Sometimes You Can’t Distribute
Random-Oracle-Based Proofs

Jack Doerner Yashvanth Kondi Leah Namisa Rosenbloom

Jisrown GLENCE

eprint: 2023/1381

")) Northeastern
v’ University

Yashvanth Kondi
v1.2

Threshold / Distributed Signing

e Specialized Multiparty Computation (MPC) protocols to securely
compute Sign(sk, m) from secret shares of sk

o« Commonly applied to decentralize key management

o] — 4@/
Mitigat k
N
E

o Compatibility:
Verifies w.r.t. original algorithm

e Corruption Resilience:
Compromising some devices does not leak the signing key

e This talk: Signatures < Non-interactive Zero-knowledge

%@ﬂ'
(5 .6*) & (x,w)

Distributed Signing < Distributed Proving

How to Distribute Signing

e Any signing scheme can be distributed via general MPC

o Practical” efficiency usually requires more fine-grained notions
than just feasibility

e As one proxy, practical distributed signing protocols make
blackbox use of complex components of the signing algorithm:

- Integer arithmetic in Z or Z3;

- Elliptic curve group operations

- Hash tunctions

How to Distribute Signing

e Any signing scheme can be distributed via general MPC

o Practical” efficiency usually requires more fine-grained notions
than just feasibility

e As one proxy, practical distributed signing protocols make
blackbox use of complex components of the signing algorithm:

_ Integer arithmetic in 7, or Z* RSA, Schnorr/EADSA, ECDSA, BLS,

N BBS+, custom constructions using
- Elliptic curve group operations lattices, isogenies, etc.

- Hash tunctions

What about Purely Hash Based?

e Proof size, verifier time linear in #provers

'Ozdemir Boneh 22]: distributed version of Fractal
Cui Zhang Chen Liu Yu 21]: distributed MPC-in-the-head

e Prove statements about circuit representation of hash function
[Khaburzaniya Chalkias Lewi Malvai 21]: aggregate Lamport signatures with STARKS

e Hash-based proofs that are designed to be hard to distribute

'Dziembowski Faust Lizurej 23]: Individual Cryptography
Kelkar Babel Daian Austgen Buterin Juels 23]: Complete Knowledge

This Work: Limitations

« For some hash based NIZKs!, there is an inherent barrier® to
designing practical protocols” to distribute their computation.

This Work: Limitations

« For some hash based NIZKs!, there is an inherent barrier® to
designing practical protocols” to distribute their computation.

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

This Work: Limitations

o For some hash based NIZKs!, there is an inherent barrier? to
designing practical protocols” to distribute their computation.

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

2. Attack that completely recovers the witness by corrupting
all-but-one distributed provers

This Work: Limitations

o For some hash based NIZKs!, there is an inherent barrier? to
designing practical protocols® to distribute their computation.

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

2. Attack that completely recovers the witness by corrupting
all-but-one distributed provers

3. Protocol that is blackbox in the same hash function (i.e.
Random Oracle) as the NIZK

Implications for distributing...

e Signing for standard schemes based on MPC-in-the-head
e NIZKs/signatures obtained by compiling Sigma protocols via:
- Pass’ or Fischlin’s transformations (tight/concurrent security)

- Unruh’s transformation (post-quantum)

e PCPs/IOPs compiled via hash functions

Proofs of Knowledge

o What does it mean for a proof to certify "knowledge” of a
witness?

o Proof of Knowledge” is formalized by an “extractor” Ext
P(X, W) : (NI)Zero-knowledge Prootf: V(X)
‘I know w such that (x,w) € L”

Accept/Reject

Proofs of Knowledge

o What does it mean for a proof to certify "knowledge” of a
witness?

o Proof of Knowledge” is formalized by an “extractor” Ext
P(X, W) : (NI)Zero-knowledge Proof: F xt
“I know w such that (x,w) € L”

Accept

Proofs of Knowledge

o What does it mean for a proof to certify "knowledge” of a
witness?

o Proof of Knowledge” is formalized by an “extractor” Ext
P(X, W) : (NI)Zero-knowledge Proof: F xt
“I know w such that (x,w) € L”

Accept

Output w

Why is Ext special?

o Clearly, Ext must not be an algorithm that just anybody
can run

o Ext has carefully chosen special privileges:
- Powerful enough to accomplish extraction

- Still meaningtful as a security claim

o “Straight-line” Extraction (SLE): no rewinding.
Instead, use other trapdoor like CRS, RO, etc.

Why is Ext special?

o Clearly, Ext must not be an algorithm that just anybody
can run

o Ext has carefully chosen special privileges:
- Powerful enough to accomplish extraction

- Still meaningful as a security claim Rad for:

e Quantum
e Concurrency
o Tightness

o “Straight-line” Extraction (SLE): no rewinding
Instead, use other trapdoor like CRS, RO, etc.

Random Oracle Model

H:{0,1}* — {0,1}*

Random Oracles as Ext Privilege

)

P(x,w)

H

H:{0,1}* — {0,1}*

[Pass 03}

Rando
m
Oracles as Ext Privil
ilege
[Pass 03}

H|@
- {0,1}* » {0,1}

O] 0O Q 0,

Rando
m
Oracles as Ext Privil
ilege
[Pass 03}

H|@
- {0,1}* » {0,1}

O] 0O Q 0,

V(x)

Random Oracles as Ext Privilege
[Pass 03}

H H:{0,1}* > {0,1}¢

«, v
. Q%o |Qfeefef]]

P(x,w)
R

V(x)

Rando
m
Oracles as Ext Privil
ilege
[Pass 03}

H|@
- {0,1}* » {0,1}

)
by LTIl T T

] O O R

V(x)

Random Oracles as Ext Privilege
[Pass 03}

H H:{0,1}* > {0,1}¢

@,

«, w

19) Q| Qe e|Qfefe]efe]]O
X, W

] O O R

H

V(x)

Random Oracles as Ext Privilege

[Pass 03}
H H:{0,1}*— {0,1}*
®
Q[e[[Qf | |||]|%
P(x, w)
I [O I
Accept/Reject

H

V(x)

Random Oracles as Ext Privilege
[Pass 03}

H H:{0,1}* > {0,1}

Q%]]fOf]] [-]C] Ext

1 OO O @
H

Accept/Reject

V(x)

Random Oracles as Ext Privilege
[Pass 03}

H H:{0,1}* > {0,1}

Q%] fOf]]][O Ext W

1 OO O @
H

Accept/Reject

V(x)

Random Oracles as Ext Privilege
[Pass 03}

e Why is it a meaningful trapdoor?
- Hash functions are complex and highly unstructured

- Prover must "query” each Q. to H to obtain H(Q))

e Practical usage:

- No “trusted setup”, each query is very cheap

- Many NIZKs happen to achieve SLE in the ROM

Distributing NIZKs in the ROM

e Multiparty protocols to securely compute RO-based
NIZKs should ideally make blackbox use of H

- Conceptually: H should not have a circuit description

- Practically: hash functions have large circuits

e We call them "Oracle Respecting Distributed” (ORD)
protocols

Oracle Respecting Distribution is Leaky

o Consider a proof system (P", V?) for some language

e Assumption: n € poly(k) is a strict upper bound on
queries made by V to the random oracle H

- Holds for most ‘natural’ schemes

e We will show: any n + 1-party protocol that ORD-
computes P will leak the witness to n parties

Trimming Resilience

H

0[] 05[0|05 Q| O] Q[O

U

Trimming Resilience

H

0[] 05[0|05 Q| O] Q[O

U

V checks at most
V(x)

Trimming Resilience

H
Q[[05[] 05 Q| O] Q[O
/i

V checks at most
V(x)

Trimming Resilience

H
Q[[05[] 05 Q| O] Q[O
/i

V checks at most
Vix) A

Trimming Resilience

H
(XW)

V checks at most
Vix) A

Trimming Resilience

H
(XW)

| |
] O

V checks at most
Vix) A

Trimming Resilience

H At most two partitions
will be touched by V

(XW)

| |
] O

V checks at most
Vix) A

Trimming Resilience

H

[]
V(x)

At most two partitions
will be touched by V

0405 O] [25] %[O

||

H

V checks at most
n = 2 queries

Trimming Resilience

Randomly selected partition:
Pr[untouched by V] > 1/3

H

[]
V(x)

At most two partitions
will be touched by V

||

H

0405 O] [25] %[O

V checks at most
n = 2 queries

Trimming Resilience

Randomly selected partition:
Pr[untouched by V] > 1/3

H

[]
V(x)

At most two partitions
will be touched by V

0405 O] [25] %[O

||

H

V checks at most
n = 2 queries

Trimming Resilience

H

V checks at most
n = 2 queries

Trimming Resilience

H>I<

H

V checks at most
n = 2 queries

Trimming Resilience

H

V checks at most
n = 2 queries

Trimming Resilience

H

V checks at most
n = 2 queries

Trimming Resilience

H
HY|

V checks at most
n = 2 queries

Trimming Resilience

H
HY|

V checks at most
n = 2 queries

(x, W)

Trimming Resilience

H>I<

||

H

V(x)

||

H

V checks at most
n = 2 queries

(x, W)

Trimming Resilience

H>I<

H

V(x)

||

H

V checks at most
n = 2 queries

Trimming Resilience

| H
7N HY
)
(]

V checks at most
Vix) A

Trimming Resilience

H>I<

H

||

H

V checks at most
n = 2 queries

Trimming Resilience

H>I<

Pr|V accepts| > 1/3

H

[]
V(x)

||

H

V checks at most
n = 2 queries

Trimming Resilience

H
H>I<
0405 Q6] | 9]0 D
Never “leaves”
prover | || H

V checks at t
Pr|V accepts] > 1/3 V(.X) H

Trimming Resilience

H
H>I<
0051 %) |9]%| %] Ext W
Never “leaves”
prover | || H

V checks at t
Pr|V accepts] > 1/3 V(.X) H

Trimming Resilience

Never “leaves”
prover

Pr|V accepts| > 1/3

H

[]
V(x)

||

H

[e[o]o] [e]e]e] Ext W

with Pr > 1/3

V checks at most
n = 2 queries

Trimming Resilience

Never “leaves”
prover

Pr|V accepts| > 1/3

H

(for any 3-partitioning)

[ale]o] [e[o]e) Ext W

[
V(x)

] with Pr > 1/3

V checks at most
H

Trimming Resilience

Trimming Resilience

(w. noticeable
probability)

Oracle Respecting Distribution

Wo , W1 sWs «— Share(w)

Oracle Respecting Distribution

Oracle Respecting Distribution

Oracle Respecting Distribution

T =
H H H

Oracle Respecting Distribution

3, V checks at most
V(x) n = 2 queries

Oracle Respecting Distribution

| lJ | lJ Bl
JC
3, V checks at most
V(x) n = 2 queries

Oracle Respecting Distribution

Natural partitioning

e

H

En=

24 V(x)

JT

;

V checks at most
n = 2 queries

Oracle Respecting Distribution

Natural partitioning

e

: H*

;

V checks at most
n = 2 queries

Oracle Respecting Distribution

Natural partitioning

EEEEEEE

Oracle Respecting Distribution

Natural partitioning

=

TTETI1] Ext W

Trimming Resilience Lemma

Oracle Respecting Distribution

Natural partitioning

(. w) TTATIT] Ext W

Trimming Resilience Lemma

Two views are sufficient to reconstruct the witness

Oracle Respecting Distribution

Natural partitioning

(x, W) TTATI1] Ext W

Trimming Resilience Lemma

Two views are sufficient to reconstruct the witness

3 party ORD protocol can not withstand 2 passive corruptions

Oracle Respecting Distribution

Natural partitioning

(.X, W) |

N

Trimming Resilience Lemma

Two views are sufficient to reconstruct the witness

Ext

W

n party ORD protocol can not withstandn-1 passive corruptions

Caveats

e The n-party protocol must be mapped to a single party
algorithm to apply the trimming lemma
e This mapping induces one of two artefacts:

- Protocol property: Each RO query in the protocol must
“traceable” to the party that first made it

OR
- NIZK property: Ext(@, r) does not actually need H(g)

Fewer than n — 1 Corrupt?

e In the paper:
- Extend impossibility for n — O(1) corruptions
- Notes on further barriers for many natural NIZKPoKs

e Impossibility itself does not generalize to O(1) fraction
of corruptions: 4 NIZK that permits n-party ORD
protocol with const - n corruptions

Conclusion

e We showed that n-party protocols to securely compute certain hash-
based signatures/NIZKs can not make blackbox use of the same
hash function

- Includes MPC-in-the-head, Fischlin/Unruh/Pass/Ks22 transtorm,
PCPs/IOPs

e Dist. NIZK Verifier must depend on #parties—could it indicate that
thresh. signature must grow with #signers?

Thanks!
. Thanks Eysa Lee for
eprint: 2023/1381

