
Cryptanalysis of Lattice-Based Sequentiality Assumptions
and Proofs of Sequential Work

Chris Peikert, Yi Tang

August 20
Crypto 2024

Background

Proof of sequential work (PoSW):

▶ A basic timed cryptography primitive [RivestShamirWagner96].

▶ Prover runs an inherently sequential process of depth (parallel time) T .

▶ Prover convinces a weak verifier with low running time, e.g., O(logT).

▶ Convincing the verifier should require prover depth ≈ T .

▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.

▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

In this work, we break the LM23 assumption, and (almost) the PoSW as well!

Background

Proof of sequential work (PoSW):

▶ A basic timed cryptography primitive [RivestShamirWagner96].

▶ Prover runs an inherently sequential process of depth (parallel time) T .

▶ Prover convinces a weak verifier with low running time, e.g., O(logT).

▶ Convincing the verifier should require prover depth ≈ T .

▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.

▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

In this work, we break the LM23 assumption, and (almost) the PoSW as well!

Background

Proof of sequential work (PoSW):

▶ A basic timed cryptography primitive [RivestShamirWagner96].

▶ Prover runs an inherently sequential process of depth (parallel time) T .

▶ Prover convinces a weak verifier with low running time, e.g., O(logT).

▶ Convincing the verifier should require prover depth ≈ T .

▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.

▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

In this work, we break the LM23 assumption, and (almost) the PoSW as well!

Background

Proof of sequential work (PoSW):

▶ A basic timed cryptography primitive [RivestShamirWagner96].

▶ Prover runs an inherently sequential process of depth (parallel time) T .

▶ Prover convinces a weak verifier with low running time, e.g., O(logT).

▶ Convincing the verifier should require prover depth ≈ T .

▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.

▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

In this work, we break the LM23 assumption, and (almost) the PoSW as well!

Background

Proof of sequential work (PoSW):

▶ A basic timed cryptography primitive [RivestShamirWagner96].

▶ Prover runs an inherently sequential process of depth (parallel time) T .

▶ Prover convinces a weak verifier with low running time, e.g., O(logT).

▶ Convincing the verifier should require prover depth ≈ T .

▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.

▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

In this work, we break the LM23 assumption, and (almost) the PoSW as well!

Background

Proof of sequential work (PoSW):

▶ A basic timed cryptography primitive [RivestShamirWagner96].

▶ Prover runs an inherently sequential process of depth (parallel time) T .

▶ Prover convinces a weak verifier with low running time, e.g., O(logT).

▶ Convincing the verifier should require prover depth ≈ T .

▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.

▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

In this work, we break the LM23 assumption, and (almost) the PoSW as well!

Background

Proof of sequential work (PoSW):

▶ A basic timed cryptography primitive [RivestShamirWagner96].

▶ Prover runs an inherently sequential process of depth (parallel time) T .

▶ Prover convinces a weak verifier with low running time, e.g., O(logT).

▶ Convincing the verifier should require prover depth ≈ T .

▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.

▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

In this work, we break the LM23 assumption, and (almost) the PoSW as well!

Background

Proof of sequential work (PoSW):

▶ A basic timed cryptography primitive [RivestShamirWagner96].

▶ Prover runs an inherently sequential process of depth (parallel time) T .

▶ Prover convinces a weak verifier with low running time, e.g., O(logT).

▶ Convincing the verifier should require prover depth ≈ T .

▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.

▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

In this work, we break the LM23 assumption, and (almost) the PoSW as well!

Our Results

LM23 PoSW

Assuming sequential SIS with norm bound ≈ n2 logT requires depth ≈ T to solve,
there exists a PoSW that requires prover depth ≈ T .

Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT).

Moreover, a depth-norm tradeoff breaks a wide range of parameters.

Breaking the LM23 PoSW*

The LM23 PoSW* can be broken in depth O(log2 T).

*An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is
immaterial to the design and security proof.

Our Results

LM23 PoSW

Assuming sequential SIS with norm bound ≈ n2 logT requires depth ≈ T to solve,
there exists a PoSW that requires prover depth ≈ T .

Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT).

Moreover, a depth-norm tradeoff breaks a wide range of parameters.

Breaking the LM23 PoSW*

The LM23 PoSW* can be broken in depth O(log2 T).

*An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is
immaterial to the design and security proof.

Our Results

LM23 PoSW

Assuming sequential SIS with norm bound ≈ n2 logT requires depth ≈ T to solve,
there exists a PoSW that requires prover depth ≈ T .

Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT).

Moreover, a depth-norm tradeoff breaks a wide range of parameters.

Breaking the LM23 PoSW*

The LM23 PoSW* can be broken in depth O(log2 T).

*An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is
immaterial to the design and security proof.

Our Results

LM23 PoSW

Assuming sequential SIS with norm bound ≈ n2 logT requires depth ≈ T to solve,
there exists a PoSW that requires prover depth ≈ T .

Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT).

Moreover, a depth-norm tradeoff breaks a wide range of parameters.

Breaking the LM23 PoSW*

The LM23 PoSW* can be broken in depth O(log2 T).

*An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is
immaterial to the design and security proof.

Sequential Work in LM23

The sequential work: SIS hash fA(x) = A · x iterated T times.

▶ fA : {0, 1}m → Zn
q.

▶ To iterate, need to map Zn
q → {0, 1}m.

▶ Bit expansion G−1: replace each Zq entry by ⌈log2 q⌉ bits.
(So set m = n · ⌈log2 q⌉.)

▶ “Gadget” matrix G: satisfies G · G−1(u) = u for any u.

▶ Start with given A,u0 and output uT .

u0

G−1

−A · x1 = u1

G−1

−A · x2 = u2

...
xT ,uT

Sequential Work in LM23

The sequential work: SIS hash fA(x) = A · x iterated T times.

▶ fA : {0, 1}m → Zn
q.

▶ To iterate, need to map Zn
q → {0, 1}m.

▶ Bit expansion G−1: replace each Zq entry by ⌈log2 q⌉ bits.
(So set m = n · ⌈log2 q⌉.)

▶ “Gadget” matrix G: satisfies G · G−1(u) = u for any u.

▶ Start with given A,u0 and output uT .

u0

G−1

−A · x1 = u1

G−1

−A · x2 = u2

...
xT ,uT

Sequential Work in LM23

The sequential work: SIS hash fA(x) = A · x iterated T times.

▶ fA : {0, 1}m → Zn
q.

▶ To iterate, need to map Zn
q → {0, 1}m.

▶ Bit expansion G−1: replace each Zq entry by ⌈log2 q⌉ bits.
(So set m = n · ⌈log2 q⌉.)

▶ “Gadget” matrix G: satisfies G · G−1(u) = u for any u.

▶ Start with given A,u0 and output uT .

u0

G−1

−A · x1 = u1

G−1

−A · x2 = u2

...
xT ,uT

Sequential Work in LM23

The sequential work: SIS hash fA(x) = A · x iterated T times.

▶ fA : {0, 1}m → Zn
q.

▶ To iterate, need to map Zn
q → {0, 1}m.

▶ Bit expansion G−1: replace each Zq entry by ⌈log2 q⌉ bits.
(So set m = n · ⌈log2 q⌉.)

▶ “Gadget” matrix G: satisfies G · G−1(u) = u for any u.

▶ Start with given A,u0 and output uT .

u0

G−1

−A · x1 = u1

G−1

−A · x2 = u2

...
xT ,uT

Sequential SIS Problem

u0 ⇒ · · · ⇒ xi = G−1(ui−1) , ui = −A · xi ⇒ · · · ⇒ xT ,uT .

The sequential work can be expressed via a linear system:

G
A G

A
. . .
. . . G

A G
A


︸ ︷︷ ︸

AT or AT

·


x1
x2
...
xT


︸ ︷︷ ︸
x∈ZTm

=



u0
0
0
...
0
−uT


.

Sequential Short Integer Solution (SIS) Problem

Sequential SIS with norm bound B is the (average-case) problem where:

▶ an instance consists of A← Zn×m
q and u0 ← Zn

q, and

▶ the goal is to find x ∈ ZTm with ∥x∥∞ ≤ B such that AT · x =
(u0

0

)
.

Sequential SIS Problem

u0 ⇒ · · · ⇒ xi = G−1(ui−1) , ui = −A · xi ⇒ · · · ⇒ xT ,uT .

The sequential work can be expressed via a linear system:

G
A G

A
. . .
. . . G

A G
A


︸ ︷︷ ︸

AT or AT

·


x1
x2
...
xT


︸ ︷︷ ︸
x∈ZTm

=



u0
0
0
...
0
−uT


.

Sequential Short Integer Solution (SIS) Problem

Sequential SIS with norm bound B is the (average-case) problem where:

▶ an instance consists of A← Zn×m
q and u0 ← Zn

q, and

▶ the goal is to find x ∈ ZTm with ∥x∥∞ ≤ B such that AT · x =
(u0

0

)
.

Sequential SIS Problem

u0 ⇒ · · · ⇒ xi = G−1(ui−1) , ui = −A · xi ⇒ · · · ⇒ xT ,uT .

The sequential work can be expressed via a linear system:

G
A G

A
. . .
. . . G

A G
A


︸ ︷︷ ︸

AT or AT

·


x1
x2
...
xT


︸ ︷︷ ︸
x∈ZTm

=



u0
0
0
...
0
−uT


.

Sequential Short Integer Solution (SIS) Problem

Sequential SIS with norm bound B is the (average-case) problem where:

▶ an instance consists of A← Zn×m
q and u0 ← Zn

q, and

▶ the goal is to find x ∈ ZTm with ∥x∥∞ ≤ B such that AT · x =
(u0

0

)
.

Sequential SIS Problem

u0 ⇒ · · · ⇒ xi = G−1(ui−1) , ui = −A · xi ⇒ · · · ⇒ xT ,uT .

The sequential work can be expressed via a linear system:

G
A G

A
. . .
. . . G

A G
A


︸ ︷︷ ︸

AT or AT

·


x1
x2
...
xT


︸ ︷︷ ︸
x∈ZTm

=



u0
0
0
...
0
−uT


.

Sequential Short Integer Solution (SIS) Problem

Sequential SIS with norm bound B is the (average-case) problem where:

▶ an instance consists of A← Zn×m
q and u0 ← Zn

q, and

▶ the goal is to find x ∈ ZTm with ∥x∥∞ ≤ B such that AT · x =
(u0

0

)
.

Sequential SIS Problem

u0 ⇒ · · · ⇒ xi = G−1(ui−1) , ui = −A · xi ⇒ · · · ⇒ xT ,uT .

The sequential work can be expressed via a linear system:

G
A G

A
. . .
. . . G

A G
A


︸ ︷︷ ︸

AT or AT

·


x1
x2
...
xT


︸ ︷︷ ︸
x∈ZTm

=



u0
0
0
...
0
−uT


.

Sequential Short Integer Solution (SIS) Problem

Sequential SIS with norm bound B is the (average-case) problem where:

▶ an instance consists of A← Zn×m
q and u0 ← Zn

q, and

▶ the goal is to find x ∈ ZTm with ∥x∥∞ ≤ B such that AT · x =
(u0

0

)
.

The LM23 PoSW

Goal: prove knowledge of a short solution to AT · x =
(u0

0
−uT

)
to a weak verifier.

The LM23 PoSW takes a standard “divide and fold” approach.

▶ Assume for simplicity that T = 2T ′ + 1 is odd.

▶ x splits into xt = (x1; . . . ; xT ′), xT ′+1, x
b = (xT ′+2; . . . ; xT), and correspondingly:


AT ′

G
A

AT ′

 ·


xt

xT ′+1

xb


=



u0
0
−uT ′

+


uT ′

−uT ′+1

+

uT ′+1

0
−uT

 .

The LM23 PoSW

Goal: prove knowledge of a short solution to AT · x =
(u0

0
−uT

)
to a weak verifier.

The LM23 PoSW takes a standard “divide and fold” approach.

▶ Assume for simplicity that T = 2T ′ + 1 is odd.

▶ x splits into xt = (x1; . . . ; xT ′), xT ′+1, x
b = (xT ′+2; . . . ; xT), and correspondingly:


AT ′

G
A

AT ′

 ·


xt

xT ′+1

xb


=



u0
0
−uT ′

+


uT ′

−uT ′+1

+

uT ′+1

0
−uT

 .

The LM23 PoSW

Goal: prove knowledge of a short solution to AT · x =
(u0

0
−uT

)
to a weak verifier.

The LM23 PoSW takes a standard “divide and fold” approach.

▶ Assume for simplicity that T = 2T ′ + 1 is odd.

▶ x splits into xt = (x1; . . . ; xT ′), xT ′+1, x
b = (xT ′+2; . . . ; xT), and correspondingly:


AT ′

G
A

AT ′

 ·


xt

xT ′+1

xb


=



u0
0
−uT ′

+


uT ′

−uT ′+1

+

uT ′+1

0
−uT

 .

The LM23 PoSW

Goal: prove knowledge of a short solution to AT · x =
(u0

0
−uT

)
to a weak verifier.

The LM23 PoSW takes a standard “divide and fold” approach.

▶ Assume for simplicity that T = 2T ′ + 1 is odd.

▶ x splits into xt = (x1; . . . ; xT ′), xT ′+1, x
b = (xT ′+2; . . . ; xT), and correspondingly:


AT ′

G
A

AT ′

 ·


xt

xT ′+1

xb


=



u0
0
−uT ′

+


uT ′

−uT ′+1

+

uT ′+1

0
−uT

 .

The LM23 PoSW

Goal: prove knowledge of a short solution to AT · x =
(u0

0
−uT

)
to a weak verifier.

The LM23 PoSW takes a standard “divide and fold” approach.

▶ Assume for simplicity that T = 2T ′ + 1 is odd.

▶ x splits into xt = (x1; . . . ; xT ′), xT ′+1, x
b = (xT ′+2; . . . ; xT), and correspondingly:


AT ′

G
A

AT ′

 ·


xt

xT ′+1

xb


=



u0
0
−uT ′

+


uT ′

−uT ′+1

+

uT ′+1

0
−uT

 .

The LM23 PoSW

Goal: prove knowledge of a short solution to AT · x =
(u0

0
−uT

)
to a weak verifier.

The LM23 PoSW takes a standard “divide and fold” approach.

▶ Assume for simplicity that T = 2T ′ + 1 is odd.

▶ x splits into xt = (x1; . . . ; xT ′), xT ′+1, x
b = (xT ′+2; . . . ; xT), and correspondingly:


AT ′

G
A

AT ′

 ·


xt

xT ′+1

xb


=



u0
0
−uT ′

+


uT ′

−uT ′+1

+

uT ′+1

0
−uT

 .

The LM23 PoSW*, Folding and Norm Bounds

AT ′ · xt =
(u0

0
−uT ′

)
,
(
G
A

)
· xT ′+1 =

(uT ′
−uT ′+1

)
, AT ′ · xb =

(uT ′+1

0
−uT

)
.

▶ Prover reveals xT ′+1, and verifier checks that it is short.

▶ Verifier sends a random challenge c with |c | ≲ n.

▶ Prover and verifier fold by c as follows, and recurse to prove:

AT ′ · (c · xt + xb)︸ ︷︷ ︸
x′

=
(u′0

0
−u′

T ′

)
=
(c·u0+uT ′+1

0
−(c·uT ′+uT)

)
.

Norm bounds:

▶ In each round, ∥x∥ grows by ≈ |c | ≲ n, so the final norm bound is ≈ nlogT .

▶ Reduction loses a similar factor, so is from sequential SIS with norm bound ≈ n2 logT .

▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.

The LM23 PoSW*, Folding and Norm Bounds

AT ′ · xt =
(u0

0
−uT ′

)
,
(
G
A

)
· xT ′+1 =

(uT ′
−uT ′+1

)
, AT ′ · xb =

(uT ′+1

0
−uT

)
.

▶ Prover reveals xT ′+1, and verifier checks that it is short.

▶ Verifier sends a random challenge c with |c | ≲ n.

▶ Prover and verifier fold by c as follows, and recurse to prove:

AT ′ · (c · xt + xb)︸ ︷︷ ︸
x′

=
(u′0

0
−u′

T ′

)
=
(c·u0+uT ′+1

0
−(c·uT ′+uT)

)
.

Norm bounds:

▶ In each round, ∥x∥ grows by ≈ |c | ≲ n, so the final norm bound is ≈ nlogT .

▶ Reduction loses a similar factor, so is from sequential SIS with norm bound ≈ n2 logT .

▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.

The LM23 PoSW*, Folding and Norm Bounds

AT ′ · xt =
(u0

0
−uT ′

)
,
(
G
A

)
· xT ′+1 =

(uT ′
−uT ′+1

)
, AT ′ · xb =

(uT ′+1

0
−uT

)
.

▶ Prover reveals xT ′+1, and verifier checks that it is short.

▶ Verifier sends a random challenge c with |c | ≲ n.

▶ Prover and verifier fold by c as follows, and recurse to prove:

AT ′ · (c · xt + xb)︸ ︷︷ ︸
x′

=
(u′0

0
−u′

T ′

)
=
(c·u0+uT ′+1

0
−(c·uT ′+uT)

)
.

Norm bounds:

▶ In each round, ∥x∥ grows by ≈ |c | ≲ n, so the final norm bound is ≈ nlogT .

▶ Reduction loses a similar factor, so is from sequential SIS with norm bound ≈ n2 logT .

▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.

The LM23 PoSW*, Folding and Norm Bounds

AT ′ · xt =
(u0

0
−uT ′

)
,
(
G
A

)
· xT ′+1 =

(uT ′
−uT ′+1

)
, AT ′ · xb =

(uT ′+1

0
−uT

)
.

▶ Prover reveals xT ′+1, and verifier checks that it is short.

▶ Verifier sends a random challenge c with |c | ≲ n.

▶ Prover and verifier fold by c as follows, and recurse to prove:

AT ′ · (c · xt + xb)︸ ︷︷ ︸
x′

=
(u′0

0
−u′

T ′

)
=
(c·u0+uT ′+1

0
−(c·uT ′+uT)

)
.

Norm bounds:

▶ In each round, ∥x∥ grows by ≈ |c | ≲ n, so the final norm bound is ≈ nlogT .

▶ Reduction loses a similar factor, so is from sequential SIS with norm bound ≈ n2 logT .

▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.

The LM23 PoSW*, Folding and Norm Bounds

AT ′ · xt =
(u0

0
−uT ′

)
,
(
G
A

)
· xT ′+1 =

(uT ′
−uT ′+1

)
, AT ′ · xb =

(uT ′+1

0
−uT

)
.

▶ Prover reveals xT ′+1, and verifier checks that it is short.

▶ Verifier sends a random challenge c with |c | ≲ n.

▶ Prover and verifier fold by c as follows, and recurse to prove:

AT ′ · (c · xt + xb)︸ ︷︷ ︸
x′

=
(u′0

0
−u′

T ′

)
=
(c·u0+uT ′+1

0
−(c·uT ′+uT)

)
.

* The original LM23

PoSW differs only by

multiplying c to the

second/bottom half.

Norm bounds:

▶ In each round, ∥x∥ grows by ≈ |c | ≲ n, so the final norm bound is ≈ nlogT .

▶ Reduction loses a similar factor, so is from sequential SIS with norm bound ≈ n2 logT .

▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.

The LM23 PoSW*, Folding and Norm Bounds

AT ′ · xt =
(u0

0
−uT ′

)
,
(
G
A

)
· xT ′+1 =

(uT ′
−uT ′+1

)
, AT ′ · xb =

(uT ′+1

0
−uT

)
.

▶ Prover reveals xT ′+1, and verifier checks that it is short.

▶ Verifier sends a random challenge c with |c | ≲ n.

▶ Prover and verifier fold by c as follows, and recurse to prove:

AT ′ · (c · xt + xb)︸ ︷︷ ︸
x′

=
(u′0

0
−u′

T ′

)
=
(c·u0+uT ′+1

0
−(c·uT ′+uT)

)
.

Norm bounds:

▶ In each round, ∥x∥ grows by ≈ |c | ≲ n, so the final norm bound is ≈ nlogT .

▶ Reduction loses a similar factor, so is from sequential SIS with norm bound ≈ n2 logT .

▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.

The LM23 PoSW*, Folding and Norm Bounds

AT ′ · xt =
(u0

0
−uT ′

)
,
(
G
A

)
· xT ′+1 =

(uT ′
−uT ′+1

)
, AT ′ · xb =

(uT ′+1

0
−uT

)
.

▶ Prover reveals xT ′+1, and verifier checks that it is short.

▶ Verifier sends a random challenge c with |c | ≲ n.

▶ Prover and verifier fold by c as follows, and recurse to prove:

AT ′ · (c · xt + xb)︸ ︷︷ ︸
x′

=
(u′0

0
−u′

T ′

)
=
(c·u0+uT ′+1

0
−(c·uT ′+uT)

)
.

Norm bounds:

▶ In each round, ∥x∥ grows by ≈ |c | ≲ n, so the final norm bound is ≈ nlogT .

▶ Reduction loses a similar factor, so is from sequential SIS with norm bound ≈ n2 logT .

▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.

The LM23 PoSW*, Folding and Norm Bounds

AT ′ · xt =
(u0

0
−uT ′

)
,
(
G
A

)
· xT ′+1 =

(uT ′
−uT ′+1

)
, AT ′ · xb =

(uT ′+1

0
−uT

)
.

▶ Prover reveals xT ′+1, and verifier checks that it is short.

▶ Verifier sends a random challenge c with |c | ≲ n.

▶ Prover and verifier fold by c as follows, and recurse to prove:

AT ′ · (c · xt + xb)︸ ︷︷ ︸
x′

=
(u′0

0
−u′

T ′

)
=
(c·u0+uT ′+1

0
−(c·uT ′+uT)

)
.

Norm bounds:

▶ In each round, ∥x∥ grows by ≈ |c | ≲ n, so the final norm bound is ≈ nlogT .

▶ Reduction loses a similar factor, so is from sequential SIS with norm bound ≈ n2 logT .

▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.

Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.

Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.

Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.

Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.

Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.

Low-depth Recursive Construction of Trapdoors

Suppose we have a block lower-triangular matrix L (e.g., L = AT),
and by recursion in parallel have sub-trapdoors R0,R1, as follows:

L =

(
L0
W
0 L1

)
; L0R0 =

(
G
0

)
, L1R1 =

(
G
0

)
.

Then we construct trapdoor R for L as:

(
L0
W
0 L1

) R, in depth O(1)︷ ︸︸ ︷(
R0

R1 · G−1(−WR0)

)
=

 G
0

W
0 · R0 + G

0 · G
−1(−WR0)

 =


G
0
0
0

 .

(The base case is L = G = A1, which has trivial trapdoor R = I.)

Low-depth Recursive Construction of Trapdoors

Suppose we have a block lower-triangular matrix L (e.g., L = AT),
and by recursion in parallel have sub-trapdoors R0,R1, as follows:

L =

(
L0
W
0 L1

)
; L0R0 =

(
G
0

)
, L1R1 =

(
G
0

)
.

Then we construct trapdoor R for L as:

(
L0
W
0 L1

) R, in depth O(1)︷ ︸︸ ︷(
R0

R1 · G−1(−WR0)

)
=

 G
0

W
0 · R0 + G

0 · G
−1(−WR0)

 =


G
0
0
0

 .

(The base case is L = G = A1, which has trivial trapdoor R = I.)

Low-depth Recursive Construction of Trapdoors

Suppose we have a block lower-triangular matrix L (e.g., L = AT),
and by recursion in parallel have sub-trapdoors R0,R1, as follows:

L =

(
L0
W
0 L1

)
; L0R0 =

(
G
0

)
, L1R1 =

(
G
0

)
.

Then we construct trapdoor R for L as:

(
L0
W
0 L1

) R, in depth O(1)︷ ︸︸ ︷(
R0

R1 · G−1(−WR0)

)
=

 G
0

W
0 · R0 + G

0 · G
−1(−WR0)

 =


G
0
0
0

 .

(The base case is L = G = A1, which has trivial trapdoor R = I.)

Low-depth Recursive Construction of Trapdoors

Suppose we have a block lower-triangular matrix L (e.g., L = AT),
and by recursion in parallel have sub-trapdoors R0,R1, as follows:

L =

(
L0
W
0 L1

)
; L0R0 =

(
G
0

)
, L1R1 =

(
G
0

)
.

Then we construct trapdoor R for L as:

(
L0
W
0 L1

) R, in depth O(1)︷ ︸︸ ︷(
R0

R1 · G−1(−WR0)

)
=

 G
0

W
0 · R0 + G

0 · G
−1(−WR0)

 =


G
0
0
0

 .

(The base case is L = G = A1, which has trivial trapdoor R = I.)

Low-depth Recursive Construction of Trapdoors

Suppose we have a block lower-triangular matrix L (e.g., L = AT),
and by recursion in parallel have sub-trapdoors R0,R1, as follows:

L =

(
L0
W
0 L1

)
; L0R0 =

(
G
0

)
, L1R1 =

(
G
0

)
.

Then we construct trapdoor R for L as:

(
L0
W
0 L1

) R, in depth O(1)︷ ︸︸ ︷(
R0

R1 · G−1(−WR0)

)
=

 G
0

W
0 · R0 + G

0 · G
−1(−WR0)

 =


G
0
0
0

 .

(The base case is L = G = A1, which has trivial trapdoor R = I.)

Solving Sequential SIS in Low Depth

Recall: Breaking the LM23 Sequentiality Assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT).

By our recursive construction R =
(R0

R1·G−1(⋆)

)
, at each level of the recursion,

∥R∥ grows by a factor of ∥G−1(⋆)∥ ≤ O(m), and the depth is O(1).

So our attack finds a solution:

▶ with norm O(m)logT = o(n)2 logT (for m = o(n2), a common setting),

▶ in depth O(1) · logT = O(logT).

More generally, norm O(m)logk T in depth O(k logk T) for any 2 ≤ k ≤ T .

▶ With k = T ε, polynomial norm O(m)1/ε in small polynomial depth O(T ε).

Solving Sequential SIS in Low Depth

Recall: Breaking the LM23 Sequentiality Assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT).

By our recursive construction R =
(R0

R1·G−1(⋆)

)
, at each level of the recursion,

∥R∥ grows by a factor of ∥G−1(⋆)∥ ≤ O(m), and the depth is O(1).

So our attack finds a solution:

▶ with norm O(m)logT = o(n)2 logT (for m = o(n2), a common setting),

▶ in depth O(1) · logT = O(logT).

More generally, norm O(m)logk T in depth O(k logk T) for any 2 ≤ k ≤ T .

▶ With k = T ε, polynomial norm O(m)1/ε in small polynomial depth O(T ε).

Solving Sequential SIS in Low Depth

Recall: Breaking the LM23 Sequentiality Assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT).

By our recursive construction R =
(R0

R1·G−1(⋆)

)
, at each level of the recursion,

∥R∥ grows by a factor of ∥G−1(⋆)∥ ≤ O(m), and the depth is O(1).

So our attack finds a solution:

▶ with norm O(m)logT = o(n)2 logT (for m = o(n2), a common setting),

▶ in depth O(1) · logT = O(logT).

More generally, norm O(m)logk T in depth O(k logk T) for any 2 ≤ k ≤ T .

▶ With k = T ε, polynomial norm O(m)1/ε in small polynomial depth O(T ε).

Solving Sequential SIS in Low Depth

Recall: Breaking the LM23 Sequentiality Assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT).

By our recursive construction R =
(R0

R1·G−1(⋆)

)
, at each level of the recursion,

∥R∥ grows by a factor of ∥G−1(⋆)∥ ≤ O(m), and the depth is O(1).

So our attack finds a solution:

▶ with norm O(m)logT = o(n)2 logT (for m = o(n2), a common setting),

▶ in depth O(1) · logT = O(logT).

More generally, norm O(m)logk T in depth O(k logk T) for any 2 ≤ k ≤ T .

▶ With k = T ε, polynomial norm O(m)1/ε in small polynomial depth O(T ε).

Breaking the LM23 PoSW*

Recall: in the LM23 PoSW, the first check is ∥xT/2∥ ≤ 1, for the middle point;
the second check is ∥c · xT/4 + x3T/4∥ ≲ n, for the folding of the quarter points; etc.

Issue: our recursive construction R =
(R0

R1·G−1(⋆)

)
does not have a norm “profile” that

works for the folding.

Breaking the LM23 PoSW*

Recall: in the LM23 PoSW, the first check is ∥xT/2∥ ≤ 1, for the middle point;
the second check is ∥c · xT/4 + x3T/4∥ ≲ n, for the folding of the quarter points; etc.

Issue: our recursive construction R =
(R0

R1·G−1(⋆)

)
does not have a norm “profile” that

works for the folding.

Breaking the LM23 PoSW*

Recall: in the LM23 PoSW, the first check is ∥xT/2∥ ≤ 1, for the middle point;
the second check is ∥c · xT/4 + x3T/4∥ ≲ n, for the folding of the quarter points; etc.

Issue: our recursive construction R =
(R0

R1·G−1(⋆)

)
does not have a norm “profile” that

works for the folding.

Profile needed in folding:
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

Profile from our recursion:
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

Breaking the LM23 PoSW*

Recall: in the LM23 PoSW, the first check is ∥xT/2∥ ≤ 1, for the middle point;
the second check is ∥c · xT/4 + x3T/4∥ ≲ n, for the folding of the quarter points; etc.

Issue: our recursive construction R =
(R0

R1·G−1(⋆)

)
does not have a norm “profile” that

works for the folding.

Summary of our solution:

▶ We carefully divide L unevenly into L0,L1, . . . ,Lk−1, so that the norm profile of x
matches what is needed in the folding.

▶ Our final attack uses k = O(logT) at each level of the recursion and (still) has
O(logT) levels, breaking the LM23 PoSW* in depth O(log2 T).

Breaking the LM23 PoSW*

Recall: in the LM23 PoSW, the first check is ∥xT/2∥ ≤ 1, for the middle point;
the second check is ∥c · xT/4 + x3T/4∥ ≲ n, for the folding of the quarter points; etc.

Issue: our recursive construction R =
(R0

R1·G−1(⋆)

)
does not have a norm “profile” that

works for the folding.

Summary of our solution:

▶ We carefully divide L unevenly into L0,L1, . . . ,Lk−1, so that the norm profile of x
matches what is needed in the folding.

▶ Our final attack uses k = O(logT) at each level of the recursion and (still) has
O(logT) levels, breaking the LM23 PoSW* in depth O(log2 T).

Open Questions

Is there attack against the original LM23 PoSW?
(I.e., challenge c on second half.)

Or can we prove its soundness from other plausible (lattice) assumptions?
(A proof would need to rely on the position of c .)

Can we construct lattice-based timed cryptography differently?
(We have seen the talk just before! :)

Open Questions

Is there attack against the original LM23 PoSW?
(I.e., challenge c on second half.)

Or can we prove its soundness from other plausible (lattice) assumptions?
(A proof would need to rely on the position of c .)

Can we construct lattice-based timed cryptography differently?
(We have seen the talk just before! :)

Open Questions

Is there attack against the original LM23 PoSW?
(I.e., challenge c on second half.)

Or can we prove its soundness from other plausible (lattice) assumptions?
(A proof would need to rely on the position of c .)

Can we construct lattice-based timed cryptography differently?
(We have seen the talk just before! :)

References

R. W. F. Lai and G. Malavolta.
Lattice-based timed cryptography.
In CRYPTO, pages 782–804. 2023.

D. Micciancio and C. Peikert.
Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT, pages 700–718. 2012.

R. L. Rivest, A. Shamir, and D. A. Wagner.
Time-lock puzzles and timed-release crypto.
Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA,
1996.

