
. .. .. .. .
Introduction

. .. .. .
Parallel root computation

. .. .. .
Optimizing the smoothness attack

. .. .. .
Application to VDF

. .
Conclusion

Cryptanalysis of Algebraic Verifiable Delay Functions

Alex Biryukov Ben Fisch Gottfried Herold Dmitry Khovratovich
Gaëtan Leurent María Naya-Plasencia Benjamin Wesolowski

CRYPTO 2024

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 1 / 15



. .. .. .. .
Introduction

. .. .. .
Parallel root computation

. .. .. .
Optimizing the smoothness attack

. .. .. .
Application to VDF

. .
Conclusion

Verifiable Delay Functions [Boneh, Bonneau, Bünz & Fisch, CRYPTO’18]

Function public function f ∶ X→ Y
Delay f (x) cannot be computed faster than T, for random x (security claim)

Verifiable comes with a proof for fast verification of correctness

Security claim: sequentiality

▶ There exist an evaluation algorithm in time (1 + 𝜀)T with few processors
▶ There is no evaluation algorithm faster than T, even with many processors

Example usage: Randomness beacons in blockchains

▶ Users contribute inputs xi
▶ A party computes hash of inputs and publishes output

▶ Problem: last user to contribute can brute-force output to bias it
▶ Biasing the output requires fast evaluation⇒ VDF
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Algebraic VDF
▶ Construct hash function using algebraic operations in a large field 𝔽p

▶ Additions, multiplications
▶ Huge number of rounds to make it slow (e.g. 240)

▶ Use SNARK to make it verifiable

▶ S-Box candidate: a-th root for small a x↦ a√x
▶ Permutation when gcd(a, p − 1) = 1
▶ High degree, somewhat slow, efficient ZK proofs

Evaluation of a√ ⋅

▶ Fermat’s little theorem: a√x = x1/a mod p−1

▶ Fast exponentiation: log
2
(p) squaring and multiply

▶ Latency log
2
(p) with 2 processors

ZK proof for a√ ⋅

▶ y = a√x ⟺ ya = x
▶ ya = x has low degree
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Algebraic VDF
▶ Construct hash function using algebraic operations in a large field 𝔽p

▶ Additions, multiplications
▶ Huge number of rounds to make it slow (e.g. 240)

▶ Use SNARK to make it verifiable

▶ S-Box candidate: a-th root for small a x↦ a√x
▶ Permutation when gcd(a, p − 1) = 1
▶ High degree, somewhat slow, efficient ZK proofs

Examples

▶ Sloth++ [Boneh, Bonneau, Bünz & Fisch, CRYPTO’18]
▶ Veedo [StarkWare, 2020]
▶ MinRoot [Khovratovich, Maller & Tiwari, ePrint 2022/1626]
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MinRoot [Khovratovich, Maller & Tiwari, ePrint 2022/1626]

MinRoot
Input: u, v ∈ 𝔽p
for 0 ≤ i < n do

(u, v) ← ( a√u + v, u + i)
return u, v

u v

i ⊞
⊞
a√ ⋅

u′ v′

▶ Two elements in 𝔽p p = 2254 + 232 ⋅ 0x224698fc094cf91b992d30ed + 1
▶ Using 5-th root in 𝔽p a = 5

▶ Planned for use in Ethereum’s consensus protocol and Filecoin
▶ ASIC developed by Supranational

Security claim

▶ Even with 2128 processors and 2128 memory, speedup at most 2
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VDF cryptanalysis

▶ Slow hash function, over a large field, with an unusual security claim

▶ Security claim: high delay even with massive parallelism and precomputation
▶ Delay is measured as latency: time between receiving input and computing output
▶ Complexity in number of operations can be large

Cryptanalysis targets

1 Can we find shortcuts in the iteration of n rounds?
2 Can we compute the round function faster in parallel?

u v

i ⊞
⊞
a√ ⋅

u′ v′
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Computing roots in 𝔽p
▶ We focus on root computation: x↦ a√x

▶ Most expensive part of the round function

▶ Can we compute root with low latency using many processors and precomputation?
▶ Fast exponentiation has latency log

2
(p) squarings

▶ We consider two techniques to compute root with low latency
1 Precomputation
2 Smoothness

Randomization
▶ Roots and power function are homomorphisms: a√xy = a√x ⋅ a√y
▶ Given input x, we can randomize it with r: y = x ⋅ ra mod p
▶ And deduce root of x from root of y: a√x = a√y ⋅ r−1 mod p

▶ Precompute r a and r −1
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Idea 1: Precomputation

▶ Precompute roots of small values T[i] = a√i for i < √p
▶ Randomization: y = x ⋅ r a mod p, with √p different values r

▶ With high probabiliy, match between y and i
▶ Fetch a√y = T[y] and deduce a√x

▶ Similar to baby-step giant-step algorithm for discrete logarithm

Online algorithm

Input: x ∈ 𝔽p
for 0 ≤ r < √p do

y← x ⋅ r a mod p
if y ≤ √p then

return a√y ⋅ r −1 mod p
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▶ Precompute roots of small values T[i] = a√i for i < √p
▶ Randomization: y = x ⋅ r a mod p, with √p different values r

▶ With high probabiliy, match between y and i
▶ Fetch a√y = T[y] and deduce a√x

▶ Similar to baby-step giant-step algorithm for discrete logarithm
▶ Parallel implementation

▶ √p processors, each processor only does a few operation
▶ √pmemory (only one CPU makes an access)
▶ Latency: 2 Mul + 1 Lookup

r = 2
y← x ⋅ 2a mod p
If y ≤ √p
Ret a√y ⋅ 2−1 mod p

r = 3
y← x ⋅ 3a mod p
If y ≤ √p
Ret a√y ⋅ 3−1 mod p

… r

y← x ⋅ r a mod p
If y ≤ √p
Ret a√y ⋅ r −1 mod p
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Idea 1: Precomputation

▶ Precompute roots of small values T[i] = a√i for i < √p
▶ Randomization: y = x ⋅ r a mod p, with √p different values r

▶ With high probabiliy, match between y and i
▶ Fetch a√y = T[y] and deduce a√x

▶ Similar to baby-step giant-step algorithm for discrete logarithm
▶ Parallel implementation

▶ √p processors, each processor only does a few operation
▶ √pmemory (only one CPU makes an access)
▶ Latency: 2 Mul + 1 Lookup

▶ Concrete parameters p ≈ 2256
▶ 2128 processors, 2128 memory, speedup 32
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Idea 2: Smoothness
▶ Precompute roots of small primes qi ≤ B
▶ Randomization: y = x ⋅ r a mod p

▶ Lift y to integers, and check if B-smooth: y = ∏ qi with qi ≤ B▶ Deduce a√y = ∏ a√qi
▶ Similar to index calculus for discrete logarithm

▶ Probability of y ≤ p to be B-smooth ≈ 𝜌(log
2
(p)/ log

2
(B)) [Dickman, 1930]

▶ Sub-exponential complexity

Online algorithm

Input: x ∈ 𝔽p
loop

y← x ⋅ r a mod p
if y = ∏ qi, with qi ≤ B then

return a√y ⋅ r −1 mod p
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Idea 2: Smoothness
▶ Parallel implementation

▶ Groups of 𝜋(B) processors (subexponential complexity)
▶ Latency: 1 Mul + 1 TrialDiv + a few Mul

r = 2
y← x ⋅ 2a mod p
∀q ∶ zq ← 1

q = 2
If 2 ∣ y
z2 ←

a√2

q = 3
If 3 ∣ y
z3 ←

a√3

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
If z a mod p = y
Ret z ⋅ 2−1 mod p

… r

y← x ⋅ r a mod p
∀q ∶ zq ← 1

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
If z a mod p = y
Ret z ⋅ r −1 mod p

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 8 / 15



. .. .. .. .
Introduction

. .. .. .
Parallel root computation

. .. .. .
Optimizing the smoothness attack

. .. .. .
Application to VDF

. .
Conclusion

Idea 2: Smoothness
▶ Precompute roots of small primes qi ≤ B
▶ Randomization: y = x ⋅ r a mod p

▶ Lift y to integers, and check if B-smooth: y = ∏ qi with qi ≤ B▶ Deduce a√y = ∏ a√qi
▶ Similar to index calculus for discrete logarithm

▶ Probability of y ≤ p to be B-smooth ≈ 𝜌(log
2
(p)/ log

2
(B)) [Dickman, 1930]

▶ Sub-exponential complexity

▶ Parallel implementation
▶ Groups of 𝜋(B) processors (subexponential complexity)
▶ Latency: 1 Mul + 1 TrialDiv + a few Mul

▶ Concrete parameters p ≈ 2256
▶ B = 235, 𝜋(B) ≈ 230.5, Pr[smooth] ≈ 2−21.6
▶ 254.5 processors, speedup 42

▶ Already known for parallel modular exponentiation! [Adleman & Kompella, STOC’88]
▶ Coming next: improvements to this technique, and application to concrete VDF
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Improvements 1: Almost-smoothness

▶ Almost-smoothness: Assume that y has small factors, and a medium factor:

y = q′ ⋅∏ qi , with qi ≤ B, q′ ≤ B′

▶ Remove small factors with trial division, check is remaining value is small
▶ Deduce a√y = a√q′ ⋅ ∏ a√qi

▶ Precompute and tabulate roots of medium primes q′ ≤ B′
▶ Parallel implementation

▶ Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul
▶ Concrete parameters p ≈ 2256

▶ B = 232, B′ = 265 Pr[almost-smooth] ≈ 2−18
▶ 248 processors, 259.5 memory, speedup 20
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Improvements 2: Prefiltering

▶ Observation: Randomizing step uses a single CPU per group
▶ Improvement: Try a set of values ri, keep most promising yi = x ⋅ ri mod p in each group

▶ Simple filter: keep smallest yi▶ Advanced filter: trial division with small bound B0 < B, keep y with large B0-smooth part
▶ Filtering improves the probability that yi is (almost)-smooth
▶ Parallel implementation

▶ Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul
▶ Concrete parameters p ≈ 2256

▶ B = 232, B′ = 265, B0 = 220, Pr[almost-smooth | filter] ≈ 2−9.5
▶ 240 processors, 259.5 memory, speedup 18
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Improvements 2: Prefiltering
▶ Parallel implementation

▶ Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul

ri = 2
yi ← x ⋅ 2a mod p
If yi has smooth part
y← yi, r← 2

ri = 3
yi ← x ⋅ 3a mod p
If yi has smooth part
y← yi, r← 3

…

q = 2
If 2 ∣ y
z2 ←

a√2

q = 3
If 3 ∣ y
z3 ←

a√3

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
w← y/z
If w ≤ B′
Ret z ⋅ a√w ⋅ 2−1 mod p

… … ri
yi ← x ⋅ ria mod p
If yi has smooth part
y← yi, r← ri

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
w← y/z
If w ≤ B′
Ret z ⋅ a√w ⋅ 2−1 mod p
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Improvement 3: Parallel smoothness test

▶ Additive randomization: y = x + rp (as integers), instead of y = x ⋅ r a mod p
▶ Lift y to integers, and check if B-smooth: y = ∏ qi with qi ≤ B
▶ Deduce a√x = a√y = ∏ a√qi

▶ Advantage: we can test all values y for smoothness simultaneously
▶ q ∣ x + rp ⟺ r ≡ −x ⋅ p−1 mod q
▶ Precompute p−1 mod q

▶ Parallel implementation
▶ Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul

▶ Concrete parameters p ≈ 2256
▶ B = 232, B′ = 245, B0 = 220, Pr[almost-smooth | filter] ≈ 2−24
▶ 229 processors, 240 memory, speedup 20
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Improvement 3: Parallel smoothness test
▶ Parallel implementation

▶ Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul

∀q, ∀i ∶ ziq ← 1

q = 2
̄x← x mod 2
ForAll i ≡ − ̄x ⋅ p−1 mod 2
zi2 ←

a√2

q = 3
̄x← x mod 3
ForAll i ≡ − ̄x ⋅ p−1 mod 3
zi3 ←

a√3

… q

̄x← x mod q
ForAll i ≡ − ̄x ⋅ p−1 mod q
ziq ←

a√q

r = 0, y = x
z← ∏q z

0
q mod p

w← y/z
If w ≤ B′
Ret z ⋅ a√w mod p

r = 1, y = x + p
z← ∏q z

1
q mod p

w← y/z
If w ≤ B′
Ret z ⋅ a√w mod p

… r, y = x + rp
z← ∏q z

r
q mod p

w← y/z
If w ≤ B′
Ret z ⋅ a√w mod p
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Application to MinRoot and Veedo
▶ Speedup of root computation directly applicable to MinRoot and Veedo

▶ Various trade-offs between latency and number of processors
▶ More improvements in the paper

▶ Concrete parameters for MinRoot (p ≈ 2256):
T #CPU M speedup Techniques

256 1 0 1 Fast exponentiation (reference)

8 2128 2128 32 Baby-step, giant-step
6 254.5 0 42 Smoothness
13 248 259.5 20 Smoothness with medium-size factor
14 240 259.5 18 Smoothness with medium-size factor and prefilter
21 236 264 12 Smoothness with special shape of p
54 234 240 4.7 Smoothness with rational reconstruction
13 229 240 20 Smoothness with parallel smoothness test
68 225 240 3.7 Smoothness with parallel rational reconstruction
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Application to Sloth++

▶ Sloth++ uses square roots in 𝔽p2
▶ Smoothness not directly applicable in 𝔽p2

▶ Assume 𝔽p2 is constructed as 𝔽p[X]/ (X2 + 𝛼) (elements are polynomials)
▶ Square root z0 + z1X of b0 + b1X satisfies:

(z0 + z1X)
2 = b0 + b1X ⟺ {2z0z1 = b1

z20 − 𝛼z
2
1 = b0

⟺ {
z0 = b1/2z1 (assuming z1 ≠ 0)
a21
4z21

− 𝛼z21 = b0 ⇒ quadratic equation in z21

▶ Solve with quadratic formula, deduce z21 then z1 by computing square roots in 𝔽p.
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Practical limitations

▶ In theory, this clearly breaks the security model
▶ In practice, communication is the bottleneck

▶ We need a billion CPU, with high speed communication
▶ At each round, one CPU computes the root and sends result to all CPUs
▶ Communication must be faster than computing root naively: 230ns (Supranational)

▶ Obviously not practical with current technology
▶ Does not seem to break laws of physics

▶ More work needed to evaluate practical impact
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Conclusion

▶ Computing roots in 𝔽p is not sequential
▶ Various trade-offs between latency and number of processors
▶ Breaks security claims of MinRoot: speedup 20 with 229 CPU and 240 memory
▶ Almost practical for Veedo (128-bit prime): 213 CPU 240 memory
▶ Extension to 𝔽p2 (Sloth++)

▶ Strong link to discrete logarithm
▶ Techniques similar to DL algorithms
▶ Reduction from a class of parallel power-function algorithms to DL

▶ Open questions
▶ Can we use more advanced discrete logarithm algorithm in this context? (ECM, NFS, ...)
▶ What is the difficulty of parallel discrete logarithm?
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Additional slides

Possible countermeasures

Modeling latency
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Possible countermeasures for VDF construction

1 Make a weaker delay claim
▶ 1 operation per round rather than log

2
(p)

2 Use x↦ xa instead of x↦ a√x for the S-Box
▶ Warning: some ideas for parallel evaluation of low-degree powers in the paper

3 Use a larger prime
▶ Number of processors for our attack is sub-exponential

4 Use more complex groups
▶ Index calculus only works in 𝔽p, but more advanced algorithms might be applicable

▶ More cryptanalysis needed!
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Modeling latency

▶ Simple model for the latency of operations
▶ Concrete values strongly dependent on architecture and technology

▶ Basic operations have latency O(log(log(p))) using optimized hardware ⇒ 1 unit
▶ Modular addition (up to log(p) operands)
▶ Modular multiplication, Multiply-and-add
▶ Trial division by a constant

▶ Lookup in a small table with k entries has latency log(k) ⇒ 1 unit if k ≲ log
2
(p)

▶ Memory access has larger latency ⇒ ≈ 6 units

▶ We ignore latency of communication
▶ O(log(n)) latency for n processors with hypercube tolopology [Valiant, 1982]
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