor \frac{w-i}{2} \rfloor} \binom{h-\lceil \frac{w-i}{2} \rceil}{i} (q-1)^{\lceil \frac{w-i}{2} \rceil} \cdot (q-2)^i}{\binom{N}{w} (q-1)^w}$$

• Given IOWE $A_{w,h}^{N,q}$, we can directly bound the distance of the EA code over any \mathbb{F} , right?

Distance Analysis (
$$\mathbb{F}_q$$
 Case)

$$\sum_{r=1}^n \binom{n}{r} (q-1)^r \sum_{w=1}^N p_{r,w} \sum_{h=1}^{\delta N} A_{w,h}^{N,q} / \binom{N}{w} (q-1)^w =$$

$$\sum_{r=1}^n \binom{n}{r} (q-1)^r \sum_{w=1}^N p_{r,w} \sum_{h=1}^{\delta N}$$

$$\frac{\sum_{i=0}^{w-1} \left(\left\lceil \frac{h-1}{2} \right\rceil - 1 \right) \left(\left\lfloor \frac{W-i}{2} \right\rfloor \right) \left(h - \left\lceil \frac{w-i}{2} \right\rceil \right) (q-1)^{\left\lceil \frac{w-i}{2} \right\rceil} \cdot (q-2)^i}{\binom{N}{w} (q-1)^w}$$

We were unable to bound this for q > 4!

Main Observation

Naively applying the Union Bound does not work!

Main Observation

Naively applying the Union Bound does not work!

Overcoming the Union Bound

• We can carefully refine the Union Bound step-by-step rather than applying it in one-shot.

Main Observation

Naively applying the Union Bound does not work!

Overcoming the Union Bound

- We can carefully refine the Union Bound step-by-step rather than applying it in one-shot.
- Intuition: carefully partition unions of events until we can apply a truncated Union Bound on events that depend on the field size q.

Main Observation

Naively applying the Union Bound does not work!

Overcoming the Union Bound

- We can carefully refine the Union Bound step-by-step rather than applying it in one-shot.
- Intuition: carefully partition unions of events until we can apply a truncated Union Bound on events that depend on the field size q.
- Final distance bound we analyze is:

Main Observation

Naively applying the Union Bound does not work!

Overcoming the Union Bound

- We can carefully refine the Union Bound step-by-step rather than applying it in one-shot.
- Intuition: carefully partition unions of events until we can apply a truncated Union Bound on events that depend on the field size q.

■ Final distance bound we analyze is:

$$\sum_{r=1}^{n} \binom{n}{r} \sum_{w=1}^{N} p_{r,w} \sum_{h=1}^{\delta N} \frac{\sum_{i=0}^{w-1} \binom{h-1}{\left\lceil \frac{w-i}{2} \rceil - 1\right) \binom{N-h}{\left\lfloor \frac{w-i}{2} \right\rfloor} \binom{h-\left\lceil \frac{w-i}{2} \rceil}{i}}{\binom{N}{w}}}{\binom{N}{w}}$$

Main Observation

Naively applying the Union Bound does not work!

Overcoming the Union Bound

- We can carefully refine the Union Bound step-by-step rather than applying it in one-shot.
- Intuition: carefully partition unions of events until we can apply a truncated Union Bound on events that depend on the field size q.

■ Final distance bound we analyze is:

$$\sum_{r=1}^{n} \binom{n}{r} \sum_{w=1}^{N} p_{r,w} \sum_{h=1}^{\delta N} \frac{\sum_{i=0}^{w-1} \binom{h-1}{\left\lceil \frac{w-i}{2} \rceil - 1\right) \binom{N-h}{\left\lfloor \frac{w-i}{2} \right\rfloor} \binom{h-\left\lceil \frac{w-i}{2} \rceil}{i}}{\binom{N}{w}}}{\binom{N}{w}}$$

Looks like binary case; able to bound this!

EXPERIMENTS

- Implementation of PCS + SNARK in Rust
- SNARK relies on Spartan PIOP [Set20]
- Artifact available:

https://artifacts.iacr.org/crypto/2024/a10/

Parameters

- Distance $\delta = 1/10$ with probability 2^{-100} , calculated numerically
- Rate $R = 1/2, n \in 2^{\{10,11,12\}}, N = n/R$
- Sparsity $t \ge 18 \log(N)$
- \blacksquare $\mathbb F$ is the scalar field of the BN254 curve unless otherwise stated.
- "Brakedown-improved" refers to using the improved Brakedown parameters due to [Hab23]

EXPERIMENTS

Figure 1: Performance of polynomial commitment schemes.
EXPERIMENTS

Figure 2: Performance of SNARKs on random R1CS instances.

R1CS Size	Scheme	Prover time	Proof size	Verifier time
2^{21} (non-native)	Ligero	103s	20 MB	$57 \mathrm{s}$
2^{21} (non-native)	Aurora	534s	148 KB	15.2 s
2^{21} (non-native)	Groth16	149s	128 B	2 ms
2^{16} (native)	Brakedown	0.17s	2.2 MB	62 ms
2^{16} (native)	Brakedown-Improved	0.17s	1.1 MB	64 ms
2^{16} (native)	Ours (provable)	0.23s	1.1 MB	68 ms
2^{16} (native)	Ours (conjectured)	0.23s	778 KB	67 ms

R1CS Size	Scheme	Prover time	Proof size	Verifier time
2^{21} (non-native)	Ligero	103s	20 MB	$57 \mathrm{s}$
2^{21} (non-native)	Aurora	534s	148 KB	15.2 s
2^{21} (non-native)	Groth16	149s	128 B	2 ms
2^{16} (native)	Brakedown	0.17s	2.2 MB	62 ms
2^{16} (native)	Brakedown-Improved	0.17s	1.1 MB	64 ms
2^{16} (native)	Ours (provable)	0.23s	1.1 MB	68 ms
2^{16} (native)	Ours (conjectured)	0.23s	778 KB	$67 \mathrm{ms}$

Comparable to Brakedown

R1CS Size	Scheme	Prover time	Proof size	Verifier time
2^{21} (non-native)	Ligero	103s	20 MB	57 s
2^{21} (non-native)	Aurora	534s	148 KB	15.2 s
2^{21} (non-native)	Groth16	149s	128 B	2 ms
2^{16} (native)	Brakedown	0.17s	2.2 MB	62 ms
2^{16} (native)	Brakedown-Improved	0.17s	1.1 MB	64 ms
2^{16} (native)	Ours (provable)	0.23s	1.1 MB	68 ms
2^{16} (native)	Ours (conjectured)	0.23s	778 KB	67 ms
			Λ	
		G		Comparable to
		Ce	oncretely	Brakedown

small proofs

R1CS Size	Scheme	Prover time	Proof size	Verifier time
2^{21} (non-native)	Ligero	103s	20 MB	$57 \mathrm{s}$
2^{21} (non-native)	Aurora	534s	148 KB	15.2 s
2^{21} (non-native)	Groth16	149s	128 B	2 ms
2^{16} (native)	Brakedown	0.17s	2.2 MB	62 ms
2^{16} (native)	Brakedown-Improved	0.17s	1.1 MB	64 ms
2^{16} (native)	Ours (provable)	0.23s	1.1 MB	68 ms
2^{16} (native)	Ours (conjectured)	0.23s	778 KB	67 ms
Slightly slower than Brakedown Small proofs				

SUMMARY

New Code-PCS from Expand-Accumulate Codes via the Brakedown PCS Framework

Thank you!

References I

[BCG⁺22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 603–633. Springer, Cham, August 2022. DOI: 10.1007/978-3-031-15979-4_21.

- [BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear verification from tensor codes. In *Theory of Cryptography Conference*, pages 19–46. Springer, 2020.
- [DJM98] Dariush Divsalar, Hui Jin, and Robert J McEliece. Coding theorems for "turbo-like" codes. In Proceedings of the annual Allerton Conference on Communication control and Computing, volume 36, pages 201–210, 1998.
- [GLS⁺23] Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Brakedown: linear-time and field-agnostic SNARKs for R1CS. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II, volume 14082 of LNCS, pages 193–226. Springer, Cham, August 2023. DOI: 10.1007/978-3-031-38545-2_7.
- [Hab23] Ulrich Haböck. Brakedown's expander code. Cryptology ePrint Archive, 2023.

References II

[Set20]

[Tha22]

Srinath Setty. Spartan: efficient and general-purpose zkSNARKs without trusted setup. In Daniele Micciancio and Thomas Ristenpart, editors, *CRYPTO 2020, Part III*, volume 12172 of *LNCS*, pages 704–737. Springer, Cham, August 2020. DOI: 10.1007/978-3-030-56877-1_25.

Justin Thaler. Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur., 4(2-4):117–660, 2022. URL:

https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html.