Improved Alternating-Moduli PRFs
and Post-Quantum Signatures

Navid Alamati, Guru Vamsi Policharla, Srinivasan Raghuraman, and Peter Rindal

Designing Crypto Primitives

Provable security Heuristic constructions

Designing Crypto Primitives
Provable security Heuristic constructions

- Security from hardness of DDH, o Security from resisting the best
SXDH, LPN, LWE, etc. known attacks - AES, SHA etc.

Designing Crypto Primitives

Provable security Heuristic constructions
- Security from hardness of DDH, o Security from resisting the best
SXDH, LPN, LWE, etc. known attacks - AES, SHA etc.

~ Generally slower - Designed to be fast

Designing Crypto Primitives

Provable security Heuristic constructions
- Security from hardness of DDH, - Security from resisting the best
SXDH, LPN, LWE, etc. known attacks - AES, SHA etc.
- Generally slower - Designed to be fast

© Simple to describe - Complicated, deep circuits

Designing Crypto Primitives

Provable security Heuristic constructions
Security from hardness of DDH, - Security from resisting the best
SXDH, LPN, LWE, etc. known attacks - AES, SHA etc.
Generally slower - Designed to be fast
Simple to describe - Complicated, deep circuits

Efficient evaluation in MPC/ZK - Expensive to evaluate in MPC/ZK

Designing Crypto Primitives

Provable security Heuristic constructions
- Security from hardness of DDH, - Security from resisting the best
SXDH, LPN, LWE, etc. known attacks - AES, SHA etc.

Can we have fast, simple to describe, crypto

primitives that are MPC/ZK friendly?

~ Efficient evaluation in MPC/ZK - Expensive to evaluate in MPC/ZK

The Alternating-Moduli
Paradigm

The Alternating-Moduli Paradigm |BIP+18]

The Alternating-Moduli Paradigm |BIP+18]

Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

The Alternating-Moduli Paradigm |BIP+18]

Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

tldr; Alternating linear functions over different fields

The Alternating-Moduli Paradigm |BIP+18]

Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

tldr; Alternating linear functions over different fields
Great for MPC / ZK'!

The Alternating-Moduli Paradigm |BIP+18]

Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

tldr; Alternating linear functions over different fields

Great for MPC / ZK !

“alterations” — # rounds. As low as 1!

The Alternating-Moduli Paradigm |BIP+18]

Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

tldr; Alternating linear functions over different fields

Great for MPC / ZK !

“alterations” — # rounds. As low as 1!

Why do they resist cryptanalysis?

The Alternating-Moduli Paradigm |BIP+18]

Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

tldr; Alternating linear functions over different fields

Great for MPC / ZK !

“alterations” — # rounds. As low as 1!

Why do they resist cryptanalysis?
High algebraic degree when represented in a single field

What do th / look Ike?

What do they look like?

IBIP+18]: weak PRF

What do they look like?

IBIP+18]: weak PRF

y=B- (K- x)

What do they look like?

IBIP+18]: weak PRF

Input

y=B- (K- x)

What do they look like?

IBIP+18]: weak PRF

What do they look like?

IBIP+18]: weak PRF

g

What do they look like?
o K~ 384 X 384

IBIP+18]: weak PRF
I I
e Can be circulant for faster evaluation

y = n
e Cryptanalysis + fixes in [CCKK21]. More variants in [BIP+18, DGl+21].

What do they look like?

IDGH+21]: OWF

Input

y=> -3§(A . X)

What do they look like?

IDGH+21]: OWF

e A~ 450 X% 128 l

e« B~ 81 X450

Efficient P SIC atres

MPC-in-the-Head [IKOS07]

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

S &
S o &
S &

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

S &
S o &
S &

3 O

Prover Verifier

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

S &
S o &
S &

3 O

Prover Verifier

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

S &
S o &
S &

! Com(Views(Py, P,, ..., P,)) P

\

o

Prover Verifier

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

S &
S o &
S &

Com(Views(Py, P,, ..., P,)) P
Q Reveal(l, 3, 5)

\

o

Prover Verifier

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

S &
S o &
S &

Com(Views(Py, P,, ..., P,)) P
Q Reveal(l, 3, 5)

o

Prover Verifier

\ Views(Py, P, Ps), 1,

OWF — Signature

Can build a signature scheme given a OWF and a NIZK:

IT = {sk | pk = f(sk) A m}

OWF — Signature

Can build a signature scheme given a OWF and a NIZK:
IT = {sk | pk = f(sk) A m}

e [DGH+21] introduce a OWF in the alternating-modulus paradigm

OWF — Signature

Can build a signature scheme given a OWF and a NIZK:
IT = {sk | pk = f(sk) A m}
e [DGH+21] introduce a OWF in the alternating-modulus paradigm

e Signatures ~ 10 KB using [KKW18] (off the shelf MPCitH)

OWF — Signature

Can build a signature scheme given a OWF and a NIZK:
IT = {sk | pk = f(sk) A m}
e [DGH+21] introduce a OWF in the alternating-modulus paradigm

e Signatures ~ 10 KB using [KKW18] (off the shelf MPCitH)

e Signature with AES + custom proof system, signatures ~ 5 KB [BBD+23]

OWF — Signature

Can build a signature scheme given a OWF and a NIZK:
IT = {sk | pk = f(sk) A m}

e [DGH+21] introduce a OWF in the alternating-modulus paradigm

e Sighatures ~ 10 KB using [KKW18] (0)

e Signature with AES + custom proof system, signatures ~ 5 KB [BBD+23]

OWF — Signature

Can build a signature scheme given a OWF and a NIZK:
IT = {sk | pk = f(sk) A m}

e [DGH+21] introduce a OWF in the alternating-modulus paradigm

e Sighatures ~ 10 KB using [KKW18] (0)

e Signature with AES + custom proof system, signatures ~ 5 KB [BBD+23]

Can we do better with a custom proof for the AM-OWF?

MPCitH for AM-OWF
H={x|y=B-(A- x)]

MPCitH for AM-OWF
N={x|y=B:(A- x)}

e Linear operations are “free”

MPCitH for AM-OWF
H={x|y=B-(A- x)]

e Linear operations are “free”

 Observation: Only non-linear operation: I, — [

MPCitH for AM-OWF
H={x|y=B-(A- x)]

e Linear operations are “free”

 Observation: Only non-linear operation: I, — [

1. Given correlations (| r],, [7];), and [m],. Reveal z = m +, r

MPCitH for AM-OWF
H={x|y=B-(A- x)]

e Linear operations are “free”

 Observation: Only non-linear operation: I, — [

1. Given correlations (| r],, [7];), and [m],. Reveal z = m +, r

2. [mly=z+ (1 —-22) 0O [rls

MPCitH for AM-OWF [DHG+21]

N={x|y=B-(A- X}

ﬂ
@

Prover Verifier

MPCitH for AM-OWF [DHG+21]

N={x|y=B-(A- X}
@ _ . r01)

ﬂ)
@

Prover Verifier

MPCitH for AM-OWF [DHG+21]

[I={x]y ()B - X))}
@ mc uld be malformed

@

Prover Verifier

MPCitH for AM-OWF |DHG+21 |

M={x|y=B-(A- 0}

. X(i) . Could be malformed
@ ([r'"],, [r'V]5)
Check ([r(i)]z, [r(i)]g) !)

@ via Cut-and-Choose 0

Prover Verifier

MPCitH fOr AM-OWF IDHG+21]

={x|y=B- (A-)}
X(l) Could be malformed
@ L0 O
Check ([r(l)]z, [V(l)]g) !:

@ via Cut-and-Choose |
Send transcript of

“online phase”
Prover @

Verifier

MPCitH fOr AM-OWF IDHG+21]

={x|y=B- (A-)}
X(l) Could be malformed

@ L0 O

Check ([r(’)]z, [r(l)]3) !)
@ via Cut-and-Choose |

Send transcript of “

“online phase”

Prover @ >

Total size: 10-13 KB

Verifier

MPCitH fOr AM-OWF IDHG+21]

={x|y=B- (A-)}
X(l) Could be malformed
@ L0 O
Check ([r(l)] |7 (l)]g) !:

via Cut-and-Choose |
® oomssrm -); “

Send transcript of
Prover @

“online phase”

Total size: 10-13 KB

Verifier

MPCitH for AM-OWF [DHG+21]

N={x|y=B-(A- x)}

. X(i) . Could be malformed
@ ([r'"],, [r'V]5)
Check ([r(i)]z, [r(i)]3) !)

via Cut-and-Choose |
®

Send transcript of
Prover @

“online phase”
Can we avoid Cut-and-Choose?

Verifier

MPCitH for AM-OWF [This Work]

N={x|y=B-(A- X}
@ _ . r01)

Permute ([r(i)]z, [r(i)]g) ’
Send transcript of 0

“online phase”

@

Verifier

Prover @

MPCitH for AM-OWF [This Work]
H={x]ly=B-(A- x}

() ([, [r13)

Permute ([#'"],, [r (i)]g) | !
Send transcript of “

“online phase”

Verifier

Soundness via a careful analysis.
Similar techniques in [CCJ23]

Prover @

MPCitH for AM-OWF [This Work]
H={x]ly=B-(A- x}

() ([, [r13)

Permute ([r(i)]z, [r(i)]3)

®
Send transcript of

“online phase”
Prover @

Verifier

Soundness via a careful analysis.
Similar techniques in [CCJ23]

SPHINCS+
CCJ23
AGH+23
BBdSG+22
KZ22
ARZV23
KHS23
Our Work

Comparison

Fast (KB)

Short (KB) Assumption
~ SHA256

Many more works! Dropped due to lack of space &)

Why do we want a new wPRF?

| Fv Secret Key Matrix
BIP+18]: y =B 3(K X)

Requires O(A%) multiplications in MPC

Why do we want a new wPRF?

| Fv Secret Key Matrix
BIP+18]: y =B 3(K X)

Requires O(A%) multiplications in MPC

Can reduce communication by using circulant matrices

Why do we want a new wPRF?

| Fv Secret Key Matrix
BIP+18]: y =B 3(K X)

Requires O(A%) multiplications in MPC

Can reduce communication by using circulant matrices

But work is still w(4) &

New WPRF

BIP+18]: y =B - (K - X)

/> Input
Ours: (A (kO, x))

k» Secret Key Vector

New WPRF

BIP+18]: Y= B - (K . X)

/> Input
Ours: (A (k @ X))

K; ‘) k> Secret Key Vector

Linear time

New WPRF

e A~ 512 X256
e B~ 81 X512

OPRF

OPRF

PRF(k,x) — vy

OPRF

PRF(k,x) — v
&x

OPRF

PRF(k,x) — y

OPRF

PRF(k,x) — v
ii’i x T———— k 8

OPRF

PRF(k,x) — y

OPRF

PRF(k,x) =y .
&x &k 0
'

Y
Learns nothing about k Learns nothing about x

Distributed wPRF evaluation

y=B-(A- (kO,x)

Distributed wPRF evaluation

(A (KO, X))

C» Non-Linear ‘)

Distributed wPRF evaluation

(A (KO, X))

C» Non-Linear ‘)

Implementing £ © x:

Distributed wPRF evaluation

(A (KO, X))

C» Non-Linear ‘)

Implementing £ © x:

-~ Observation: & is the same across all evaluations

Distributed wPRF evaluation

(A (KO, X))

C» Non-Linear ‘)

Implementing £ © x:
- Observation: k is the same across all evaluations

—> (Can reuse OT correlations across evaluations!

Distributed wPRF evaluation

(A (KO, X))

C» Non-Linear ‘)

Two approaches to implement [, — [:

Distributed wPRF evaluation

(A (KO, X))

L» Non-Linear ‘)

_2 —> [_3:

Two approaches to implement |

o OT - Less communication but “consumes” OTs

Distributed wPRF evaluation

(A (KO, X))

L» Non-Linear ‘)

_2 —> [_3:

Two approaches to implement |

o OT - Less communication but “consumes” OTs

- @Garbling - More communication but no correlations needed

DDH [Mea86]

[DHG+21]

Our Work (OT)

Our Work (Garble)

Our Work
(Shared output)

Evaluation

Rounds

Comm. (bits)

* excludes preprocessing rounds
T denotes estimates

Wish List &

Wish List ¢

1. More cryptanalysis!

* Better ways to analyze functions over alternating fields?

* Post-Quantum cryptanalysis

Wish List

1. More cryptanalysis!

* Better ways to analyze functions over alternating fields?

* Post-Quantum cryptanalysis

2. New primitives?

 We have OWFs and (w)PRFs. Can we have CRH? ... or maybe even a Random Oracle?

Wish List £

1. More cryptanalysis!

* Better ways to analyze functions over alternating fields?

* Post-Quantum cryptanalysis

2. New primitives?

 We have OWFs and (w)PRFs. Can we have CRH? ... or maybe even a Random Oracle?

3. Better protocols!

* Only scratched the surface in terms of optimizing protocols

* Also need better implementations!

Thank you!

