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Sublinear Secure Computation - Motivation
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Sublinear Secure Computation - Motivation

L0 C() I1
q PR o
msgs
< D G

>
L | ]
|
C(wo,xl)

Can the total communication be o(|C|) + O(A) + O(|xol| + |x¢])?



Sublinear Secure Computation - Motivation
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How to achieve Sublinear M
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Homomorphic
Secret Sharing

e Correctness:

(C(x))o +({C(x)) = C(x)

* Privacy: x5 and x4 hide x.

HSS. Eval (zy,C,0)

(C (.’IJ)>0 ? Addition

C ()

HSS. Eval (z,C, 1)
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Homomorphic Secret Sharing

[DHRW15], [BGI15] LWE (Spooky P/Poly negligible exponential
Encryption)

[BGI16] DDH, DCR RMS Programs* 1/poly polynomial
[BKS19] LWE RMS Programs* negligible exponential
[BCGIKS19], [CM21] (superpoly) LPN Low-Degree negligible exponential

Polynomials**

[OSY21], [RS21] DCR RMS Programs* negligible exponential

*RMS Programs encapsulate branching programs as well as NC! (log-depth) circuits.

** Via complexity leveraging, it is possible to gain slightly superconstant (loglog-degree) polynomials assuming
superpolynomial LPN.



Sublinear MPC from HSS
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SLI bllneal’ MPC fI’Om HSS Communication

independent of |C|
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SLI bllneal’ MPC fI’Om HSS Communication

independent of |C|
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SU bllneal’ MPC fI’Om HSS Communication

independent of |C|

L0
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circuit class Enc (pk, 1)

Sublinear HSS. Share ((z0,71)) HSS. Share ((zo,z1))
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Partles

[Gen09] P/Poly O(n+m) + poly(d) Arbitrary

[BGI16] DDH Layered Circuits O(n+m) + O(s/logs) 2

[OSY21], [RS21] DCR Layered Circuits On+m) + 0(s/logs) 2

[CM21] Superpoly LPN Layered Circuits O(n+m) + 0(s/loglogs) 2

[BCM22] QR+LPN Layered Circuits 1 26 2

O(n+m+dss 3 -poly(d) +s/loglogs)

. . 1 2(1+e€)
[BCM23] EFE)NH/DCR + Layered Circuits Om+m+dss 3 -poly(l) +s/loglogs)
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Circuit Class Communication No. of
Parties

[BCM23] (DDH + LPN) / (DCR + LPN)

This Work DCR/DDH + LD-PRG*

This Work DCR/DDH + LPN + LD-PRG*

This Work DCR/DDH + superpoly LPN + LD-PRG*
This Work Superpoly (DCR/DDH + LPN) + LD-PRG*

This Work Superpoly (DCR/DDH + LPN) + LD-PRG* | Layered Circuits 0(s/ loglog log s) _

Layered Circuits O(s/loglogs) 3/5
Layered Circuits O(s/loglogs) 4
Layered Circuits O(s/loglogs) 5
Layered Circuits O(s/loglogs) 8
Layered Circuits O(s/logloglogs) 9

* Low-Depth PRG in the class XOR-AND of constant-degree polynomials, which can be instantiated based on the security of Goldreich’s PRG, one-
wayness of random local functions or from the multivariate quadratic family of assumptions.



Concurrent Work

* Dao, Ishai, Jain, Lin [DIJL23] - CRYPTO 2023
from
for layered circuits — O(s/log log s) communication

* 1/poly !

* Abram, Roy, Scholl [ARS24] - Eurocrypt 2024

for layered circuits from
* O(s/log log s) communication

e No error



Concurrent Work

* Dao, Ishai, Ryl ] - CRYPTO 2023
° N_party hOW to f|X PN

this error!

* N-party su¥ or layered circuits — O(s/log log s) communication

* 1/poly error!

* Abram, Roy, Scholl [ARS24] - Eurocrypt 2024
* N-party sublinear MPC for layered circuits from DCR

* O(s/log log s) communication

* No error



Multi-Party HSS — Nesting
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Multi-Party HSS — Nesting
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Multi-Party HSS — Nesting
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First Contribution — Nesting Imperfect HSS

* Want to do Discrete Log (from DDH)
in

* i canbe size poly(1), might need to
take poly(A) steps
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First Contribution — Nesting Imperfect HSS

« Want to do Discrete Log (from DDH) RF(h) =
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Second Contribution — 8-party HSS
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Second Contribution — 8-party HSS
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Second Contribution — 8-party HSS
~

N-party DPF N-party HSS

(for low-degree polynomials)

—
HSS from LPN
(o)e)
~

e 2-Party DPF can be constructed from OWF

Eval(k;, x)
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Second Contribution — 8-party HSS
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Second Contribution — 8-party HSS
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Second Contribution — 8-party HSS

low-degree PRG

2-Party HSS in NC° 4-Party HSS in NC!
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Third Contribution — N + 2-party MPC

e Starting point: Correlated SPIR

OO0OC

o)

C (zo,")

S

J(

1 PIR

lllllllllllllllllllllllllllllllllll

Encryption + LPN

=

@e done using Linearly Homomorphic




Third Contribution — N + 2-party MPC
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N+1 Party MPC

e Consider the function
C,() — C(, X0, X1, ,XN)

 Parties use HSS to evaluate
shares of truth table of C’

* Perform SPIR with each party

e Total communication:

O(Ns/loglogs)




N+2 Parties m

* CorrSPIR = (Query, Answer, Decode)

* Superpolynomial g
Assumptions g g L0

e Even smaller
database size

e Total Communication:

O(Ns/logloglogs)




Wrapping up: putting the schemes together

8-Party HSS DDH/DCR + (superpoly) LPN + Low-
(for low-degree polynomials) Degree PRG

(superpoly) DDH/DCR + LPN }

10-Party Sublinear MPC

with communication:

O(s/logloglogs)



Thank You!
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