Cryptanalysis of Algebraic Verifiable Delay Functions

Alex Biryukov Ben Fisch Gottfried Herold Dmitry Khovratovich Gaëtan Leurent María Naya-Plasencia Benjamin Wesolowski

CRYPTO 2024

Verifiable Delay Functions

[Boneh, Bonneau, Bünz & Fisch, CRYPTO'18]

Function public function $f: X \rightarrow Y$ Delay f(x) cannot be computed faster than T, for random x Verifiable comes with a proof for fast verification of correctness

(security claim)

Security claim: sequentiality

- There exist an evaluation algorithm in time (1 + ε)T with few processors
- There is no evaluation algorithm faster than T, even with many processors

Example usage: Randomness beacons in blockchains

- Users contribute inputs x_i
- A party computes hash of inputs and publishes output
- Problem: last user to contribute can brute-force output to bias it
- Biasing the output requires fast evaluation \Rightarrow VDF

Optimizing the smoothness attack 000 Application to VDF

Conclusion 0

Algebraic VDF

- Construct hash function using algebraic operations in a large field \mathbb{F}_p
 - Additions, multiplications
 - Huge number of rounds to make it slow (e.g. 2⁴⁰)
- Use SNARK to make it verifiable
- S-Box candidate: a-th root for small a
 - Permutation when gcd(a, p 1) = 1
 - High degree, somewhat slow, efficient ZK proofs

Evaluation of $\sqrt[3]{\cdot}$

- Fermat's little theorem: $\sqrt[a]{x} = x^{1/a \mod p-1}$
- Fast exponentiation: log₂(p) squaring and multiply
- Latency log₂(p) with 2 processors

 $x \mapsto \sqrt[a]{x}$

ZK proof for $\sqrt[a]{\cdot}$

►
$$y = \sqrt[a]{x} \iff y^a = x$$

y^a = x has low degree

Optimizing the smoothness attack 000 Application to VDF 000 Conclusion 0

 $x \mapsto \sqrt[3]{x}$

Algebraic VDF

- Construct hash function using algebraic operations in a large field \mathbb{F}_p
 - Additions, multiplications
 - Huge number of rounds to make it slow (e.g. 2⁴⁰)
- Use SNARK to make it verifiable
- S-Box candidate: a-th root for small a
 - Permutation when gcd(a, p 1) = 1
 - High degree, somewhat slow, efficient ZK proofs

 Examples

 Sloth++
 [Boneh, Bonneau, Bünz & Fisch, CRYPTO'18]

 Veedo
 [StarkWare, 2020]

 MinRoot
 [Khovratovich, Maller & Tiwari, ePrint 2022/1626]

Cryptanalysis of Algebraic Verifiable Delay Functions

CRYPTO 2024



- Two elements in \mathbb{F}_p $p = 2^{254} + 2^{32} \cdot 0x224698fc094cf91b992d30ed + 1$

 Using 5-th root in \mathbb{F}_p a = 5
- Planned for use in Ethereum's consensus protocol and Filecoin
- ASIC developed by Supranational

Security claim

• Even with 2¹²⁸ processors and 2¹²⁸ memory, speedup at most 2

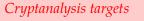
4/15

Optimizing the smoothness attack 000 Application to VDI

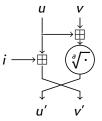
Conclusion 0

VDF cryptanalysis

- Slow hash function, over a large field, with an unusual security claim
- Security claim: high delay even with massive parallelism and precomputation
 - > Delay is measured as *latency*: time between receiving input and computing output
 - Complexity in number of operations can be large



Can we find shortcuts in the iteration of *n* rounds?
 Can we compute the round function faster in parallel?



Computing roots in \mathbb{F}_p

- We focus on root computation: $x \mapsto \sqrt[4]{x}$
 - Most expensive part of the round function
- Can we compute root with low latency using many processors and precomputation?
 - Fast exponentiation has latency log₂(p) squarings
- We consider two techniques to compute root with low latency
 - 1 Precomputation
 - 2 Smoothness

Randomization

- Roots and power function are homomorphisms:
- Given input *x*, we can randomize it with *r*:
- And deduce root of x from root of y:
- ▶ Precompute *r*^a and *r*⁻¹

 $\sqrt[a]{xy} = \sqrt[a]{x} \cdot \sqrt[a]{y}$ $y = x \cdot r^{a} \mod p$ $\sqrt[a]{x} = \sqrt[a]{y} \cdot r^{-1} \mod p$

Optimizing the smoothness attack 000

Conclusion 0

Computing roots in \mathbb{F}_p

- We focus on root computation: $x \mapsto \sqrt[4]{x}$
 - Most expensive part of the round function
- Can we compute root with low latency using many processors and precomputation?
 - Fast exponentiation has latency log₂(p) squarings
- We consider two techniques to compute root with low latency
 - 1 Precomputation
 - 2 Smoothness

Randomization

- Roots and power function are homomorphisms:
- Given input *x*, we can randomize it with *r*:
- And deduce root of x from root of y:
- Precompute r^a and r⁻¹

 $\sqrt[a]{xy} = \sqrt[a]{x} \cdot \sqrt[a]{y}$ $y = x \cdot r^{a} \mod p$ $\sqrt[a]{x} = \sqrt[a]{y} \cdot r^{-1} \mod p$

Optimizing the smoothness attack 000

Application to VDF

Conclusion 0

Idea 1: Precomputation

- Precompute roots of small values $T[i] = \sqrt[3]{i}$ for $i < \sqrt{p}$
- **Randomization:** $y = x \cdot r^a \mod p$, with \sqrt{p} different values r
 - With high probabiliy, match between y and i
 - Fetch $\sqrt[3]{y} = T[y]$ and deduce $\sqrt[3]{x}$
- Similar to baby-step giant-step algorithm for discrete logarithm

Online algorithm

```
Input: x \in \mathbb{F}_p
for 0 \le r < \sqrt{p} do
y \leftarrow x \cdot r^a \mod p
if y \le \sqrt{p} then
return \sqrt[a]{y} \cdot r^{-1} \mod p
```

Optimizing the smoothness attack 000

Application to VDF

Conclusion 0

Idea 1: Precomputation

- Precompute roots of small values $T[i] = \sqrt[3]{i}$ for $i < \sqrt{p}$
- **Randomization:** $y = x \cdot r^a \mod p$, with \sqrt{p} different values r
 - With high probabiliy, match between y and i
 - Fetch $\sqrt[4]{y} = T[y]$ and deduce $\sqrt[4]{x}$
- Similar to baby-step giant-step algorithm for discrete logarithm
- Parallel implementation
 - \checkmark \sqrt{p} processors, each processor only does a few operation
 - \sqrt{p} memory (only one CPU makes an access)
 - Latency: 2 Mul + 1 Lookup

$$r = 2$$
 $r = 3$ $y \leftarrow x \cdot 2^a \mod p$ $y \leftarrow x \cdot 3^a \mod p$ If $y \le \sqrt{p}$ If $y \le \sqrt{p}$ Ret $\sqrt[a]{y} \cdot 2^{-1} \mod p$ Ret $\sqrt[a]{y} \cdot 3^{-1} \mod p$

... r $y \leftarrow x \cdot r^{a} \mod p$ If $y \le \sqrt{p}$ Ret $\sqrt[a]{y} \cdot r^{-1} \mod p$

Gaëtan Leurent

Cryptanalysis of Algebraic Verifiable Delay Functions

7/15

Optimizing the smoothness attack 000

Application to VDF

Conclusion 0

Idea 1: Precomputation

- Precompute roots of small values $T[i] = \sqrt[3]{i}$ for $i < \sqrt{p}$
- **Randomization:** $y = x \cdot r^a \mod p$, with \sqrt{p} different values r
 - With high probabiliy, match between y and i
 - Fetch $\sqrt[4]{y} = T[y]$ and deduce $\sqrt[4]{x}$
- Similar to baby-step giant-step algorithm for discrete logarithm
- Parallel implementation
 - \checkmark \sqrt{p} processors, each processor only does a few operation
 - \sqrt{p} memory (only one CPU makes an access)
 - Latency: 2 Mul + 1 Lookup
- Concrete parameters
 - 2¹²⁸ processors, 2¹²⁸ memory, speedup 32

 $p \approx 2^{256}$

Optimizing the smoothness attack 000

Application to VDF

Conclusion 0

Idea 2: Smoothness

- Precompute roots of small primes q_i ≤ B
- Randomization: $y = x \cdot r^a \mod p$
 - Lift y to integers, and check if B-smooth: $y = \prod q_i$ with $q_i \le B$
 - Deduce $\sqrt[3]{y} = \prod \sqrt[3]{q_i}$
- Similar to index calculus for discrete logarithm
 - ▶ Probability of $y \le p$ to be *B*-smooth $\approx \rho(\log_2(p)/\log_2(B))$
 - Sub-exponential complexity

Online algorithm

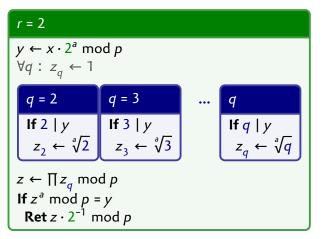
Input: $x \in \mathbb{F}_p$ loop $y \leftarrow x \cdot r^a \mod p$ if $y = \prod q_{i'}$ with $q_i \leq B$ then return $\sqrt[a]{y} \cdot r^{-1} \mod p$ [Dickman, 1930]

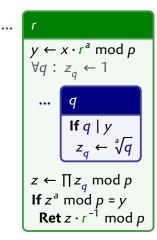
Optimizing the smoothness attack 000

Application to VDF 000 Conclusion 0

Idea 2: Smoothness

- Parallel implementation
 - Groups of π(B) processors (subexponential complexity)
 - Latency: 1 Mul + 1 TrialDiv + a few Mul





Optimizing the smoothness attack 000

Idea 2: Smoothness

- Precompute roots of small primes q_i ≤ B
- Randomization: $y = x \cdot r^a \mod p$
 - Lift y to integers, and check if B-smooth: $y = \prod q_i$ with $q_i \le B$
 - Deduce $\sqrt[3]{y} = \prod \sqrt[3]{q_i}$
- Similar to index calculus for discrete logarithm
 - ▶ Probability of $y \le p$ to be *B*-smooth $\approx \rho(\log_2(p)/\log_2(B))$
 - Sub-exponential complexity
- Parallel implementation
 - Groups of π(B) processors (subexponential complexity)
 - Latency: 1 Mul + 1 TrialDiv + a few Mul
- Concrete parameters
 - $B = 2^{35}$, $\pi(B) \approx 2^{30.5}$, Pr[smooth] $\approx 2^{-21.6}$
 - 2^{54.5} processors, speedup 42

Already known for parallel modular exponentiation! [Adleman & Kompella, STOC'88]

Coming next: improvements to this technique, and application to concrete VDF

8 / 15

[Dickman, 1930]

 $p \approx 2^{256}$

Improvements 1: Almost-smoothness

Almost-smoothness: Assume that y has small factors, and a medium factor:

$$\mathbf{y} = q' \cdot \prod q_i$$
, with $q_i \leq B, q' \leq B'$

- Remove small factors with trial division, check is remaining value is small
- Deduce $\sqrt[3]{y} = \sqrt[3]{q'} \cdot \prod \sqrt[3]{q_i}$
- Precompute and tabulate roots of medium primes $q' \leq B'$
- Parallel implementation
 - Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul
- Concrete parameters
 - ► $B = 2^{32}, B' = 2^{65} \Pr[\text{almost-smooth}] \approx 2^{-18}$
 - 2⁴⁸ processors, 2^{59.5} memory, speedup 20

Optimizing the smoothness attack •00

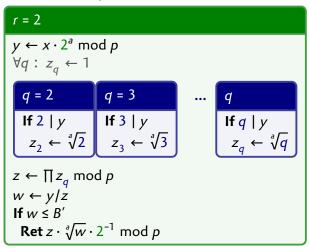
Application to VDF

Conclusion 0

Improvements 1: Almost-smoothness

Parallel implementation

Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul



 r			
$y \leftarrow x \cdot r^a \mod p$ $\forall q : z_q \leftarrow 1$			
	<i>q</i>		
	$ If q \mid y \\ z_q \leftarrow \sqrt[3]{q} $		
$z \leftarrow \prod z_q \mod p$ $w \leftarrow y/z$ If $w \le B'$ Ret $z \cdot \sqrt[3]{w} \cdot r^{-1} \mod p$			

Improvements 1: Almost-smoothness

Almost-smoothness: Assume that y has small factors, and a medium factor:

$$\mathbf{y} = q' \cdot \prod q_i$$
, with $q_i \leq B, q' \leq B'$

- Remove small factors with trial division, check is remaining value is small
- Deduce $\sqrt[3]{y} = \sqrt[3]{q'} \cdot \prod \sqrt[3]{q_i}$
- Precompute and tabulate roots of medium primes $q' \leq B'$
- Parallel implementation
 - Latency: 2 Mul + 1 TrialDiv + 1 Lookup + a few Mul
- Concrete parameters
 - $B = 2^{32}, B' = 2^{65} \Pr[\text{almost-smooth}] \approx 2^{-18}$
 - 2⁴⁸ processors, 2^{59.5} memory, speedup 20

 $p\approx 2^{256}$

Improvements 2: Prefiltering

- Observation: Randomizing step uses a single CPU per group
- Improvement: Try a set of values $r_{i'}$ keep most promising $y_i = x \cdot r_i \mod p$ in each group
 - Simple filter: keep smallest y_i
 - Advanced filter: trial division with small bound $B_0 < B$, keep y with large B_0 -smooth part
- Filtering improves the probability that y_i is (almost)-smooth
- Parallel implementation
 - Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul
- Concrete parameters
 - ► $B = 2^{32}, B' = 2^{65}, B_0 = 2^{20}, Pr[almost-smooth | filter] \approx 2^{-9.5}$
 - 2⁴⁰ processors, 2^{59.5} memory, speedup 18

Optimizing the smoothness attack 000

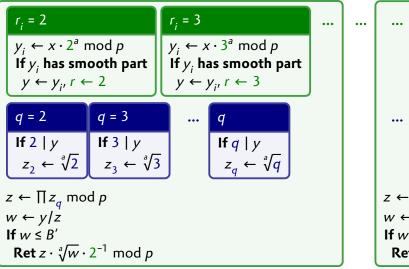
Application to VDF

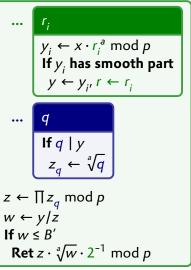
Conclusion 0

Improvements 2: Prefiltering

Parallel implementation

Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul





Cryptanalysis of Algebraic Verifiable Delay Functions

Improvements 2: Prefiltering

- Observation: Randomizing step uses a single CPU per group
- Improvement: Try a set of values $r_{i'}$ keep most promising $y_i = x \cdot r_i \mod p$ in each group
 - Simple filter: keep smallest y_i
 - Advanced filter: trial division with small bound $B_0 < B$, keep y with large B_0 -smooth part
- Filtering improves the probability that y_i is (almost)-smooth
- Parallel implementation
 - Latency: 2 Mul + 2 TrialDiv + 1 Lookup + a few Mul
- Concrete parameters

 $p \approx 2^{256}$

- ► $B = 2^{32}$, $B' = 2^{65}$, $B_0 = 2^{20}$, Pr[almost-smooth | filter] $\approx 2^{-9.5}$
- 2⁴⁰ processors, 2^{59.5} memory, speedup 18

CRYPTO 2024

Improvement 3: Parallel smoothness test

Additive randomization: y = x + rp (as integers), instead of $y = x \cdot r^a \mod p$

- Lift y to integers, and check if B-smooth: $y = \prod q_i$ with $q_i \le B$
- Deduce $\sqrt[3]{x} = \sqrt[3]{y} = \prod \sqrt[3]{q_i}$

Advantage: we can test all values *y* for smoothness simultaneously

- $q \mid x + rp \iff r \equiv -x \cdot p^{-1} \mod q$
- Precompute $p^{-1} \mod q$
- Parallel implementation

Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul

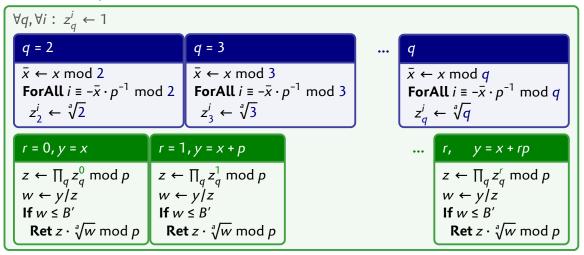
Concrete parameters

- ► $B = 2^{32}$, $B' = 2^{45}$, $B_0 = 2^{20}$, Pr[almost-smooth | filter] $\approx 2^{-24}$
- 2²⁹ processors, 2⁴⁰ memory, speedup 20

Improvement 3: Parallel smoothness test

Parallel implementation

Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul



11/15

Improvement 3: Parallel smoothness test

Additive randomization: y = x + rp (as integers), instead of $y = x \cdot r^a \mod p$

- Lift y to integers, and check if B-smooth: $y = \prod q_i$ with $q_i \le B$
- Deduce $\sqrt[3]{x} = \sqrt[3]{y} = \prod \sqrt[3]{q_i}$
- Advantage: we can test all values *y* for smoothness simultaneously
 - $q \mid x + rp \iff r \equiv -x \cdot p^{-1} \mod q$
 - Precompute $p^{-1} \mod q$
- Parallel implementation
 - Latency: 2 Mul + 1 ModRed + 1 Lookup + a few Mul
- Concrete parameters
 - ► $B = 2^{32}$, $B' = 2^{45}$, $B_0 = 2^{20}$, Pr[almost-smooth | filter] $\approx 2^{-24}$
 - 2²⁹ processors, 2⁴⁰ memory, speedup 20

 $p \approx 2^{256}$

Application to MinRoot and Veedo

- Speedup of root computation directly applicable to MinRoot and Veedo
 - Various trade-offs between latency and number of processors
 - More improvements in the paper
- Concrete parameters for MinRoot ($p \approx 2^{256}$):

Т	#CPU	М	speedup	Techniques
256	1	0	1	Fast exponentiation (reference)
8	2 ¹²⁸	2 ¹²⁸	32	Baby-step, giant-step
6	2 ^{54.5}	0	42	Smoothness
13	2 ⁴⁸	2 ^{59.5}	20	Smoothness with medium-size factor
14	2 ⁴⁰	2 ^{59.5}	18	Smoothness with medium-size factor and prefilter
21	2 ³⁶	2 ⁶⁴	12	Smoothness with special shape of <i>p</i>
54	2 ³⁴	2 ⁴⁰	4.7	Smoothness with rational reconstruction
13	2 ²⁹	2 ⁴⁰	20	Smoothness with parallel smoothness test
68	2 ²⁵	2 ⁴⁰	3.7	Smoothness with parallel rational reconstruction

Application to Sloth++

- Sloth++ uses square roots in F_p²
 - Smoothness not directly applicable in \mathbb{F}_{p^2}
- Assume \mathbb{F}_{p^2} is constructed as $\mathbb{F}_p[X]/(X^2 + \alpha)$ (elements are polynomials)

Square root $z_0 + z_1 X$ of $b_0 + b_1 X$ satisfies:

$$(z_0 + z_1 X)^2 = b_0 + b_1 X \iff \begin{cases} 2z_0 z_1 = b_1 \\ z_0^2 - \alpha z_1^2 = b_0 \end{cases}$$

$$\iff \begin{cases} z_0 = b_1/2z_1 \text{ (assuming } z_1 \neq 0) \\ \frac{a_1^2}{4z_1^2} - \alpha z_1^2 = b_0 \end{cases} \Rightarrow \text{ quadratic equation in } z_1^2 \end{cases}$$

Solve with quadratic formula, deduce z_1^2 then z_1 by computing square roots in \mathbb{F}_p .

Optimizing the smoothness attack 000

Application to VDF

Conclusion 0

Practical limitations

- In theory, this clearly breaks the security model
- In practice, communication is the bottleneck
- We need a billion CPU, with high speed communication
 - At each round, one CPU computes the root and sends result to all CPUs
 - Communication must be faster than computing root naively: 230ns (Supranational)
- Obviously not practical with current technology
- Does not seem to break laws of physics
- More work needed to evaluate practical impact

14/15

Introduction

Parallel root computation 000

Optimizing the smoothness attack 000

Application to VDI

Conclusion

Conclusion

• Computing roots in \mathbb{F}_p is not sequential

- Various trade-offs between latency and number of processors
- ▶ Breaks security claims of MinRoot: speedup 20 with 2²⁹ CPU and 2⁴⁰ memory
- Almost practical for Veedo (128-bit prime): 2¹³ CPU 2⁴⁰ memory
- Extension to \mathbb{F}_{p^2} (Sloth++)
- Strong link to discrete logarithm
 - Techniques similar to DL algorithms
 - Reduction from a class of parallel power-function algorithms to DL
- Open questions
 - Can we use more advanced discrete logarithm algorithm in this context? (ECM, NFS, ...)
 - What is the difficulty of parallel discrete logarithm?

Additional slides

Possible countermeasures

Modeling latency

Gaëtan Leurent

Possible countermeasures for VDF construction

1 Make a weaker delay claim

- 1 operation per round rather than log₂(p)
- 2 Use $x \mapsto x^a$ instead of $x \mapsto \sqrt[a]{x}$ for the S-Box
 - Warning: some ideas for parallel evaluation of low-degree powers in the paper

3 Use a larger prime

- Number of processors for our attack is sub-exponential
- 4 Use more complex groups
 - Index calculus only works in $\mathbb{F}_{p'}$ but more advanced algorithms might be applicable
- More cryptanalysis needed!

Modeling latency

- Simple model for the latency of operations
 - Concrete values strongly dependent on architecture and technology
- ► Basic operations have latency $O(\log(\log(p)))$ using optimized hardware \Rightarrow 1 unit
 - Modular addition (up to log(p) operands)
 - Modular multiplication, Multiply-and-add
 - Trial division by a constant
- ► Lookup in a small table with k entries has latency log(k) \Rightarrow 1 unit if $k \leq log_2(p)$
- Memory access has larger latency
- We ignore latency of communication
 - O(log(n)) latency for n processors with hypercube tolopology

[Valiant, 1982]

 $\Rightarrow \approx 6 \text{ units}$