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Background

Proof of sequential work (PoSW):

▶ A basic timed cryptography primitive [RivestShamirWagner96].

▶ Prover runs an inherently sequential process of depth (parallel time) T .

▶ Prover convinces a weak verifier with low running time, e.g., O(logT ).

▶ Convincing the verifier should require prover depth ≈ T .

▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.

▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

In this work, we break the LM23 assumption, and (almost) the PoSW as well!
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Our Results

LM23 PoSW

Assuming sequential SIS with norm bound ≈ n2 logT requires depth ≈ T to solve,
there exists a PoSW that requires prover depth ≈ T .

Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT ).

Moreover, a depth-norm tradeoff breaks a wide range of parameters.

Breaking the LM23 PoSW*

The LM23 PoSW* can be broken in depth O(log2 T ).

*An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is
immaterial to the design and security proof.
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Sequential Work in LM23

The sequential work: SIS hash fA(x) = A · x iterated T times.

▶ fA : {0, 1}m → Zn
q.

▶ To iterate, need to map Zn
q → {0, 1}m.

▶ Bit expansion G−1: replace each Zq entry by ⌈log2 q⌉ bits.
(So set m = n · ⌈log2 q⌉.)

▶ “Gadget” matrix G: satisfies G · G−1(u) = u for any u.

▶ Start with given A,u0 and output uT .

u0

G−1

−A · x1 = u1

G−1

−A · x2 = u2

...
xT ,uT
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Sequential SIS Problem

u0 ⇒ · · · ⇒ xi = G−1(ui−1) , ui = −A · xi ⇒ · · · ⇒ xT ,uT .

The sequential work can be expressed via a linear system:

G
A G

A
. . .
. . . G

A G
A


︸ ︷︷ ︸

AT or AT

·


x1
x2
...
xT


︸ ︷︷ ︸
x∈ZTm

=



u0
0
0
...
0
−uT


.

Sequential Short Integer Solution (SIS) Problem

Sequential SIS with norm bound B is the (average-case) problem where:

▶ an instance consists of A← Zn×m
q and u0 ← Zn

q, and

▶ the goal is to find x ∈ ZTm with ∥x∥∞ ≤ B such that AT · x =
( u0

0

)
.
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The LM23 PoSW

Goal: prove knowledge of a short solution to AT · x =
( u0

0
−uT

)
to a weak verifier.

The LM23 PoSW takes a standard “divide and fold” approach.

▶ Assume for simplicity that T = 2T ′ + 1 is odd.

▶ x splits into xt = (x1; . . . ; xT ′), xT ′+1, x
b = (xT ′+2; . . . ; xT ), and correspondingly:


AT ′

G
A

AT ′

 ·


xt

xT ′+1

xb


=



u0
0
−uT ′

+


uT ′

−uT ′+1

+

uT ′+1

0
−uT

 .
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The LM23 PoSW*, Folding and Norm Bounds

AT ′ · xt =
( u0

0
−uT ′

)
,
(
G
A

)
· xT ′+1 =

( uT ′
−uT ′+1

)
, AT ′ · xb =

( uT ′+1

0
−uT

)
.

▶ Prover reveals xT ′+1, and verifier checks that it is short.

▶ Verifier sends a random challenge c with |c | ≲ n.

▶ Prover and verifier fold by c as follows, and recurse to prove:

AT ′ · (c · xt + xb)︸ ︷︷ ︸
x′

=
( u′0

0
−u′

T ′

)
=
( c·u0+uT ′+1

0
−(c·uT ′+uT )

)
.

Norm bounds:

▶ In each round, ∥x∥ grows by ≈ |c | ≲ n, so the final norm bound is ≈ nlogT .

▶ Reduction loses a similar factor, so is from sequential SIS with norm bound ≈ n2 logT .

▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.
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PoSW differs only by

multiplying c to the

second/bottom half.
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▶ Our attacks crucially exploit the gap between these bounds and honest ∥x∥ = 1.
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Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.



Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.



Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.



Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.



Our Attacks, High-level Idea

We construct a “somewhat short” [MP12]-style trapdoor R for AT such that

AT · R =

(
G
0

)
.

We construct R in a recursive “divide and conquer” manner so that it takes low depth!

With such R, we then compute a similarly short x = R · G−1(u0), which satisfies

AT · x = AT · R · G−1(u0) =

(
G
0

)
· G−1(u0) =

(
u0
0

)
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

To break the LM23 PoSW*, we similarly compute a solution x that interacts well with
the folding, and simply run the honest prover with it.



Low-depth Recursive Construction of Trapdoors

Suppose we have a block lower-triangular matrix L (e.g., L = AT ),
and by recursion in parallel have sub-trapdoors R0,R1, as follows:

L =

(
L0
W
0 L1

)
; L0R0 =

(
G
0

)
, L1R1 =

(
G
0

)
.

Then we construct trapdoor R for L as:

(
L0
W
0 L1

) R, in depth O(1)︷ ︸︸ ︷(
R0

R1 · G−1(−WR0)

)
=

 G
0

W
0 · R0 + G

0 · G
−1(−WR0)

 =


G
0
0
0

 .

(The base case is L = G = A1, which has trivial trapdoor R = I.)
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Solving Sequential SIS in Low Depth

Recall: Breaking the LM23 Sequentiality Assumption

Sequential SIS with norm bound ≈ n2 logT can be solved in depth O(logT ).

By our recursive construction R =
( R0

R1·G−1(⋆)

)
, at each level of the recursion,

∥R∥ grows by a factor of ∥G−1(⋆)∥ ≤ O(m), and the depth is O(1).

So our attack finds a solution:

▶ with norm O(m)logT = o(n)2 logT (for m = o(n2), a common setting),

▶ in depth O(1) · logT = O(logT ).

More generally, norm O(m)logk T in depth O(k logk T ) for any 2 ≤ k ≤ T .

▶ With k = T ε, polynomial norm O(m)1/ε in small polynomial depth O(T ε).
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Breaking the LM23 PoSW*

Recall: in the LM23 PoSW, the first check is ∥xT/2∥ ≤ 1, for the middle point;
the second check is ∥c · xT/4 + x3T/4∥ ≲ n, for the folding of the quarter points; etc.

Issue: our recursive construction R =
( R0

R1·G−1(⋆)

)
does not have a norm “profile” that

works for the folding.
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works for the folding.

Profile needed in folding:
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

Profile from our recursion:
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
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R1·G−1(⋆)

)
does not have a norm “profile” that

works for the folding.

Summary of our solution:

▶ We carefully divide L unevenly into L0,L1, . . . ,Lk−1, so that the norm profile of x
matches what is needed in the folding.

▶ Our final attack uses k = O(logT ) at each level of the recursion and (still) has
O(logT ) levels, breaking the LM23 PoSW* in depth O(log2 T ).



Breaking the LM23 PoSW*

Recall: in the LM23 PoSW, the first check is ∥xT/2∥ ≤ 1, for the middle point;
the second check is ∥c · xT/4 + x3T/4∥ ≲ n, for the folding of the quarter points; etc.

Issue: our recursive construction R =
( R0

R1·G−1(⋆)

)
does not have a norm “profile” that

works for the folding.

Summary of our solution:

▶ We carefully divide L unevenly into L0,L1, . . . ,Lk−1, so that the norm profile of x
matches what is needed in the folding.

▶ Our final attack uses k = O(logT ) at each level of the recursion and (still) has
O(logT ) levels, breaking the LM23 PoSW* in depth O(log2 T ).



Open Questions

Is there attack against the original LM23 PoSW?
(I.e., challenge c on second half.)

Or can we prove its soundness from other plausible (lattice) assumptions?
(A proof would need to rely on the position of c .)

Can we construct lattice-based timed cryptography differently?
(We have seen the talk just before! :)
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