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Designing Crypto Primitives
Provable security 

Security from hardness of DDH, 
SXDH, LPN, LWE, etc.


Generally slower


Simple to describe


Efficient evaluation in MPC/ZK

Heuristic constructions 

Security from resisting the best 
known attacks - AES, SHA etc.


Designed to be fast


Complicated, deep circuits


Expensive to evaluate in MPC/ZK

Can we have fast, simple to describe, crypto 
primitives that are MPC/ZK friendly?
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The Alternating-Moduli Paradigm [BIP+18]
Goal: Simple, shallow MPC friendly crypto primitives — OWFs, PRFs

Why do they resist cryptanalysis?

High algebraic degree when represented in a single field

tldr; Alternating linear functions over different fields

Great for MPC / ZK !

# “alterations”  # rounds. As low as 1!⟹
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What do they look like?
[BIP+18]: weak PRF 

• 

• Can be circulant for faster evaluation

• Cryptanalysis + fixes in [CCKK21]. More variants in [BIP+18, DGI+21].
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What do they look like?
[DGH+21]: OWF 

• 


•
A ∼ 450 × 128
B ∼ 81 × 450

A

𝔽2

x

𝔽2

B
𝔽3

y =



Efficient PQ Signatures



MPC-in-the-Head [IKOS07]



MPCitH: Convert an MPC protocol into a zero-knowledge proof

MPC-in-the-Head [IKOS07]



MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]



MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier



MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier



MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier

Com(Views(P1, P2, …, Pn))



MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier

Com(Views(P1, P2, …, Pn))

Reveal(1, 3, 5)



MPCitH: Convert an MPC protocol into a zero-knowledge proof

Each party has a “view” containing inputs/randomness/messages

f(w)

MPC-in-the-Head [IKOS07]

Prover Verifier

Com(Views(P1, P2, …, Pn))

Reveal(1, 3, 5)

Views(P1, P3, P5), Π𝗈𝗉𝖾𝗇
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OWF  Signature→
Can build a signature scheme given a OWF and a NIZK:

Π = {𝗌𝗄 ∣ 𝗉𝗄 = f(𝗌𝗄) ∧ m}

• [DGH+21] introduce a OWF in the alternating-modulus paradigm

• Signatures  10 KB using [KKW18] (off the shelf MPCitH)≈

• Signature with AES + custom proof system, signatures  5 KB [BBD+23]≈

Unsatisfactory ☹

Can we do better with a custom proof for the AM-OWF? 🤔
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• Linear operations are “free”

• Observation: Only non-linear operation: 𝔽2 → 𝔽3

1. Given correlations , and . Reveal ([r]2, [r]3) [m]2 z = m +2 r

2. [m]3 = z + (1 − 2z) ⊙ [r]3

Π = {x ∣ y = B ⋅
3
(A ⋅

2
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[x(i)]

([r(i)]2, [r(i)]3)1

Check  
via Cut-and-Choose

([r(i)]2, [r(i)]3)

2

Send transcript of 
“online phase”

3

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Costs 5-7 KB! 😞

Can we avoid Cut-and-Choose?

Could be malformed
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MPCitH for AM-OWF [This Work]
 [x(i)]

([r(i)]2, [r(i)]3)1

Permute ([r(i)]2, [r(i)]3)
2

Send transcript of 
“online phase”

3

Π = {x ∣ y = B ⋅
3
(A ⋅

2
x)}

Free! 😃

Soundness via a careful analysis. 
Similar techniques in [CCJ23]



Comparison
Fast (KB) Short (KB) Assumption

SPHINCS+ 16.7 7.7 SHA256
CCJ23 11.3 7.8 f-almost RSD

AGH+23 9.7 4.5 SD over GF(256)
BBdSG+22 5.6 4.5 EM-AES

KZ22 5.8 4.4 Rain
ARZV23 7.7 4.4 MinRank
KHS23 5.8 3.8 AIM

Our Work 5.5 4.0 AM-OWF

Many more works! Dropped due to lack of space ☹
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[BIP+18]:

Requires  multiplications in MPCO(λ2)

Can reduce communication by using circulant matrices 

But work is still  ☹ω(λ)
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New wPRF
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• 


•
A ∼ 512 × 256
B ∼ 81 × 512
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OPRF

𝖯𝖱𝖥(k, x) → y

x k

y
Learns nothing about k Learns nothing about x
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Distributed wPRF evaluation

Implementing :k ⊙ x

Observation:  is the same across all evaluationsk

 Can reuse OT correlations across evaluations!⟹
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Distributed wPRF evaluation

Two approaches to implement :𝔽2 → 𝔽3

OT - Less communication but “consumes” OTs

Garbling - More communication but no correlations needed

y = B ⋅
3
(A ⋅

2
(k ⊙

2
x))

Non-Linear



Evaluation
Rounds Comm. (bits) Time (μs)

DDH [Mea86] 2 512 121

[DHG+21] 2* 65 + 1252 25.4† + 6.1

Our Work (OT) 2* 38 + 916 7.0 + 0.4

Our Work (Garble) 2* 215 0.0 + 4.0†

Our Work  
(Shared output) 1* 215 0.0 + 4.0†

* excludes preprocessing rounds  
† denotes estimates 
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Wish List 🧞
1. More cryptanalysis! 

• Better ways to analyze functions over alternating fields?


• Post-Quantum cryptanalysis

2. New primitives? 
• We have OWFs and (w)PRFs. Can we have CRH? … or maybe even a Random Oracle?

3. Better protocols! 
• Only scratched the surface in terms of optimizing protocols


• Also need better implementations!



Thank you!


