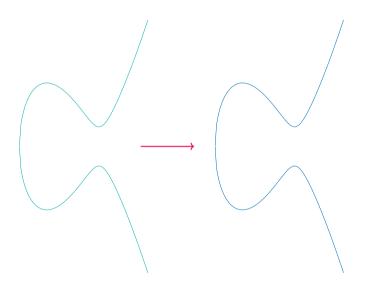
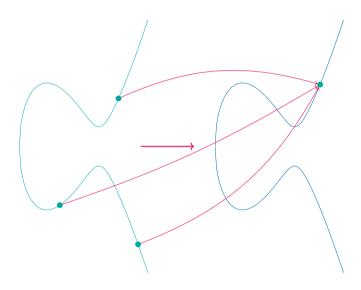
Radical $\sqrt[N]{\text{élu}}$ Isogeny Formulae

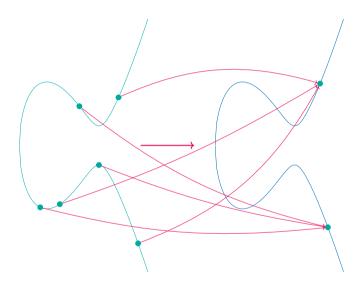
Thomas Decru

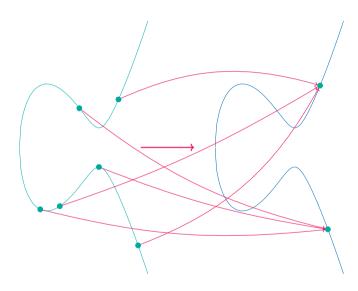
Université Libre de Bruxelles, Belgium

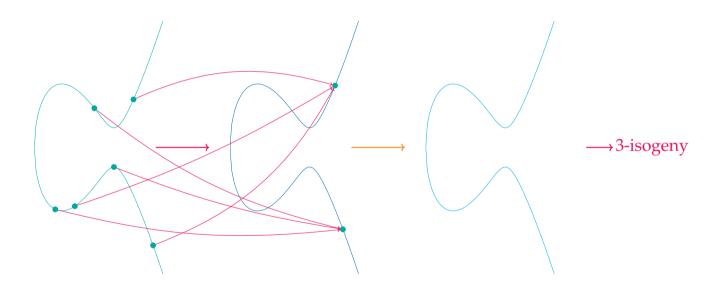
21st of August 2024

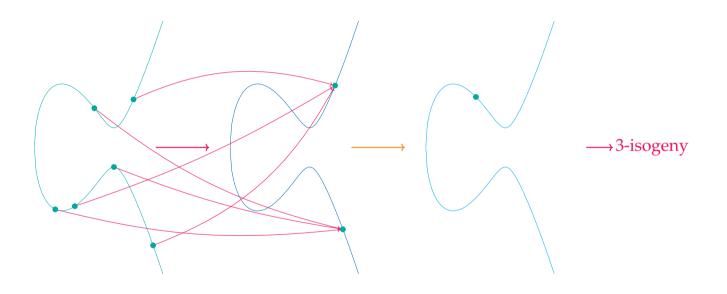


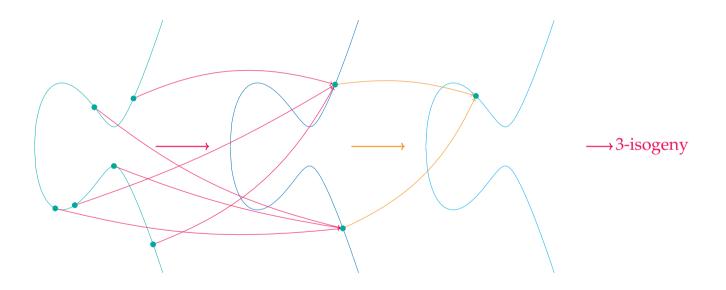


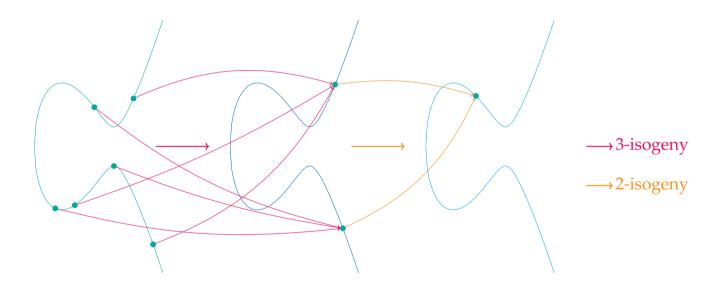


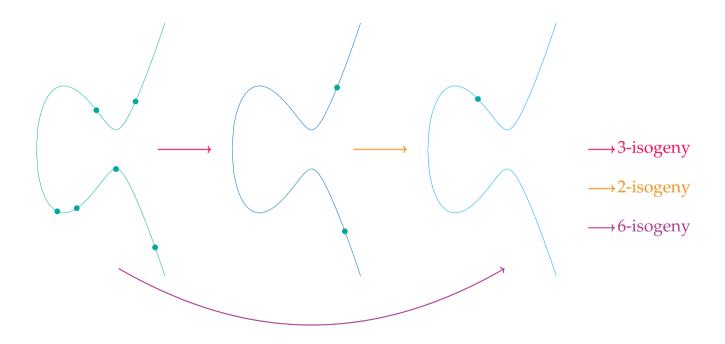


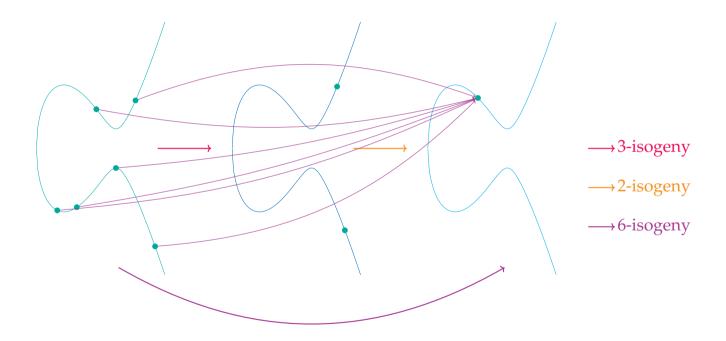


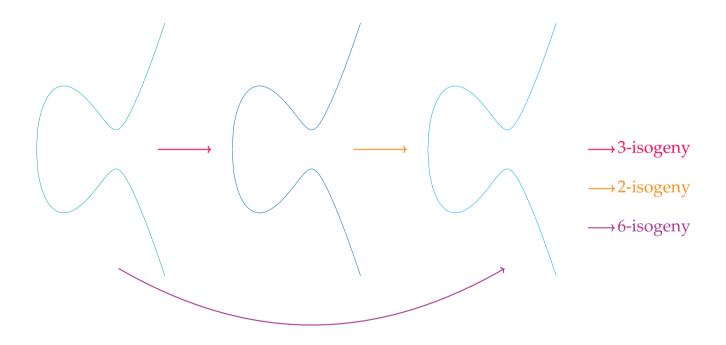


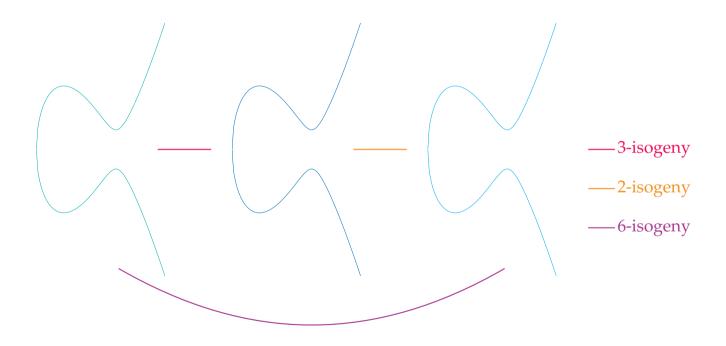


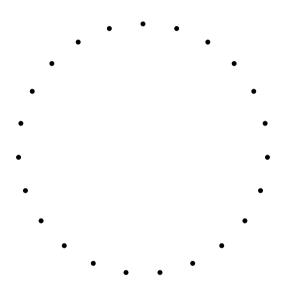




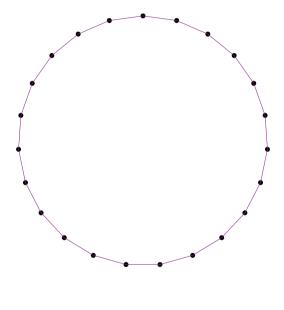




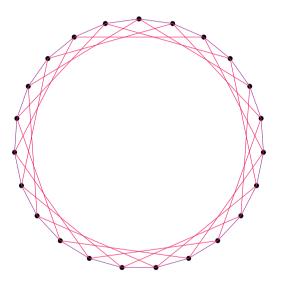




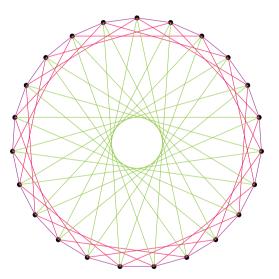
Supersingular elliptic curves over \mathbb{F}_{647} with endomorphism ring $\mathbb{Z}[\sqrt{-647}]$.



3-isogenies



3-isogenies, 5-isogenies



3-isogenies, 5-isogenies, 7-isogenies,...

CSIDH

For CSIDH-512 we have

▶
$$p = 4 \cdot \underbrace{3 \cdot 5 \cdot 7 \cdot \dots 373}_{73 \text{ primes}} \cdot 587 - 1;$$

• for each $\ell_i \in \{3, 5, \dots, 587\}$ we compute at most 5 isogenies of that degree since $11^{74} \approx 2^{255.99}$.

CSIDH

For CSIDH-512 we have

•
$$p = 4 \cdot \underbrace{3 \cdot 5 \cdot 7 \cdot \ldots 373}_{73 \text{ primes}} \cdot 587 - 1;$$

• for each $\ell_i \in \{3, 5, \dots, 587\}$ we compute at most 5 isogenies of that degree since $11^{74} \approx 2^{255.99}$.

Main topic of this talk: how do we compute these ℓ_i -isogenies?

VÉLU FORMULAE (CLASSICAL)

Theorem 1

Let $C = \langle P \rangle$ *be a finite subgroup of an elliptic curve*

$$E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

where *P* is a point of order *N*, with *N* odd. Fix a partition $C = \{\mathcal{O}_E\} \cup C^+ \cup C^-$ such that for any $Q \in C^+$ it holds that $-Q \in C^-$. For all $Q \in C^+$ define

$$\begin{split} g_Q^x &= 3x(Q)^2 + 2a_2x(Q) + a_4 - a_1y(Q), \\ g_Q^y &= -2y(Q) - a_1x(Q) - a_3, \\ u_Q &= (g_Q^y)^2, \quad v_Q = 2g_Q^x - a_1g_Q^y \\ v &= \sum_{Q \in \mathcal{C}^+} v_Q, \quad w = \sum_{Q \in \mathcal{C}^+} (u_Q + x(Q)v_Q). \end{split}$$

Then the separable isogeny φ *with domain E and kernel C has codomain*

$$E': y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + (a_4 - 5v)x + a_6 - (a_1^2 + 4a_2) - 7w.$$

Vélu formulae on Montgomery curves

Theorem 2

Let $C = \langle P \rangle$ *be a finite subgroup of an elliptic curve*

$$E: y^2 = x^3 + a_2 x^2 + x,$$

where *P* is a point of order *N*, with *N* odd. Define

$$\varpi = \prod_{Q \in C \setminus \{\infty\}} x(Q),$$

$$\sigma = \sum_{Q \in C \setminus \{\infty\}} \left(x(Q) - \frac{1}{x(Q)} \right).$$

Then the separable isogeny φ *with domain E and kernel C has codomain (up to isomorphism)*

$$E': y^2 = x^3 + \varpi(a_2 - \sigma)x^2 + x_1$$

CSIDH-512 ORIGINAL IMPLEMENTATION

For CSIDH-512:

▶ $\ell_i \in \{3, 5, \dots, 587\}$ use $\mathcal{O}(\ell_i)$ Vélu formulae.

CSIDH-512 ORIGINAL IMPLEMENTATION

For CSIDH-512:

▶ $\ell_i \in \{3, 5, \dots, 587\}$ use $\mathcal{O}(\ell_i)$ Vélu formulae.

Remark that

- each isogeny requires sampling an ℓ_i -torsion point (expensive since $\mathcal{O}(\log(p))$);
- trade-off for this can be made by mapping points through isogenies.

VÉLU-SQRT FORMULAE

Major breakthrough in computing isogenies: only requires $\widetilde{O}(\sqrt{\ell_i})$ operations! General idea:

- baby-step giant-step;
- combine with a resultant computation.

VÉLU-SQRT FORMULAE

Major breakthrough in computing isogenies: only requires $\widetilde{\mathcal{O}}(\sqrt{\ell_i})$ operations!

General idea:

- baby-step giant-step;
- combine with a resultant computation.

For CSIDH-512:

- $\ell_i \in \{3, 5, \dots, 101\}$ use $\mathcal{O}(\ell_i)$ Vélu formulae;
- ▶ $\ell_i \in \{103, 107, \dots, 587\}$ use $\widetilde{\mathcal{O}}(\sqrt{\ell_i})$ Vélu-sqrt formulae.

CSURF AKA RADICAL 2-ISOGENIES

$$E: y^2 = x^3 + Ax^2 + x \longrightarrow E': y^2 = x^3 + \underbrace{2(3 + A(\sqrt{A^2 - 4} - A))}_{:=A'} x^2 + x$$

CSURF AKA RADICAL 2-ISOGENIES

$$E: y^2 = x^3 + Ax^2 + x \longrightarrow E': y^2 = x^3 + \underbrace{2(3 + A(\sqrt{A^2 - 4} - A))}_{:=A'} x^2 + x$$

Cost comparison:

- ▶ 2-isogeny: one exponentiation $\alpha^{(p+1)/4} \sim 1.5 \log p$ multiplications by square-and-multiply;
- generating 2-torsion point $\sim 11 \log p$ multiplications in Montgomery ladder.

RADICAL 3-ISOGENIES

A radical 3-isogeny can be written as

$$E: y^{2} + a_{1}xy + a_{3}y = x^{3} \longrightarrow E': y^{2} + \underbrace{(-6\alpha + a_{1})}_{:=a'_{1}}xy + \underbrace{(3a_{1}\alpha^{2} - a_{1}^{2}\alpha + 9a_{3})}_{:=a'_{3}}y = x^{3}$$

where $\alpha = \sqrt[3]{a_3}$.

RADICAL 5-ISOGENIES

A radical 5-isogeny can be written as

$$E: y^2 + (1-b)xy - by = x^3 - bx^2 \longrightarrow E': y^2 + (1-b')xy - b'y = x^3 - b'x^2$$

where

$$b' = \alpha \frac{\alpha^4 + 3\alpha^3 + 4\alpha^2 + 2\alpha + 1}{\alpha^4 - 2\alpha^3 + 4\alpha^2 - 3\alpha + 1}$$

and $\alpha = \sqrt[5]{b}$.

RADICAL ISOGENIES

	Operation count	Cost relative to 2-isogeny
2-isogeny	$\mathbf{E} + \mathbf{M}$	1
3-isogeny	$\mathbf{E} + 2\mathbf{M}$	1.023
5-isogeny	$\mathbf{E} + 6\mathbf{M}$	1.034
7-isogeny	E + 12 M	1.043
11-isogeny	E + 50 M	1.293
13-isogeny	E + 89 M	1.448
17-isogeny	E + 217 M	1.921
19-isogeny	E + 329 M	2.532

RADICAL ISOGENIES

	Operation count	Cost relative to 2-isogeny
2-isogeny	E + M	1
3-isogeny	$\mathbf{E} + 2\mathbf{M}$	1.023
5-isogeny	$\mathbf{E} + 6\mathbf{M}$	1.034
7-isogeny	E + 12 M	1.043
11-isogeny	E + 50 M	1.293
13-isogeny	E + 89 M	1.448
17-isogeny	E + 217 M	1.921
19-isogeny	E + 329 M	2.532

For CSIDH-512:

- $\ell_i \in \{2, 3, 5, \dots, 19\}$ use radical isogenies;
- ▶ $\ell_i \in \{23, 29, \dots, 101\}$ use $\mathcal{O}(\ell_i)$ Vélu formulae;
- $\ell_i \in \{103, 107, \dots, 409\}$ use $\widetilde{\mathcal{O}}(\sqrt{\ell_i})$ Vélu-sqrt formulae.

Consider

$$E_{b,c} \xrightarrow{\varphi} E' \xrightarrow{\iota} E_{b',c'}$$

where

- $E_{b,c}$ and $E_{b',c'}$ are in Tate normal form;
- φ is the isogeny computed with classical Vélu formulae;
- ι is an isomorphism putting E' into Tate normal form.

Define $\varpi_0 = 2$ and for all $i \ge 1$ define

$$\varpi_i = \prod_{k=1}^i x(k(0,0)),$$

where we use the conventions x((0,0)) = 1 = x((0,b)) and $x(N(0,0)) = b^2$.

Choose

$$t_N((0,0),(0,b)) = \tau_N := -(b^2 \varpi_N)^{-1}.$$

Then (conjectured), with $\alpha = \sqrt[N]{\tau_N}$, we have that ι is defined by

$$u = 1 + 3b \sum_{i=1}^{N-2} \varpi_i \alpha^i - \sum_{i=1, i \neq N-3}^{N-1} \varpi_i \varpi_{i+1} \varpi_{i+2} \alpha^{3i},$$

$$s = b \sum_{i=1}^{N-2} \varpi_i \alpha^i - b^3 \sum_{i=2}^{N-1} \varpi_{2i} \varpi_{2i+1} \varpi_{N-i-1} \varpi_{N-i} \alpha^{2(N+i)}.$$

Proposition 1

Let E/\mathbb{F}_q be an elliptic curve and $N \ge 5$ an odd integer such that gcd(q-1,N) = 1 and $char(\mathbb{F}_q) \nmid N$, and assume that the formulae for u and s are true. Then the cyclic N^k -isogeny obtained by iteratively mapping $(b,c) \mapsto (b',c')$ can be computed in $(2\log(q) + \mathcal{O}(N))k$ basic \mathbb{F}_q -operations.

Proposition 1

Let E/\mathbb{F}_q be an elliptic curve and $N \ge 5$ an odd integer such that gcd(q-1, N) = 1 and $char(\mathbb{F}_q) \nmid N$, and assume that the formulae for u and s are true. Then the cyclic N^k -isogeny obtained by iteratively mapping $(b, c) \mapsto (b', c')$ can be computed in $(2 \log(q) + \mathcal{O}(N))k$ basic \mathbb{F}_q -operations.

Remarks:

•

- $2\log(q)$ factor is an upperbound for the exponentiation;
- hidden constant in $\mathcal{O}(N)$ is 16 for **M**.

For CSIDH-512:

- $\ell_i \in \{2, 3, 5, \dots, 199\}$ use radical (Vélu) isogenies;
- $\ell_i \in \{211, 223, \dots, 409\}$ use $\widetilde{\mathcal{O}}(\sqrt{\ell_i})$ Vélu-sqrt formulae.

For CSIDH-512:

- $\ell_i \in \{2, 3, 5, \dots, 199\}$ use radical (Vélu) isogenies;
- ▶ $\ell_i \in \{211, 223, \dots, 409\}$ use $\widetilde{\mathcal{O}}(\sqrt{\ell_i})$ Vélu-sqrt formulae.

Results:

- ▶ 35% speedup over previous (limited) radicals in CSIDH-512;
- ▶ 64% speedup overall compared to no radicals;
- ▶ 64% is stable for larger parameters too.

FURTHER RESEARCH OPTIONS

Mathematically:

- ► Proof?
- ► Case *N* even?

Cryptographically:

- Most efficient formulae?
- Constant time version?



thomas.decru@ulb.be