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Designing Crypto Primitives

Provable security Heuristic constructions
- Security from hardness of DDH, - Security from resisting the best
SXDH, LPN, LWE, etc. known attacks - AES, SHA etc.

Can we have fast, simple to describe, crypto

primitives that are MPC/ZK friendly?

~ Efficient evaluation in MPC/ZK - Expensive to evaluate in MPC/ZK
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The Alternating-Moduli Paradigm |BIP+18]

Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

tldr; Alternating linear functions over different fields

Great for MPC / ZK !

# “alterations” — # rounds. As low as 1!

Why do they resist cryptanalysis?
High algebraic degree when represented in a single field
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What do they look like?
o K~ 384 X 384

IBIP+18]: weak PRF
I I
e Can be circulant for faster evaluation

y = n
e Cryptanalysis + fixes in [CCKK21]. More variants in [BIP+18, DGl+21].
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What do they look like?

IDGH+21]: OWF

e A~ 450 X% 128 l

e« B~ 81 X450
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MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

S &
S o &
S &

Com(Views(Py, P,, ..., P,)) P
Q Reveal(l, 3, 5)

o

Prover Verifier

\ Views(Py, P, Ps), 1,
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OWF — Signature

Can build a signature scheme given a OWF and a NIZK:
IT = {sk | pk = f(sk) A m}

e [DGH+21] introduce a OWF in the alternating-modulus paradigm

e Sighatures ~ 10 KB using [KKW18] (0)

e Signature with AES + custom proof system, signatures ~ 5 KB [BBD+23]

Can we do better with a custom proof for the AM-OWF?
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MPCitH for AM-OWF
H={x|y=B-(A- x)]

e Linear operations are “free”

 Observation: Only non-linear operation: I, — [

1. Given correlations (| r],, [7];), and [m],. Reveal z = m +, r

2. [mly=z+ (1 —-22) 0O [rls
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MPCitH for AM-OWF [DHG+21]

N={x|y=B-(A- x)}

. X(i) . Could be malformed
@ ([r'"],, [r'V]5)
Check ([r(i)]z, [r(i)]3) !)

via Cut-and-Choose |
®

Send transcript of
Prover @

“online phase”
Can we avoid Cut-and-Choose?

Verifier
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H={x]ly=B-(A- x}

() ([, [r13)

Permute ([r(i)]z, [r(i)]3)

®
Send transcript of

“online phase”
Prover @

Verifier

Soundness via a careful analysis.
Similar techniques in [CCJ23]




SPHINCS+
CCJ23
AGH+23
BBdSG+22
KZ22
ARZV23
KHS23
Our Work

Comparison

Fast (KB)

Short (KB) Assumption
~ SHA256

Many more works! Dropped due to lack of space &)
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Why do we want a new wPRF?

| Fv Secret Key Matrix
BIP+18]: y =B 3(K X)

Requires O(A%) multiplications in MPC

Can reduce communication by using circulant matrices

But work is still w(4) &
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New WPRF

BIP+18]: Y= B - (K . X)

/> Input
Ours: (A (k @ X))

K; ‘) k> Secret Key Vector

Linear time



New WPRF

e A~ 512 X256
e B~ 81 X512
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OPRF

PRF(k,x) =y .
&x &k 0
'

Y
Learns nothing about k Learns nothing about x
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Implementing £ © x:
- Observation: k is the same across all evaluations
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Distributed wPRF evaluation

(A (KO, X))

L» Non-Linear ‘)

_2 —> [_3:

Two approaches to implement |

o OT - Less communication but “consumes” OTs

- @Garbling - More communication but no correlations needed



DDH [Mea86]

[DHG+21]

Our Work (OT)

Our Work (Garble)

Our Work
(Shared output)

Evaluation

Rounds

Comm. (bits)

* excludes preprocessing rounds
T denotes estimates
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Wish List £

1. More cryptanalysis!

* Better ways to analyze functions over alternating fields?

* Post-Quantum cryptanalysis

2. New primitives?

 We have OWFs and (w)PRFs. Can we have CRH? ... or maybe even a Random Oracle?

3. Better protocols!

* Only scratched the surface in terms of optimizing protocols

* Also need better implementations!



Thank you!



