
Improved Alternating-Moduli PRFs
and Post-Quantum Signatures

Navid Alamati, Guru Vamsi Policharla, Srinivasan Raghuraman, and Peter Rindal

Designing Crypto Primitives
Provable security Heuristic constructions

Designing Crypto Primitives
Provable security

Security from hardness of DDH,
SXDH, LPN, LWE, etc.

Heuristic constructions

Security from resisting the best
known attacks - AES, SHA etc.

Designing Crypto Primitives
Provable security

Security from hardness of DDH,
SXDH, LPN, LWE, etc.

Generally slower

Heuristic constructions

Security from resisting the best
known attacks - AES, SHA etc.

Designed to be fast

Designing Crypto Primitives
Provable security

Security from hardness of DDH,
SXDH, LPN, LWE, etc.

Generally slower

Simple to describe

Heuristic constructions

Security from resisting the best
known attacks - AES, SHA etc.

Designed to be fast

Complicated, deep circuits

Designing Crypto Primitives
Provable security

Security from hardness of DDH,
SXDH, LPN, LWE, etc.

Generally slower

Simple to describe

Efficient evaluation in MPC/ZK

Heuristic constructions

Security from resisting the best
known attacks - AES, SHA etc.

Designed to be fast

Complicated, deep circuits

Expensive to evaluate in MPC/ZK

Designing Crypto Primitives
Provable security

Security from hardness of DDH,
SXDH, LPN, LWE, etc.

Generally slower

Simple to describe

Efficient evaluation in MPC/ZK

Heuristic constructions

Security from resisting the best
known attacks - AES, SHA etc.

Designed to be fast

Complicated, deep circuits

Expensive to evaluate in MPC/ZK

Can we have fast, simple to describe, crypto
primitives that are MPC/ZK friendly?

The Alternating-Moduli
Paradigm

The Alternating-Moduli Paradigm [BIP+18]

The Alternating-Moduli Paradigm [BIP+18]
Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

The Alternating-Moduli Paradigm [BIP+18]
Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

tldr; Alternating linear functions over different fields

The Alternating-Moduli Paradigm [BIP+18]
Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

tldr; Alternating linear functions over different fields

Great for MPC / ZK !

The Alternating-Moduli Paradigm [BIP+18]
Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

tldr; Alternating linear functions over different fields

Great for MPC / ZK !

“alterations” # rounds. As low as 1!⟹

The Alternating-Moduli Paradigm [BIP+18]
Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

Why do they resist cryptanalysis?

tldr; Alternating linear functions over different fields

Great for MPC / ZK !

“alterations” # rounds. As low as 1!⟹

The Alternating-Moduli Paradigm [BIP+18]
Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

Why do they resist cryptanalysis?

High algebraic degree when represented in a single field

tldr; Alternating linear functions over different fields

Great for MPC / ZK !

“alterations” # rounds. As low as 1!⟹

What do they look like?

What do they look like?
[BIP+18]: weak PRF

What do they look like?
[BIP+18]: weak PRF

y = B ⋅
3
(K ⋅

2
x)

What do they look like?
[BIP+18]: weak PRF

y = B ⋅
3
(K ⋅

2
x)

Input

What do they look like?
[BIP+18]: weak PRF

y = B ⋅
3
(K ⋅

2
x)

Secret Key

Input

What do they look like?
[BIP+18]: weak PRF

y = B ⋅
3
(K ⋅

2
x)

Secret Key

Input

Map 𝔽2 → 𝔽3

What do they look like?
[BIP+18]: weak PRF

•

• Can be circulant for faster evaluation

• Cryptanalysis + fixes in [CCKK21]. More variants in [BIP+18, DGI+21].

K ∼ 384 × 384

K

𝔽2

x

𝔽2

B
𝔽3

y =

What do they look like?
[DGH+21]: OWF

y = B ⋅
3
(A ⋅

2
x)

Input

What do they look like?
[DGH+21]: OWF

•

•
A ∼ 450 × 128
B ∼ 81 × 450

A

𝔽2

x

𝔽2

B
𝔽3

y =

Efficient PQ Signatures

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier

Com(Views(P1, P2, …, Pn))

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier

Com(Views(P1, P2, …, Pn))

Reveal(1, 3, 5)

MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier

Com(Views(P1, P2, …, Pn))

Reveal(1, 3, 5)

Views(P1, P3, P5), Π𝗈𝗉𝖾𝗇

OWF Signature→
Can build a signature scheme given a OWF and a NIZK:

Π = {𝗌𝗄 ∣ 𝗉𝗄 = f(𝗌𝗄) ∧ m}

OWF Signature→
Can build a signature scheme given a OWF and a NIZK:

Π = {𝗌𝗄 ∣ 𝗉𝗄 = f(𝗌𝗄) ∧ m}

• [DGH+21] introduce a OWF in the alternating-modulus paradigm

OWF Signature→
Can build a signature scheme given a OWF and a NIZK:

Π = {𝗌𝗄 ∣ 𝗉𝗄 = f(𝗌𝗄) ∧ m}

• [DGH+21] introduce a OWF in the alternating-modulus paradigm

• Signatures 10 KB using [KKW18] (off the shelf MPCitH)≈

OWF Signature→
Can build a signature scheme given a OWF and a NIZK:

Π = {𝗌𝗄 ∣ 𝗉𝗄 = f(𝗌𝗄) ∧ m}

• [DGH+21] introduce a OWF in the alternating-modulus paradigm

• Signatures 10 KB using [KKW18] (off the shelf MPCitH)≈

• Signature with AES + custom proof system, signatures 5 KB [BBD+23]≈

OWF Signature→
Can build a signature scheme given a OWF and a NIZK:

Π = {𝗌𝗄 ∣ 𝗉𝗄 = f(𝗌𝗄) ∧ m}

• [DGH+21] introduce a OWF in the alternating-modulus paradigm

• Signatures 10 KB using [KKW18] (off the shelf MPCitH)≈

• Signature with AES + custom proof system, signatures 5 KB [BBD+23]≈

Unsatisfactory ☹

OWF Signature→
Can build a signature scheme given a OWF and a NIZK:

Π = {𝗌𝗄 ∣ 𝗉𝗄 = f(𝗌𝗄) ∧ m}

• [DGH+21] introduce a OWF in the alternating-modulus paradigm

• Signatures 10 KB using [KKW18] (off the shelf MPCitH)≈

• Signature with AES + custom proof system, signatures 5 KB [BBD+23]≈

Unsatisfactory ☹

Can we do better with a custom proof for the AM-OWF? 🤔

MPCitH for AM-OWF

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

MPCitH for AM-OWF

• Linear operations are “free”

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

MPCitH for AM-OWF

• Linear operations are “free”

• Observation: Only non-linear operation: 𝔽2 → 𝔽3

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

MPCitH for AM-OWF

• Linear operations are “free”

• Observation: Only non-linear operation: 𝔽2 → 𝔽3

1. Given correlations , and . Reveal ([r]2, [r]3) [m]2 z = m +2 r

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

MPCitH for AM-OWF

• Linear operations are “free”

• Observation: Only non-linear operation: 𝔽2 → 𝔽3

1. Given correlations , and . Reveal ([r]2, [r]3) [m]2 z = m +2 r

2. [m]3 = z + (1 − 2z) ⊙ [r]3

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Prover Verifier

MPCitH for AM-OWF [DHG+21]
Π = {x ∣ y = B ⋅

3
(A ⋅

2
x)}

Prover Verifier

MPCitH for AM-OWF [DHG+21]
 [x(i)]

([r(i)]2, [r(i)]3)1

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Prover Verifier

MPCitH for AM-OWF [DHG+21]
 [x(i)]

([r(i)]2, [r(i)]3)1
Could be malformed

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Prover Verifier

MPCitH for AM-OWF [DHG+21]
 [x(i)]

([r(i)]2, [r(i)]3)1

Check  
via Cut-and-Choose

([r(i)]2, [r(i)]3)

2

Could be malformed

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Prover Verifier

MPCitH for AM-OWF [DHG+21]
 [x(i)]

([r(i)]2, [r(i)]3)1

Check  
via Cut-and-Choose

([r(i)]2, [r(i)]3)

2

Send transcript of 
“online phase”

3

Could be malformed

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Prover Verifier

MPCitH for AM-OWF [DHG+21]
 [x(i)]

([r(i)]2, [r(i)]3)1

Check  
via Cut-and-Choose

([r(i)]2, [r(i)]3)

2

Send transcript of 
“online phase”

3

Could be malformed

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Total size: 10-13 KB

Prover Verifier

MPCitH for AM-OWF [DHG+21]
 [x(i)]

([r(i)]2, [r(i)]3)1

Check  
via Cut-and-Choose

([r(i)]2, [r(i)]3)

2

Send transcript of 
“online phase”

3

Could be malformed

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Total size: 10-13 KB

Costs 5-7 KB! 😞

Prover Verifier

MPCitH for AM-OWF [DHG+21]
 [x(i)]

([r(i)]2, [r(i)]3)1

Check  
via Cut-and-Choose

([r(i)]2, [r(i)]3)

2

Send transcript of 
“online phase”

3

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Costs 5-7 KB! 😞

Can we avoid Cut-and-Choose?

Could be malformed

Prover Verifier

MPCitH for AM-OWF [This Work]
 [x(i)]

([r(i)]2, [r(i)]3)1

Permute ([r(i)]2, [r(i)]3)
2

Send transcript of 
“online phase”

3

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Prover Verifier

MPCitH for AM-OWF [This Work]
 [x(i)]

([r(i)]2, [r(i)]3)1

Permute ([r(i)]2, [r(i)]3)
2

Send transcript of 
“online phase”

3

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Soundness via a careful analysis.
Similar techniques in [CCJ23]

Prover Verifier

MPCitH for AM-OWF [This Work]
 [x(i)]

([r(i)]2, [r(i)]3)1

Permute ([r(i)]2, [r(i)]3)
2

Send transcript of 
“online phase”

3

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Free! 😃

Soundness via a careful analysis.
Similar techniques in [CCJ23]

Comparison
Fast (KB) Short (KB) Assumption

SPHINCS+ 16.7 7.7 SHA256
CCJ23 11.3 7.8 f-almost RSD

AGH+23 9.7 4.5 SD over GF(256)
BBdSG+22 5.6 4.5 EM-AES

KZ22 5.8 4.4 Rain
ARZV23 7.7 4.4 MinRank
KHS23 5.8 3.8 AIM

Our Work 5.5 4.0 AM-OWF

Many more works! Dropped due to lack of space ☹

New wPRF

Why do we want a new wPRF?

y = B ⋅
3
(K ⋅

2
x)

Secret Key Matrix

[BIP+18]:

Requires multiplications in MPCO(λ2)

Why do we want a new wPRF?

y = B ⋅
3
(K ⋅

2
x)

Secret Key Matrix

[BIP+18]:

Requires multiplications in MPCO(λ2)

Can reduce communication by using circulant matrices

Why do we want a new wPRF?

y = B ⋅
3
(K ⋅

2
x)

Secret Key Matrix

[BIP+18]:

Requires multiplications in MPCO(λ2)

Can reduce communication by using circulant matrices

But work is still ☹ω(λ)

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Secret Key Vector

Input

New wPRF

y = B ⋅
3
(K ⋅

2
x)

Secret Key Matrix

Input

[BIP+18]:

Ours:

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Secret Key Vector

Input

New wPRF

y = B ⋅
3
(K ⋅

2
x)

Secret Key Matrix

Input

[BIP+18]:

Ours:

Linear time

New wPRF

A

𝔽2

x

𝔽2

B
𝔽3

y = k

𝔽2

⊙

•

•
A ∼ 512 × 256
B ∼ 81 × 512

OPRF Protocol

OPRF

OPRF

𝖯𝖱𝖥(k, x) → y

OPRF

𝖯𝖱𝖥(k, x) → y

x

OPRF

𝖯𝖱𝖥(k, x) → y

x k

OPRF

𝖯𝖱𝖥(k, x) → y

x k

OPRF

𝖯𝖱𝖥(k, x) → y

x k

y

OPRF

𝖯𝖱𝖥(k, x) → y

x k

y
Learns nothing about k Learns nothing about x

Distributed wPRF evaluation

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Distributed wPRF evaluation

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Non-Linear

Distributed wPRF evaluation

Implementing :k ⊙ x

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Non-Linear

Distributed wPRF evaluation

Implementing :k ⊙ x

Observation: is the same across all evaluationsk

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Non-Linear

Distributed wPRF evaluation

Implementing :k ⊙ x

Observation: is the same across all evaluationsk

 Can reuse OT correlations across evaluations!⟹

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Non-Linear

Distributed wPRF evaluation

Two approaches to implement :𝔽2 → 𝔽3

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Non-Linear

Distributed wPRF evaluation

Two approaches to implement :𝔽2 → 𝔽3

OT - Less communication but “consumes” OTs

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Non-Linear

Distributed wPRF evaluation

Two approaches to implement :𝔽2 → 𝔽3

OT - Less communication but “consumes” OTs

Garbling - More communication but no correlations needed

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Non-Linear

Evaluation
Rounds Comm. (bits) Time (μs)

DDH [Mea86] 2 512 121

[DHG+21] 2* 65 + 1252 25.4† + 6.1

Our Work (OT) 2* 38 + 916 7.0 + 0.4

Our Work (Garble) 2* 215 0.0 + 4.0†

Our Work
(Shared output) 1* 215 0.0 + 4.0†

* excludes preprocessing rounds
† denotes estimates

Wish List 🧞

Wish List 🧞
1. More cryptanalysis!

• Better ways to analyze functions over alternating fields?

• Post-Quantum cryptanalysis

Wish List 🧞
1. More cryptanalysis!

• Better ways to analyze functions over alternating fields?

• Post-Quantum cryptanalysis

2. New primitives?
• We have OWFs and (w)PRFs. Can we have CRH? … or maybe even a Random Oracle?

Wish List 🧞
1. More cryptanalysis!

• Better ways to analyze functions over alternating fields?

• Post-Quantum cryptanalysis

2. New primitives?
• We have OWFs and (w)PRFs. Can we have CRH? … or maybe even a Random Oracle?

3. Better protocols!
• Only scratched the surface in terms of optimizing protocols

• Also need better implementations!

Thank you!

