
.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Cryptanalysis of Algebraic Verifiable Delay Functions

Alex Biryukov Ben Fisch Gottfried Herold Dmitry Khovratovich
Gaëtan Leurent María Naya-Plasencia Benjamin Wesolowski

CRYPTO 2024

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 1 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Verifiable Delay Functions [Boneh, Bonneau, Bünz & Fisch, CRYPTO’18]

Function public function f ∶ X→ Y
Delay f (x) cannot be computed faster than T, for random x (security claim)

Verifiable comes with a proof for fast verification of correctness

Security claim: sequentiality

▶ There exist an evaluation algorithm in time (1 + 𝜀)T with few processors
▶ There is no evaluation algorithm faster than T, even with many processors

Example usage: Randomness beacons in blockchains

▶ Users contribute inputs xi
▶ A party computes hash of inputs and publishes output

▶ Problem: last user to contribute can brute-force output to bias it
▶ Biasing the output requires fast evaluation⇒ VDF

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 2 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Algebraic VDF
▶ Construct hash function using algebraic operations in a large field 𝔽p

▶ Additions, multiplications
▶ Huge number of rounds to make it slow (e.g. 240)

▶ Use SNARK to make it verifiable

▶ S-Box candidate: a-th root for small a x↦ a√x
▶ Permutation when gcd(a, p − 1) = 1
▶ High degree, somewhat slow, efficient ZK proofs

Evaluation of a√ ⋅

▶ Fermat’s little theorem: a√x = x1/a mod p−1

▶ Fast exponentiation: log
2
(p) squaring and multiply

▶ Latency log
2
(p) with 2 processors

ZK proof for a√ ⋅

▶ y = a√x ⟺ ya = x
▶ ya = x has low degree

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 3 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Algebraic VDF
▶ Construct hash function using algebraic operations in a large field 𝔽p

▶ Additions, multiplications
▶ Huge number of rounds to make it slow (e.g. 240)

▶ Use SNARK to make it verifiable

▶ S-Box candidate: a-th root for small a x↦ a√x
▶ Permutation when gcd(a, p − 1) = 1
▶ High degree, somewhat slow, efficient ZK proofs

Examples

▶ Sloth++ [Boneh, Bonneau, Bünz & Fisch, CRYPTO’18]
▶ Veedo [StarkWare, 2020]
▶ MinRoot [Khovratovich, Maller & Tiwari, ePrint 2022/1626]

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 3 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

MinRoot [Khovratovich, Maller & Tiwari, ePrint 2022/1626]

MinRoot
Input: u, v ∈ 𝔽p
for 0 ≤ i < n do

(u, v) ← (a√u + v, u + i)
return u, v

u v

i ⊞
⊞
a√ ⋅

u′ v′

▶ Two elements in 𝔽p p = 2254 + 232 ⋅ 0x224698fc094cf91b992d30ed + 1
▶ Using 5-th root in 𝔽p a = 5

▶ Planned for use in Ethereum’s consensus protocol and Filecoin
▶ ASIC developed by Supranational

Security claim

▶ Even with 2128 processors and 2128 memory, speedup at most 2

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 4 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

VDF cryptanalysis

▶ Slow hash function, over a large field, with an unusual security claim

▶ Security claim: high delay even with massive parallelism and precomputation
▶ Delay is measured as latency: time between receiving input and computing output
▶ Complexity in number of operations can be large

Cryptanalysis targets

1 Can we find shortcuts in the iteration of n rounds?
2 Can we compute the round function faster in parallel?

u v

i ⊞
⊞
a√ ⋅

u′ v′

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 5 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Computing roots in 𝔽p
▶ We focus on root computation: x↦ a√x

▶ Most expensive part of the round function

▶ Can we compute root with low latency using many processors and precomputation?
▶ Fast exponentiation has latency log

2
(p) squarings

▶ We consider two techniques to compute root with low latency
1 Precomputation
2 Smoothness

Randomization
▶ Roots and power function are homomorphisms: a√xy = a√x ⋅ a√y
▶ Given input x, we can randomize it with r: y = x ⋅ ra mod p
▶ And deduce root of x from root of y: a√x = a√y ⋅ r−1 mod p

▶ Precompute r a and r −1

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 6 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Computing roots in 𝔽p
▶ We focus on root computation: x↦ a√x

▶ Most expensive part of the round function

▶ Can we compute root with low latency using many processors and precomputation?
▶ Fast exponentiation has latency log

2
(p) squarings

▶ We consider two techniques to compute root with low latency
1 Precomputation
2 Smoothness

Randomization
▶ Roots and power function are homomorphisms: a√xy = a√x ⋅ a√y
▶ Given input x, we can randomize it with r: y = x ⋅ ra mod p
▶ And deduce root of x from root of y: a√x = a√y ⋅ r−1 mod p

▶ Precompute r a and r −1

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 6 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Idea 1: Precomputation

▶ Precompute roots of small values T[i] = a√i for i < √p
▶ Randomization: y = x ⋅ r a mod p, with √p different values r

▶ With high probabiliy, match between y and i
▶ Fetch a√y = T[y] and deduce a√x

▶ Similar to baby-step giant-step algorithm for discrete logarithm

Online algorithm

Input: x ∈ 𝔽p
for 0 ≤ r < √p do

y← x ⋅ r a mod p
if y ≤ √p then

return a√y ⋅ r −1 mod p

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 7 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Idea 1: Precomputation

▶ Precompute roots of small values T[i] = a√i for i < √p
▶ Randomization: y = x ⋅ r a mod p, with √p different values r

▶ With high probabiliy, match between y and i
▶ Fetch a√y = T[y] and deduce a√x

▶ Similar to baby-step giant-step algorithm for discrete logarithm
▶ Parallel implementation

▶ √p processors, each processor only does a few operation
▶ √pmemory (only one CPU makes an access)
▶ Latency: 2 Mul + 1 Lookup

r = 2
y← x ⋅ 2a mod p
If y ≤ √p
Ret a√y ⋅ 2−1 mod p

r = 3
y← x ⋅ 3a mod p
If y ≤ √p
Ret a√y ⋅ 3−1 mod p

… r

y← x ⋅ r a mod p
If y ≤ √p
Ret a√y ⋅ r −1 mod p

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 7 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Idea 1: Precomputation

▶ Precompute roots of small values T[i] = a√i for i < √p
▶ Randomization: y = x ⋅ r a mod p, with √p different values r

▶ With high probabiliy, match between y and i
▶ Fetch a√y = T[y] and deduce a√x

▶ Similar to baby-step giant-step algorithm for discrete logarithm
▶ Parallel implementation

▶ √p processors, each processor only does a few operation
▶ √pmemory (only one CPU makes an access)
▶ Latency: 2 Mul + 1 Lookup

▶ Concrete parameters p ≈ 2256
▶ 2128 processors, 2128 memory, speedup 32

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 7 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Idea 2: Smoothness
▶ Precompute roots of small primes qi ≤ B
▶ Randomization: y = x ⋅ r a mod p

▶ Lift y to integers, and check if B-smooth: y = ∏ qi with qi ≤ B▶ Deduce a√y = ∏ a√qi
▶ Similar to index calculus for discrete logarithm

▶ Probability of y ≤ p to be B-smooth ≈ 𝜌(log
2
(p)/ log

2
(B)) [Dickman, 1930]

▶ Sub-exponential complexity

Online algorithm

Input: x ∈ 𝔽p
loop

y← x ⋅ r a mod p
if y = ∏ qi, with qi ≤ B then

return a√y ⋅ r −1 mod p

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 8 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Idea 2: Smoothness
▶ Parallel implementation

▶ Groups of 𝜋(B) processors (subexponential complexity)
▶ Latency: 1 Mul + 1 TrialDiv + a few Mul

r = 2
y← x ⋅ 2a mod p
∀q ∶ zq ← 1

q = 2
If 2 ∣ y
z2 ←

a√2

q = 3
If 3 ∣ y
z3 ←

a√3

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
If z a mod p = y
Ret z ⋅ 2−1 mod p

… r

y← x ⋅ r a mod p
∀q ∶ zq ← 1

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
If z a mod p = y
Ret z ⋅ r −1 mod p

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 8 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Idea 2: Smoothness
▶ Precompute roots of small primes qi ≤ B
▶ Randomization: y = x ⋅ r a mod p

▶ Lift y to integers, and check if B-smooth: y = ∏ qi with qi ≤ B▶ Deduce a√y = ∏ a√qi
▶ Similar to index calculus for discrete logarithm

▶ Probability of y ≤ p to be B-smooth ≈ 𝜌(log
2
(p)/ log

2
(B)) [Dickman, 1930]

▶ Sub-exponential complexity

▶ Parallel implementation
▶ Groups of 𝜋(B) processors (subexponential complexity)
▶ Latency: 1 Mul + 1 TrialDiv + a few Mul

▶ Concrete parameters p ≈ 2256
▶ B = 235, 𝜋(B) ≈ 230.5, Pr[smooth] ≈ 2−21.6
▶ 254.5 processors, speedup 42

▶ Already known for parallel modular exponentiation! [Adleman & Kompella, STOC’88]
▶ Coming next: improvements to this technique, and application to concrete VDF

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 8 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Improvements 1: Almost-smoothness

▶ Almost-smoothness: Assume that y has small factors, and a medium factor:

y = q′ ⋅∏ qi , with qi ≤ B, q′ ≤ B′

▶ Remove small factors with trial division, check is remaining value is small
▶ Deduce a√y = a√q′ ⋅ ∏ a√qi

▶ Precompute and tabulate roots of medium primes q′ ≤ B′
▶ Parallel implementation

▶ Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul
▶ Concrete parameters p ≈ 2256

▶ B = 232, B′ = 265 Pr[almost-smooth] ≈ 2−18
▶ 248 processors, 259.5 memory, speedup 20

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 9 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Improvements 1: Almost-smoothness
▶ Parallel implementation

▶ Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul

r = 2
y← x ⋅ 2a mod p
∀q ∶ zq ← 1

q = 2
If 2 ∣ y
z2 ←

a√2

q = 3
If 3 ∣ y
z3 ←

a√3

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
w← y/z
If w ≤ B′
Ret z ⋅ a√w ⋅ 2−1 mod p

… r

y← x ⋅ r a mod p
∀q ∶ zq ← 1

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
w← y/z
If w ≤ B′
Ret z ⋅ a√w ⋅ r−1 mod p

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 9 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Improvements 1: Almost-smoothness

▶ Almost-smoothness: Assume that y has small factors, and a medium factor:

y = q′ ⋅∏ qi , with qi ≤ B, q′ ≤ B′

▶ Remove small factors with trial division, check is remaining value is small
▶ Deduce a√y = a√q′ ⋅ ∏ a√qi

▶ Precompute and tabulate roots of medium primes q′ ≤ B′
▶ Parallel implementation

▶ Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul
▶ Concrete parameters p ≈ 2256

▶ B = 232, B′ = 265 Pr[almost-smooth] ≈ 2−18
▶ 248 processors, 259.5 memory, speedup 20

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 9 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Improvements 2: Prefiltering

▶ Observation: Randomizing step uses a single CPU per group
▶ Improvement: Try a set of values ri, keep most promising yi = x ⋅ ri mod p in each group

▶ Simple filter: keep smallest yi▶ Advanced filter: trial division with small bound B0 < B, keep y with large B0-smooth part
▶ Filtering improves the probability that yi is (almost)-smooth
▶ Parallel implementation

▶ Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul
▶ Concrete parameters p ≈ 2256

▶ B = 232, B′ = 265, B0 = 220, Pr[almost-smooth | filter] ≈ 2−9.5
▶ 240 processors, 259.5 memory, speedup 18

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 10 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Improvements 2: Prefiltering
▶ Parallel implementation

▶ Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul

ri = 2
yi ← x ⋅ 2a mod p
If yi has smooth part
y← yi, r← 2

ri = 3
yi ← x ⋅ 3a mod p
If yi has smooth part
y← yi, r← 3

…

q = 2
If 2 ∣ y
z2 ←

a√2

q = 3
If 3 ∣ y
z3 ←

a√3

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
w← y/z
If w ≤ B′
Ret z ⋅ a√w ⋅ 2−1 mod p

… … ri
yi ← x ⋅ ria mod p
If yi has smooth part
y← yi, r← ri

… q

If q ∣ y
zq ←

a√q

z← ∏ zq mod p
w← y/z
If w ≤ B′
Ret z ⋅ a√w ⋅ 2−1 mod p

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 10 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Improvements 2: Prefiltering

▶ Observation: Randomizing step uses a single CPU per group
▶ Improvement: Try a set of values ri, keep most promising yi = x ⋅ ri mod p in each group

▶ Simple filter: keep smallest yi▶ Advanced filter: trial division with small bound B0 < B, keep y with large B0-smooth part
▶ Filtering improves the probability that yi is (almost)-smooth
▶ Parallel implementation

▶ Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul
▶ Concrete parameters p ≈ 2256

▶ B = 232, B′ = 265, B0 = 220, Pr[almost-smooth | filter] ≈ 2−9.5
▶ 240 processors, 259.5 memory, speedup 18

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 10 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Improvement 3: Parallel smoothness test

▶ Additive randomization: y = x + rp (as integers), instead of y = x ⋅ r a mod p
▶ Lift y to integers, and check if B-smooth: y = ∏ qi with qi ≤ B
▶ Deduce a√x = a√y = ∏ a√qi

▶ Advantage: we can test all values y for smoothness simultaneously
▶ q ∣ x + rp ⟺ r ≡ −x ⋅ p−1 mod q
▶ Precompute p−1 mod q

▶ Parallel implementation
▶ Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul

▶ Concrete parameters p ≈ 2256
▶ B = 232, B′ = 245, B0 = 220, Pr[almost-smooth | filter] ≈ 2−24
▶ 229 processors, 240 memory, speedup 20

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 11 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Improvement 3: Parallel smoothness test
▶ Parallel implementation

▶ Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul

∀q, ∀i ∶ ziq ← 1

q = 2
̄x← x mod 2
ForAll i ≡ − ̄x ⋅ p−1 mod 2
zi2 ←

a√2

q = 3
̄x← x mod 3
ForAll i ≡ − ̄x ⋅ p−1 mod 3
zi3 ←

a√3

… q

̄x← x mod q
ForAll i ≡ − ̄x ⋅ p−1 mod q
ziq ←

a√q

r = 0, y = x
z← ∏q z

0
q mod p

w← y/z
If w ≤ B′
Ret z ⋅ a√w mod p

r = 1, y = x + p
z← ∏q z

1
q mod p

w← y/z
If w ≤ B′
Ret z ⋅ a√w mod p

… r, y = x + rp
z← ∏q z

r
q mod p

w← y/z
If w ≤ B′
Ret z ⋅ a√w mod p

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 11 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Improvement 3: Parallel smoothness test

▶ Additive randomization: y = x + rp (as integers), instead of y = x ⋅ r a mod p
▶ Lift y to integers, and check if B-smooth: y = ∏ qi with qi ≤ B
▶ Deduce a√x = a√y = ∏ a√qi

▶ Advantage: we can test all values y for smoothness simultaneously
▶ q ∣ x + rp ⟺ r ≡ −x ⋅ p−1 mod q
▶ Precompute p−1 mod q

▶ Parallel implementation
▶ Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul

▶ Concrete parameters p ≈ 2256
▶ B = 232, B′ = 245, B0 = 220, Pr[almost-smooth | filter] ≈ 2−24
▶ 229 processors, 240 memory, speedup 20

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 11 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Application to MinRoot and Veedo
▶ Speedup of root computation directly applicable to MinRoot and Veedo

▶ Various trade-offs between latency and number of processors
▶ More improvements in the paper

▶ Concrete parameters for MinRoot (p ≈ 2256):
T #CPU M speedup Techniques

256 1 0 1 Fast exponentiation (reference)

8 2128 2128 32 Baby-step, giant-step
6 254.5 0 42 Smoothness
13 248 259.5 20 Smoothness with medium-size factor
14 240 259.5 18 Smoothness with medium-size factor and prefilter
21 236 264 12 Smoothness with special shape of p
54 234 240 4.7 Smoothness with rational reconstruction
13 229 240 20 Smoothness with parallel smoothness test
68 225 240 3.7 Smoothness with parallel rational reconstruction

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 12 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Application to Sloth++

▶ Sloth++ uses square roots in 𝔽p2
▶ Smoothness not directly applicable in 𝔽p2

▶ Assume 𝔽p2 is constructed as 𝔽p[X]/ (X2 + 𝛼) (elements are polynomials)
▶ Square root z0 + z1X of b0 + b1X satisfies:

(z0 + z1X)
2 = b0 + b1X ⟺ {2z0z1 = b1

z20 − 𝛼z
2
1 = b0

⟺ {
z0 = b1/2z1 (assuming z1 ≠ 0)
a21
4z21

− 𝛼z21 = b0 ⇒ quadratic equation in z21

▶ Solve with quadratic formula, deduce z21 then z1 by computing square roots in 𝔽p.

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 13 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Practical limitations

▶ In theory, this clearly breaks the security model
▶ In practice, communication is the bottleneck

▶ We need a billion CPU, with high speed communication
▶ At each round, one CPU computes the root and sends result to all CPUs
▶ Communication must be faster than computing root naively: 230ns (Supranational)

▶ Obviously not practical with current technology
▶ Does not seem to break laws of physics

▶ More work needed to evaluate practical impact

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 14 / 15

.
Introduction

.
Parallel root computation

.
Optimizing the smoothness attack

.
Application to VDF

. .
Conclusion

Conclusion

▶ Computing roots in 𝔽p is not sequential
▶ Various trade-offs between latency and number of processors
▶ Breaks security claims of MinRoot: speedup 20 with 229 CPU and 240 memory
▶ Almost practical for Veedo (128-bit prime): 213 CPU 240 memory
▶ Extension to 𝔽p2 (Sloth++)

▶ Strong link to discrete logarithm
▶ Techniques similar to DL algorithms
▶ Reduction from a class of parallel power-function algorithms to DL

▶ Open questions
▶ Can we use more advanced discrete logarithm algorithm in this context? (ECM, NFS, ...)
▶ What is the difficulty of parallel discrete logarithm?

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 15 / 15

. . . .
Possible countermeasures

. .
Modeling latency

Additional slides

Possible countermeasures

Modeling latency

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 16 / 15

. . . .
Possible countermeasures

. .
Modeling latency

Possible countermeasures for VDF construction

1 Make a weaker delay claim
▶ 1 operation per round rather than log

2
(p)

2 Use x↦ xa instead of x↦ a√x for the S-Box
▶ Warning: some ideas for parallel evaluation of low-degree powers in the paper

3 Use a larger prime
▶ Number of processors for our attack is sub-exponential

4 Use more complex groups
▶ Index calculus only works in 𝔽p, but more advanced algorithms might be applicable

▶ More cryptanalysis needed!

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 17 / 15

. . . .
Possible countermeasures

. .
Modeling latency

Modeling latency

▶ Simple model for the latency of operations
▶ Concrete values strongly dependent on architecture and technology

▶ Basic operations have latency O(log(log(p))) using optimized hardware ⇒ 1 unit
▶ Modular addition (up to log(p) operands)
▶ Modular multiplication, Multiply-and-add
▶ Trial division by a constant

▶ Lookup in a small table with k entries has latency log(k) ⇒ 1 unit if k ≲ log
2
(p)

▶ Memory access has larger latency ⇒ ≈ 6 units

▶ We ignore latency of communication
▶ O(log(n)) latency for n processors with hypercube tolopology [Valiant, 1982]

Gaëtan Leurent Cryptanalysis of Algebraic Verifiable Delay Functions CRYPTO 2024 18 / 15

	Introduction
	Parallel root computation
	Optimizing the smoothness attack
	Application to VDF
	Conclusion
	Appendix
	Possible countermeasures
	Modeling latency

