
Sometimes You Can’t Distribute
Random-Oracle-Based Proofs

Yashvanth KondiJack Doerner Leah Namisa Rosenbloom

eprint: 2023/1381

Yashvanth Kondi
v1.2

Threshold / Distributed Signing
• Specialized Multiparty Computation (MPC) protocols to securely

compute from secret shares of

• Commonly applied to decentralize key management

𝖲𝗂𝗀𝗇(𝗌𝗄, m) 𝗌𝗄

Mitigates risk
of key thef

• Compatibility:
Verifies w.r.t. original algorithm

• Corruption Resilience:
Compromising some devices does not leak the signing key

• This talk: Signatures Non-interactive Zero-knowledge⇔

⇔ π
⇔ (x, w)(,)ALI

PAY

Distributed Signing Distributed Proving⇔

How to Distribute Signing
• Any signing scheme can be distributed via general MPC

• “Practical” efficiency usually requires more fine-grained notions
than just feasibility

• As one proxy, practical distributed signing protocols make
blackbox use of complex components of the signing algorithm:

- Integer arithmetic in or

- Elliptic curve group operations

- Hash functions

ℤq ℤ*N

How to Distribute Signing
• Any signing scheme can be distributed via general MPC

• “Practical” efficiency usually requires more fine-grained notions
than just feasibility

• As one proxy, practical distributed signing protocols make
blackbox use of complex components of the signing algorithm:

- Integer arithmetic in or

- Elliptic curve group operations

- Hash functions

ℤq ℤ*N RSA, Schnorr/EdDSA, ECDSA, BLS,
BBS+, custom constructions using

lattices, isogenies, etc.

What about Purely Hash Based?

• Proof size, verifier time linear in #provers
[Ozdemir Boneh 22]: distributed version of Fractal
[Cui Zhang Chen Liu Yu 21]: distributed MPC-in-the-head

• Prove statements about circuit representation of hash function
[Khaburzaniya Chalkias Lewi Malvai 21]: aggregate Lamport signatures with STARKs

• Hash-based proofs that are designed to be hard to distribute
[Dziembowski Faust Lizurej 23]: Individual Cryptography
[Kelkar Babel Daian Austgen Buterin Juels 23]: Complete Knowledge

This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier to
designing practical protocols to distribute their computation.

1 2
3

This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier to
designing practical protocols to distribute their computation.

1 2
3

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier to
designing practical protocols to distribute their computation.

1 2
3

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

2. Attack that completely recovers the witness by corrupting
all-but-one distributed provers

This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier to
designing practical protocols to distribute their computation.

1 2
3

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

2. Attack that completely recovers the witness by corrupting
all-but-one distributed provers

3. Protocol that is blackbox in the same hash function (i.e.
Random Oracle) as the NIZK

Implications for distributing…

• Signing for standard schemes based on MPC-in-the-head

• NIZKs/signatures obtained by compiling Sigma protocols via:

- Pass’ or Fischlin’s transformations (tight/concurrent security)

- Unruh’s transformation (post-quantum)

• PCPs/IOPs compiled via hash functions

• What does it mean for a proof to certify “knowledge” of a
witness?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

(NI)Zero-knowledge Proof:
“I know such that ”w (x, w) ∈ L

Proofs of Knowledge

V(x)P(x, w) :

Accept/Reject

(NI)Zero-knowledge Proof:
“I know such that ”w (x, w) ∈ L

V(x)

Accept/Reject

𝖤𝗑𝗍P(x, w) :

• What does it mean for a proof to certify “knowledge” of a
witness?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Proofs of Knowledge

(NI)Zero-knowledge Proof:
“I know such that ”w (x, w) ∈ L

V(x)

Accept/Reject

𝖤𝗑𝗍

Output w

P(x, w) :

• What does it mean for a proof to certify “knowledge” of a
witness?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Proofs of Knowledge

Why is special?𝖤𝗑𝗍
• Clearly, must not be an algorithm that just anybody

can run

• has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningful as a security claim

• “Straight-line” Extraction (SLE): no rewinding.
Instead, use other trapdoor like CRS, RO, etc.

𝖤𝗑𝗍

𝖤𝗑𝗍

Bad for:
• Quantum
• Concurrency
• Tightness

Why is special?𝖤𝗑𝗍
• Clearly, must not be an algorithm that just anybody

can run

• has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningful as a security claim

• “Straight-line” Extraction (SLE): no rewinding.
Instead, use other trapdoor like CRS, RO, etc.

𝖤𝗑𝗍

𝖤𝗑𝗍

Random Oracle Model

H

H : {0,1}* ↦ {0,1}ℓ

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ
[Pass 03]

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ
[Pass 03]

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ
[Pass 03]

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

H : {0,1}* ↦ {0,1}ℓ
[Pass 03]

V(x)

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

H : {0,1}* ↦ {0,1}ℓ
[Pass 03]

V(x)

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

H

P(x, w)

H : {0,1}* ↦ {0,1}ℓ
[Pass 03]

V(x)

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

H
Accept/Reject

P(x, w)

H : {0,1}* ↦ {0,1}ℓ
[Pass 03]

V(x)

𝖤𝗑𝗍

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

H
Accept/Reject

P(x, w)

H : {0,1}* ↦ {0,1}ℓ
[Pass 03]

V(x)

𝖤𝗑𝗍

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

H
Accept/Reject

P(x, w)
w

H : {0,1}* ↦ {0,1}ℓ
[Pass 03]

V(x)

• Why is it a meaningful trapdoor?

- Hash functions are complex and highly unstructured

- Prover must “query” each to to obtain

• Practical usage:

- No “trusted setup”, each query is very cheap

- Many NIZKs happen to achieve SLE in the ROM

Qi H H(Qi)

Random Oracles as Privilege𝖤𝗑𝗍
[Pass 03]

• Multiparty protocols to securely compute RO-based
NIZKs should ideally make blackbox use of

- Conceptually: should not have a circuit description

- Practically: hash functions have large circuits

• We call them “Oracle Respecting Distributed” (ORD)
protocols

H
H

Distributing NIZKs in the ROM

Oracle Respecting Distribution is Leaky

• Consider a proof system for some language

• Assumption: is a strict upper bound on
queries made by to the random oracle

- Holds for most ‘natural’ schemes

• We will show: any -party protocol that ORD-
computes will leak the witness to parties

(PH, VH)

n ∈ 𝗉𝗈𝗅𝗒(κ)
V H

n + 1
PH n

Trimming Resilience

H

P(x, w)

π
Q1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9

Trimming Resilience

H

P(x, w)

π
 checks at most

 queries
V

n = 2

Q1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9

V(x)

Trimming Resilience

H

P(x, w)

πQ3 Q6

 checks at most
 queries

V
n = 2

Q1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9

V(x)

Trimming Resilience

H

P(x, w)

π

H

Q3 Q6

 checks at most
 queries

V
n = 2

Q1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9

V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

At most two partitions
will be touched by V

V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

At most two partitions
will be touched by V

V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

At most two partitions
will be touched by V

Randomly selected partition:
𝖯𝗋[untouched by V] ≥ 1/3 V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

At most two partitions
will be touched by V

Randomly selected partition:
𝖯𝗋[untouched by V] ≥ 1/3 V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

H*

V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

H*

V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

H*

𝖱𝖾𝗃𝖾𝖼𝗍

V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

H*

V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

H*

𝖯𝗋[V accepts] ≥ 1/3 V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H checks at most
 queries

V
n = 2

H*

Never “leaves”
prover

𝖯𝗋[V accepts] ≥ 1/3 V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H

H*
𝖤𝗑𝗍 w

 checks at most
 queries

V
n = 2

Never “leaves”
prover

𝖯𝗋[V accepts] ≥ 1/3 V(x)

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H

with 𝖯𝗋 ≳ 1/3

H*
𝖤𝗑𝗍 w

 checks at most
 queries

V
n = 2

Never “leaves”
prover

𝖯𝗋[V accepts] ≥ 1/3 V(x)

Trimming Resilience

Q1 Q2Q5

H

P(x, w)
Q3 Q4Q7 Q6Q8 Q9

H

with 𝖯𝗋 ≳ 1/3

H*
𝖤𝗑𝗍 w

(for any 3-partitioning)

 checks at most
 queries

V
n = 2

Never “leaves”
prover

𝖯𝗋[V accepts] ≥ 1/3 V(x)

Trimming Resilience

Q1 Q2Q5

H

P(x, w)
Q3 Q4Q7 Q6Q8 Q9

H*
𝖤𝗑𝗍 w

Lemma: For any -partitioning of RO queries,
omitting one partition still allows extraction

n + 1

V(x)

(w. noticeable
probability) (random)

Trimming Resilience

Q1 Q2Q5

H

P(x, w)
Q3 Q4Q7 Q6Q8 Q9

H*
𝖤𝗑𝗍 w

Lemma: For any -partitioning of RO queries,
omitting one partition still allows extraction

n + 1

V(x)

Oracle Respecting Distribution

(x, w)
w0 w1 w2, , ← 𝖲𝗁𝖺𝗋𝖾(w)

Oracle Respecting Distribution

w0 w1 w2

H H H

V(x)

(x, w)

Oracle Respecting Distribution

w0 w1 w2

H H H

V(x)

(x, w)

Oracle Respecting Distribution

w0 w1 w2

H H H

V(x)

(x, w)

π

Oracle Respecting Distribution

w0 w1 w2

H H H

 checks at most
 queries

V
n = 2H V(x)

(x, w)

π

Oracle Respecting Distribution

w0 w1 w2

H H H

 checks at most
 queries

V
n = 2H V(x)

(x, w)

π

Oracle Respecting Distribution

w0 w1 w2

H H H

 checks at most
 queries

V
n = 2H V(x)

(x, w)

π

Natural partitioning

Oracle Respecting Distribution

w0 w1 w2

H H

 checks at most
 queries

V
n = 2H V(x)

(x, w)

π

H*

Natural partitioning

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

w𝖤𝗑𝗍
Trimming Resilience Lemma

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

w𝖤𝗑𝗍
Trimming Resilience Lemma

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

Two views are sufficient to reconstruct the witness

w𝖤𝗑𝗍
Trimming Resilience Lemma

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

Two views are sufficient to reconstruct the witness
 party ORD protocol can not withstand passive corruptions3 2

w𝖤𝗑𝗍
Trimming Resilience Lemma

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

Two views are sufficient to reconstruct the witness
 party ORD protocol can not withstand passive corruptions3 2n n-1

Caveats
•The -party protocol must be mapped to a single party

algorithm to apply the trimming lemma

•This mapping induces one of two artefacts:

- Protocol property: Each RO query in the protocol must
“traceable” to the party that first made it

 OR

- NIZK property: does not actually need

n

𝖤𝗑𝗍(⃗Q , π) H(⃗Q)

Fewer than Corrupt?n − 1

• In the paper:
 - Extend impossibility for corruptions
 - Notes on further barriers for many natural NIZKPoKs

• Impossibility itself does not generalize to fraction
of corruptions: NIZK that permits -party ORD
protocol with corruptions

n − O(1)

O(1)
∃ n

𝖼𝗈𝗇𝗌𝗍 ⋅ n

Conclusion
• We showed that -party protocols to securely compute certain hash-

based signatures/NIZKs can not make blackbox use of the same
hash function

- Includes MPC-in-the-head, Fischlin/Unruh/Pass/Ks22 transform,
PCPs/IOPs

• Dist. NIZK Verifier must depend on #parties—could it indicate that
thresh. signature must grow with #signers?

n

Thanks!
Thanks Eysa Lee foreprint: 2023/1381

