

Cryptanalysis of Algebraic Verifiable Delay Functions

Alex Biryukov Ben Fisch Gottfried Herold Dmitry Khovratovich Gaëtan Leurent María Naya-Plasencia Benjamin Wesolowski

CRYPTO 2024

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Verifiable Delay Functions [Boneh, Bonneau, Bünz & Fisch, CRYPTO'18] *Function* public function *f* ∶ *X* → *Y Delay* $f(x)$ cannot be computed faster than *T*, for random *x* (security claim) *Verifiable* comes with a proof for fast verification of correctness *Security claim: sequentiality* \triangleright There exist an evaluation algorithm in time $(1 + \varepsilon)T$ with few processors ▶ There is no evaluation algorithm faster than *T*, even with many processors *Example usage: Randomness beacons in blockchains* \blacktriangleright Users contribute inputs x_i ▶ A party computes hash of inputs and publishes output ▶ Problem: last user to contribute can brute-force output to bias it ▶ Biasing the output requires fast evaluation ⇒ VDF

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Algebraic VDF \blacktriangleright Construct hash function using algebraic operations in a large field \mathbb{F}_p ▶ Additions, multiplications

- \blacktriangleright Huge number of rounds to make it slow (e.g. 2^{40})
- ▶ Use SNARK to make it verifiable
- ▶ S-Box candidate: *a*-th root for small *a*

 $x \mapsto \sqrt[a]{x}$

- ▶ Permutation when gcd(*a*, *p* − 1) = 1
- ▶ High degree, somewhat slow, efficient ZK proofs

Evaluation of ^a √ ⋅

- ▶ Fermat's little theorem: *^a* √*x* = *x* 1/*a* mod *p*−1
- \blacktriangleright Fast exponentiation: $\log_2(\rho)$ squaring and multiply
- \blacktriangleright Latency lo $_{3_2}(p)$ with 2 processors

▶ $y = \sqrt[3]{x}$ \Longleftrightarrow $y^a = x$ \blacktriangleright $y^a = x$ has low degree

ZK proof for ^a √ ⋅

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Algebraic VDF \blacktriangleright Construct hash function using algebraic operations in a large field \mathbb{F}_p ▶ Additions, multiplications \blacktriangleright Huge number of rounds to make it slow (e.g. 2^{40}) ▶ Use SNARK to make it verifiable ▶ S-Box candidate: *a*-th root for small *a* $x \mapsto \sqrt[a]{x}$ ▶ Permutation when gcd(*a*, *p* − 1) = 1 ▶ High degree, somewhat slow, efficient ZK proofs *Examples* ▶ Sloth++ [Boneh, Bonneau, Bünz & Fisch, CRYPTO'18] ▶ Veedo [StarkWare, 2020] ▶ MinRoot **[Khovratovich, Maller & Tiwari, ePrint 2022/1626]**

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion VDF cryptanalysis

- ▶ Slow hash function, over a large field, with an unusual security claim
- ▶ Security claim: high delay even with massive parallelism and precomputation
	- ▶ Delay is measured as *latency*: time between receiving input and computing output
	- ▶ Complexity in number of operations can be large

Cryptanalysis targets

- *1* Can we find shortcuts in the iteration of *n* rounds?
- *2* Can we compute the round function faster in parallel?

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Computing roots in p ▶ We focus on root computation: *x* ↦ *^a* √*x* ▶ Most expensive part of the round function ▶ Can we compute root with low latency using many processors and precomputation? \blacktriangleright Fast exponentiation has latency log₂(p) squarings ▶ We consider two techniques to compute root with low latency *1* Precomputation *2* Smoothness ▶ Roots and power function are homomorphisms: *^a*√*x* ⋅ *a*√*y*

- ▶ Given input *x*, we can randomize it with *r*:
- ▶ And deduce root of *x* from root of *y*:
- ▶ Precompute *r*^ª and *r*⁻¹

$$
y = x \cdot r^a \mod p
$$

$$
\sqrt[a]{x} = \sqrt[a]{y} \cdot r^{-1} \mod p
$$

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Computing roots in p ▶ We focus on root computation: *x* ↦ *^a* √*x* ▶ Most expensive part of the round function

- ▶ Can we compute root with low latency using many processors and precomputation? \blacktriangleright Fast exponentiation has latency log₂(p) squarings
- ▶ We consider two techniques to compute root with low latency
	- *1* Precomputation
	- *2* Smoothness

Randomization

- ▶ Roots and power function are homomorphisms:
- ▶ Given input *x*, we can randomize it with *r*:
- ▶ And deduce root of *x* from root of *y*:
- ▶ Precompute *r*^a and *r*⁻¹

^a√*x* ⋅ *a*√*y*

 $y = x \cdot r^a \mod p$

^a√*x* = *^a*√*y* ⋅ *r* [−]¹ mod *p*

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Idea 1: Precomputation

- ▶ Precompute roots of small values *T*[*i*] = $\sqrt[3]{i}$ for *i* < \sqrt{p}
- ▶ Randomization: $y = x \cdot r^a$ mod p , with \sqrt{p} different values *r*
	- ▶ With high probabiliy, match between *y* and *i*
	- ▶ Fetch *^a*√*y* = *T*[*y*] and deduce *^a* √*x*
- ▶ Similar to baby-step giant-step algorithm for discrete logarithm

Online algorithm

```
{\sf Input:} \,\, x \in \mathbb{F}_pfor 0 \le r \le \sqrt{p} do
         y \leftarrow x \cdot r^a \mod pif y \le \sqrt{p} then
               return a√y ⋅ r
−1 mod p
```
. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Idea 1: Precomputation

- ▶ Precompute roots of small values *T*[*i*] = $\sqrt[3]{i}$ for *i* < \sqrt{p}
- ▶ Randomization: $y = x \cdot r^a$ mod p , with \sqrt{p} different values *r*
	- ▶ With high probabiliy, match between *y* and *i*
	- ▶ Fetch *^a*√*y* = *T*[*y*] and deduce *^a* √*x*
- ▶ Similar to baby-step giant-step algorithm for discrete logarithm
- ▶ Parallel implementation
	- ▶ √*p* processors, each processor only does a few operation
	- ▶ √*p* memory (only one CPU makes an access)
	- ▶ Latency: 2 Mul + 1 Lookup

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Idea 1: Precomputation

- ▶ Precompute roots of small values *T*[*i*] = $\sqrt[3]{i}$ for *i* < \sqrt{p}
- ▶ Randomization: $y = x \cdot r^a$ mod p , with \sqrt{p} different values *r*
	- ▶ With high probabiliy, match between *y* and *i*
	- ▶ Fetch *^a*√*y* = *T*[*y*] and deduce *^a* √*x*
- ▶ Similar to baby-step giant-step algorithm for discrete logarithm
- ▶ Parallel implementation
	- ▶ √*p* processors, each processor only does a few operation
	- ▶ √*p* memory (only one CPU makes an access)
	- \triangleright Latency: 2 Mul + 1 Lookup
- ▶ Concrete parameters
	- ▶ 2¹²⁸ processors, 2¹²⁸ memory, speedup 32

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 8 / 15

- ▶ Parallel implementation
	- \triangleright Groups of $\pi(B)$ processors (subexponential complexity)
	- ▶ Latency: 1 Mul + 1 TrialDiv + a few Mul

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 8 / 15

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Improvements 1: Almost-smoothness

▶ Almost-smoothness: Assume that *y* has small factors, and a medium factor:

$$
y = q' \cdot \prod q_i, \quad \text{with } q_i \leq B, q' \leq B'
$$

- ▶ Remove small factors with trial division, check is remaining value is small
- ▶ Deduce $\sqrt[3]{y} = \sqrt[3]{q'} \cdot \Pi \sqrt[3]{q_i}$
- ▶ Precompute and tabulate roots of medium primes q' ≤ B'
- ▶ Parallel implementation
	- ▶ Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul
- ▶ Concrete parameters
	- ▶ *B* = 2^{32} , *B'* = 2^{65} Pr[almost-smooth] ≈ 2^{-18}
	- ▶ 2^{48} processors, $2^{59.5}$ memory, speedup 20

- - ▶ Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul

… *r* $y \leftarrow x \cdot r^a \mod p$ ∀*q* ∶ *z^q* ← 1 **…** *q* **If** *q* ∣ *y* $z_q \leftarrow \sqrt[q]{q}$ *z* ← ∏ *z^q* mod *p* $w \leftarrow y/z$ **If** $w \leq B'$ $\mathsf{Ret}\, z \cdot \sqrt[d]{w} \cdot r^{-1} \bmod p$

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Improvements 1: Almost-smoothness

▶ Almost-smoothness: Assume that *y* has small factors, and a medium factor:

$$
y = q' \cdot \prod q_i, \quad \text{with } q_i \leq B, q' \leq B'
$$

- ▶ Remove small factors with trial division, check is remaining value is small
- ▶ Deduce $\sqrt[3]{y} = \sqrt[3]{q'} \cdot \Pi \sqrt[3]{q_i}$
- ▶ Precompute and tabulate roots of medium primes q' ≤ B'
- ▶ Parallel implementation
	- ▶ Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul
- ▶ Concrete parameters
	- ▶ *B* = 2^{32} , *B'* = 2^{65} Pr[almost-smooth] ≈ 2^{-18}
	- ▶ 2^{48} processors, $2^{59.5}$ memory, speedup 20

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Improvements 2: Prefiltering

- ▶ Observation: Randomizing step uses a single CPU per group
- ▶ Improvement: Try a set of values $r_{i'}$ keep most promising y_i = x \cdot r_i mod p in each group
	- ▶ Simple filter: keep smallest *^yⁱ*
	- \blacktriangleright Advanced filter: trial division with small bound B_0 < B , keep y with large B_0 -smooth part
- \blacktriangleright Filtering improves the probability that y_i is (almost)-smooth
- ▶ Parallel implementation
	- ▶ Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul
- ▶ Concrete parameters
	- ▶ *B* = 2^{32} , *B'* = 2^{65} , *B*₀ = 2^{20} , Pr[almost-smooth | filter] ≈ $2^{-9.5}$
	- ▶ 2 40 processors, 2 $^{59.5}$ memory, speedup 18

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Improvements 2: Prefiltering

- ▶ Observation: Randomizing step uses a single CPU per group
- ▶ Improvement: Try a set of values $r_{i'}$ keep most promising y_i = x \cdot r_i mod p in each group ▶ Simple filter: keep smallest *^yⁱ*
	- \blacktriangleright Advanced filter: trial division with small bound B_0 < B , keep y with large B_0 -smooth part
- \blacktriangleright Filtering improves the probability that y_i is (almost)-smooth
- ▶ Parallel implementation
	- ▶ Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul
- ▶ Concrete parameters
	- ▶ *B* = 2³², *B'* = 2⁶⁵, *B*₀ = 2²⁰, Pr[almost-smooth | filter] ≈ 2^{-9.5}
	- ▶ 2 40 processors, 2 $^{59.5}$ memory, speedup 18

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Improvement 3: Parallel smoothness test

- ▶ Additive randomization: $y = x + rp$ (as integers), instead of $y = x \cdot r^a$ mod p
	- ▶ Lift *^y* to integers, and check if *^B*-smooth: *^y* ⁼ [∏] *^qⁱ* with *^qⁱ* ≤ *B*
	- ▶ Deduce $\sqrt[3]{x} = \sqrt[3]{y} = \prod \sqrt[3]{q_i}$
- ▶ Advantage: we can test all values *y* for smoothness simultaneously
	- ▶ $q \mid x + rp \iff r \equiv -x \cdot p^{-1} \mod q$
	- ▶ Precompute *p* [−]¹ mod *q*
- ▶ Parallel implementation
	- ▶ Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul
- ▶ Concrete parameters
	- ▶ *B* = 2³², *B'* = 2⁴⁵, *B*₀ = 2²⁰, Pr[almost-smooth | filter] ≈ 2⁻²⁴
	- ▶ 2^{29} processors, 2^{40} memory, speedup 20

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 11 / 15

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Improvement 3: Parallel smoothness test

- ▶ Additive randomization: $y = x + rp$ (as integers), instead of $y = x \cdot r^a$ mod p
	- ▶ Lift *^y* to integers, and check if *^B*-smooth: *^y* ⁼ [∏] *^qⁱ* with *^qⁱ* ≤ *B*
	- ▶ Deduce $\sqrt[3]{x} = \sqrt[3]{y} = \prod \sqrt[3]{q_i}$
- ▶ Advantage: we can test all values *y* for smoothness simultaneously
	- ▶ $q \mid x + rp \iff r \equiv -x \cdot p^{-1} \mod q$
	- ▶ Precompute *p* [−]¹ mod *q*
- ▶ Parallel implementation
	- ▶ Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul
- ▶ Concrete parameters
	- ▶ *B* = 2³², *B'* = 2⁴⁵, *B*₀ = 2²⁰, Pr[almost-smooth | filter] ≈ 2⁻²⁴
	- ▶ 2^{29} processors, 2^{40} memory, speedup 20

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Application to MinRoot and Veedo

- ▶ Speedup of root computation directly applicable to MinRoot and Veedo
	- ▶ Various trade-offs between latency and number of processors
		- ▶ More improvements in the paper
- ▶ Concrete parameters for MinRoot ($p \approx 2^{256}$):

. Introduction Parallel root computation Optimizing the smoothness attack Application to VDF . . Conclusion Application to Sloth++

- \blacktriangleright Sloth++ uses square roots in \mathbb{F}_{ρ^2}
	- \blacktriangleright Smoothness not directly applicable in \mathbb{F}_{p^2}
- \blacktriangleright Assume \mathbb{F}_{ρ^2} is constructed as $\mathbb{F}_\rho[X]/\left(X^2+\alpha\right)$ (elements are polynomials)
- \triangleright Square root $z_0 + z_1 X$ of $b_0 + b_1 X$ satisfies:

$$
(z_0 + z_1 X)^2 = b_0 + b_1 X \iff \begin{cases} 2z_0 z_1 = b_1 \\ z_0^2 - \alpha z_1^2 = b_0 \end{cases}
$$

$$
\iff \begin{cases} z_0 = b_1 / 2z_1 \text{ (assuming } z_1 \neq 0) \\ \frac{a_1^2}{4z_1^2} - \alpha z_1^2 = b_0 \end{cases} \Rightarrow \text{quadratic equation in } z_1^2
$$

 \blacktriangleright Solve with quadratic formula, deduce z_1^2 $\frac{2}{1}$ then z_1 by computing square roots in \mathbb{F}_p .

- ▶ In theory, this clearly breaks the security model
- ▶ In practice, communication is the bottleneck
- ▶ We need a billion CPU, with high speed communication
	- ▶ At each round, one CPU computes the root and sends result to all CPUs
	- ▶ Communication must be faster than computing root naively: 230ns (Supranational)
- ▶ Obviously not practical with current technology
- ▶ Does not seem to break laws of physics
- ▶ More work needed to evaluate practical impact

- \blacktriangleright Computing roots in \mathbb{F}_p is not sequential
	- ▶ Various trade-offs between latency and number of processors
	- ▶ Breaks security claims of MinRoot: speedup 20 with 2^{29} CPU and 2^{40} memory
	- Almost practical for Veedo (128-bit prime): 2^{13} CPU 2^{40} memory
	- Extension to \mathbb{F}_{p^2} (Sloth++)
- ▶ Strong link to discrete logarithm
	- ▶ Techniques similar to DL algorithms
	- ▶ Reduction from a class of parallel power-function algorithms to DL
- ▶ Open questions
	- ▶ Can we use more advanced discrete logarithm algorithm in this context? (ECM, NFS, ...)
	- ▶ What is the difficulty of parallel discrete logarithm?

. . Possible countermeasures

. Modeling latency .

Possible countermeasures

Modeling latency

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 16 / 15

Additional slides

. Modeling latency .

Possible countermeasures for VDF construction

- *1* Make a weaker delay claim
	- \blacktriangleright 1 operation per round rather than $\log_2(p)$
- *2* Use *x* \mapsto *x*^a instead of *x* $\mapsto \sqrt[3]{x}$ for the S−Box
	- ▶ Warning: some ideas for parallel evaluation of low-degree powers in the paper
- *3* Use a larger prime

. . Possible countermeasures

- ▶ Number of processors for our attack is sub-exponential
- *4* Use more complex groups
	- \blacktriangleright Index calculus only works in $\mathbb{F}_{p'}$ but more advanced algorithms might be applicable
- ▶ More cryptanalysis needed!

. . Possible countermeasures . Modeling latency . Modeling latency ▶ Simple model for the latency of operations ▶ Concrete values strongly dependent on architecture and technology ▶ Basic operations have latency O(log(log(*p*))) using optimized hardware ⇒ 1 unit ▶ Modular addition (up to log(*p*) operands) ▶ Modular multiplication, Multiply-and-add ▶ Trial division by a constant ► Lookup in a small table with *k* entries has latency log(*k*) ⇒ 1 unit if *k* ≤ log₂(*p*) → Memory access has larger latency \Rightarrow 1 unit if $k \leq \log_2(p)$ ▶ Memory access has larger latency ▶ We ignore latency of communication ▶ O(log(*n*)) latency for *n* processors with hypercube tolopology [Valiant, 1982]