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SKETCH OF CSIDH

Supersingular elliptic curves over F647 with endomorphism ring Z[
√
−647].
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CSIDH

For CSIDH-512 we have
▶ p = 4 · 3 · 5 · 7 · . . . 373︸ ︷︷ ︸

73 primes

·587 − 1;

▶ for each ℓi ∈ {3, 5, . . . , 587} we compute at most 5 isogenies of that degree since 1174 ≈ 2255.99.

Main topic of this talk: how do we compute these ℓi-isogenies?
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VÉLU FORMULAE (CLASSICAL)

Theorem 1
Let C = ⟨P⟩ be a finite subgroup of an elliptic curve

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

where P is a point of order N, with N odd. Fix a partition C = {OE} ∪ C+ ∪ C− such that for any Q ∈ C+ it
holds that −Q ∈ C−. For all Q ∈ C+ define

gx
Q = 3x(Q)2 + 2a2x(Q) + a4 − a1y(Q),

gy
Q = −2y(Q)− a1x(Q)− a3,

uQ = (gy
Q)

2, vQ = 2gx
Q − a1gy

Q

v =
∑

Q∈C+

vQ, w =
∑

Q∈C+

(uQ + x(Q)vQ).

Then the separable isogeny φ with domain E and kernel C has codomain

E′ : y2 + a1xy + a3y = x3 + a2x2 + (a4 − 5v)x + a6 − (a2
1 + 4a2)− 7w.
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VÉLU FORMULAE ON MONTGOMERY CURVES

Theorem 2
Let C = ⟨P⟩ be a finite subgroup of an elliptic curve

E : y2 = x3 + a2x2 + x,

where P is a point of order N, with N odd. Define

ϖ =
∏

Q∈C\{∞}

x(Q),

σ =
∑

Q∈C\{∞}

(
x(Q)− 1

x(Q)

)
.

Then the separable isogeny φ with domain E and kernel C has codomain (up to isomorphism)

E′ : y2 = x3 +ϖ(a2 − σ)x2 + x.
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CSIDH-512 ORIGINAL IMPLEMENTATION

For CSIDH-512:
▶ ℓi ∈ {3, 5, . . . , 587} use O(ℓi) Vélu formulae.

Remark that
▶ each isogeny requires sampling an ℓi-torsion point (expensive since O(log(p)));
▶ trade-off for this can be made by mapping points through isogenies.
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VÉLU-SQRT FORMULAE

Major breakthrough in computing isogenies: only requires Õ(
√
ℓi) operations!

General idea:
▶ baby-step giant-step;
▶ combine with a resultant computation.

For CSIDH-512:
▶ ℓi ∈ {3, 5, . . . , 101} use O(ℓi) Vélu formulae;
▶ ℓi ∈ {103, 107, . . . , 587} use Õ(

√
ℓi) Vélu-sqrt formulae.
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√
ℓi) Vélu-sqrt formulae.

10 / 20



CSURF AKA RADICAL 2-ISOGENIES

E : y2 = x3 + Ax2 + x −→ E′ : y2 = x3 + 2(3 + A(
√

A2 − 4 − A))︸ ︷︷ ︸
:=A′

x2 + x

Cost comparison:
▶ 2-isogeny: one exponentiation α(p+1)/4 ∼ 1.5 log p multiplications by square-and-multiply;
▶ generating 2-torsion point ∼ 11 log p multiplications in Montgomery ladder.
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RADICAL 3-ISOGENIES

A radical 3-isogeny can be written as

E : y2 + a1xy + a3y = x3 −→ E′ : y2 + (−6α+ a1)︸ ︷︷ ︸
:=a′1

xy + (3a1α
2 − a2

1α+ 9a3)︸ ︷︷ ︸
:=a′3

y = x3

where α = 3
√

a3.
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RADICAL 5-ISOGENIES

A radical 5-isogeny can be written as

E : y2 + (1 − b)xy − by = x3 − bx2 −→ E′ : y2 + (1 − b′)xy − b′y = x3 − b′x2

where

b′ = α
α4 + 3α3 + 4α2 + 2α+ 1
α4 − 2α3 + 4α2 − 3α+ 1

and α =
5
√

b.
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RADICAL ISOGENIES

Operation count Cost relative to 2-isogeny
2-isogeny E + M 1
3-isogeny E + 2M 1.023
5-isogeny E + 6M 1.034
7-isogeny E + 12M 1.043
11-isogeny E + 50M 1.293
13-isogeny E + 89M 1.448
17-isogeny E + 217M 1.921
19-isogeny E + 329M 2.532

For CSIDH-512:
▶ ℓi ∈ {2, 3, 5, . . . , 19} use radical isogenies;
▶ ℓi ∈ {23, 29, . . . , 101} use O(ℓi) Vélu formulae;
▶ ℓi ∈ {103, 107, . . . , 409} use Õ(

√
ℓi) Vélu-sqrt formulae.
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Consider

Eb,c
φ−→ E′ ι−→

∼
Eb′,c′ ,

where
▶ Eb,c and Eb′,c′ are in Tate normal form;
▶ φ is the isogeny computed with classical Vélu formulae;
▶ ι is an isomorphism putting E′ into Tate normal form.
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Define ϖ0 = 2 and for all i ≥ 1 define

ϖi =

i∏
k=1

x(k(0, 0)),

where we use the conventions x((0, 0)) = 1 = x((0, b)) and x(N(0, 0)) = b2.

Choose
tN((0, 0), (0, b)) = τN := −(b2ϖN)

−1.

Then (conjectured), with α = N
√
τN, we have that ι is defined by

u = 1 + 3b
N−2∑
i=1

ϖiα
i −

N−1∑
i=1,i̸=N−3

ϖiϖi+1ϖi+2α
3i,

s = b
N−2∑
i=1

ϖiα
i − b3

N−1∑
i=2

ϖ2iϖ2i+1ϖN−i−1ϖN−iα
2(N+i).
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Proposition 1

Let E/Fq be an elliptic curve and N ≥ 5 an odd integer such that gcd(q − 1,N) = 1 and char(Fq) ∤ N, and
assume that the formulae for u and s are true. Then the cyclic Nk-isogeny obtained by iteratively mapping
(b, c) 7→ (b′, c′) can be computed in (2 log(q) +O(N))k basic Fq-operations.

Remarks:
▶ 2 log(q) factor is an upperbound for the exponentiation;
▶ hidden constant in O(N) is 16 for M.

.
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For CSIDH-512:
▶ ℓi ∈ {2, 3, 5, . . . , 199} use radical (Vélu) isogenies;
▶ ℓi ∈ {211, 223, . . . , 409} use Õ(

√
ℓi) Vélu-sqrt formulae.

Results:
▶ 35% speedup over previous (limited) radicals in CSIDH-512;
▶ 64% speedup overall compared to no radicals;
▶ 64% is stable for larger parameters too.
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FURTHER RESEARCH OPTIONS

Mathematically:
▶ Proof?
▶ Case N even?

Cryptographically:
▶ Most efficient formulae?
▶ Constant time version?
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