
Gayathri Garimella
Benjamin Goff
Peihan Miao

Computation-Efficient Structure-Aware PSI
from Incremental Function Secret Sharing

*thank you Peihan Miao for the pictures

Brown University

CRYPTO 2024

Private Set Intersection (PSI)

{p, r, i, v, a, t, e} {s, e, c, u, r, i, t, y}

special case of two-party secure computation

2

input Binput A

Alice Bob

Private Set Intersection (PSI)

{p, r, i, v, a, t, e}

⋮

special case of two-party secure computation

{?, e, ?, ?, r, i, t, ?}
Alice learns A ∩ B

Bob learns nothing extra

3

input Binput A

Alice Bob

4

PSI Research
Approaches:
Diffie-Hellman [Mea86,	HFH99,	JL10,	DKT10,	IKN+20,	RT21…]
Oblivious	Polynomial	Evaluation	[FNP04,	KS05,	dMRY11…]
RSA [DT10,	ADT11]	
Bloom	Filters [DCW13,	RR17a]
FHE [CLR17,	CHLR18,	CMDG+21]
Circuit-based	[HEK12,	PSSZ15,	PSWW18,	PSTY19,	GMR+21]
OT [PSZ14,	PSSZ15,	KKRT16,	RR17,	PRTY19,	CM20,	PRTY20,	RS21,	GPR+21]
Vector	OLE	[RS21,	GPR+21,	CRR21,	RR22,	BPSY23…]

Settings:	
Semi-honest/Malicious	[RR17,	OOS17,	CHLR18,	PRTY20,	RS21,	GPR+21,	BPSY23…]
Plain/Cardinality/Associated-sum:	[PSTY19,	KK20,	MPR+20,	IKN+20,	GMR+21,	RS21,	CGS22...]
PS	Union:	[DC17,	KRTY19,	GPR+21,	JSZ+22,	LG23,	BPSY23,	GNT24…]
Balanced/Unbalaned/Laconic:	[ABD+21,		ALOS22,	DKL+23,	GHMM24..]
Two-party/Multi-party:	[HV17,	NTY21,	BMRR21,	CDG+21,	GPR+21,	ENOP22,	BHV+23,	GTY24..]
Updatable:	[KLS+17,		ATD20,	BMX22..]
Fuzzy PSI:	[CFR+21,UCK+21	..]

5

Structure-Aware Private Set Intersection (sa-PSI)
a variant of PSI where Alice’s input has a publicly known structure

input A input B

Examples - interval, ball or union of balls in some metric space, …

Structure-Aware PSI, with applications to Fuzzy Matching. CRYPTO 2022. Gayathri Garimella, Mike Rosulek and Jaspal Singh

[GRS22,	GRS23,	vBP24]

6

Structure-Aware Private Set Intersection (sa-PSI)

input A input B

Structure-Aware PSI, with applications to Fuzzy Matching. CRYPTO 2022. Gayathri Garimella, Mike Rosulek and Jaspal Singh

a variant of PSI where Alice’s input has a publicly known structure

Examples - interval, ball or union of balls in some metric space, …

[GRS22,	GRS23,	vBP24]

7

Structure-Aware Private Set Intersection (sa-PSI)

Alice learns A ∩ B = {all points inside balls}

input A input B

Structure-Aware PSI, with applications to Fuzzy Matching. CRYPTO 2022. Gayathri Garimella, Mike Rosulek and Jaspal Singh

a variant of PSI where Alice’s input has a publicly known structure

Examples - interval, ball or union of balls in some metric space, …

[GRS22,	GRS23,	vBP24]

8

Fuzzy matching
privacy-preserving ride hailing service

9

privacy-preserving ride hailing service

dist(,) ≤ 𝛿

𝛿 radius ball

Fuzzy matching

10

privacy-preserving ride hailing service

dist(,) ≤ 𝛿

𝛿 radius ball

Fuzzy matching

11

Alice learns A ∩ B = {all points inside balls}

input A input B

Alice’s enumerates her structured input A, reduces to plain PSI

Naïve solution

12

Alice learns A ∩ B = {all points inside balls}

input A input B

Alice’s enumerates her structured input A, reduces to plain PSI
Comm and / or Comp cost 𝑂((|A| + |B|). 𝜅), ~total volume |A| of balls in Alice’s input

Naïve solution

13

Alice learns A ∩ B = {all points inside balls}

input A input B

Alice’s enumerates her structured input A, reduces to plain PSI
Comm and / or Comp cost 𝑂((|A| + |B|). 𝜅), ~total volume |A| of balls in Alice’s input

Naïve solution

instead, cost scale with # of balls (description size) in Alice’s input?

14

State of the art

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

*Structure-Aware PSI, with applications to Fuzzy Matching. CRYPTO 2022. Gayathri Garimella, Mike Rosulek and Jaspal Singh

from

advantage: lightweight symmetric key based operations

public knowledge: structured set family

15

State of the art

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

*Structure-Aware PSI, with applications to Fuzzy Matching. CRYPTO 2022. Gayathri Garimella, Mike Rosulek and Jaspal Singh

from

advantage: lightweight symmetric key based operations

computation scales with Alice’s set size |A|limitation

16

Our Contribution

from

advantage: lightweight symmetric key based operations

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

public knowledge: structured set family

17

For the rest of the talk..

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

incremental
boolean Function Secret Sharing

+ Oblivious Transfer

from

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

boolean Function Secret Sharing
+ Oblivious Transfer

from

18

For the rest of the talk..

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

incremental
boolean Function Secret Sharing

+ Oblivious Transfer

from

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

boolean Function Secret Sharing
+ Oblivious Transfer

from

1.	W
hat

19

For the rest of the talk..

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

incremental
boolean Function Secret Sharing

+ Oblivious Transfer

from

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

boolean Function Secret Sharing
+ Oblivious Transfer

from

1.	W
hat

2.	How

20

For the rest of the talk..

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

incremental
boolean Function Secret Sharing

+ Oblivious Transfer

from

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

boolean Function Secret Sharing
+ Oblivious Transfer

from

1.	W
hat

2.	How

3.	What

21

For the rest of the talk..

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

incremental
boolean Function Secret Sharing

+ Oblivious Transfer

from

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

boolean Function Secret Sharing
+ Oblivious Transfer

from

1.	W
hat

2.	How

3.	What

4.	How

22

First, we look at

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

incremental
boolean Function Secret Sharing

+ Oblivious Transfer

from

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

boolean Function Secret Sharing
+ Oblivious Transfer

from

1.	W
hat

23

boolean Function Secret Sharing

given input A ∈ S from a class of structured sets

Structure-Aware PSI, with applications to Fuzzy Matching. CRYPTO 2022. Gayathri Garimella, Mike Rosulek and Jaspal Singh

boolean Function Secret Sharing (bFSS)
[BoyleGilboaIshai15] – style FSS for set membership in A function

24

boolean Function Secret Sharing

share(A) where

∀x ∈ A ⟹ ev(, x) ⊕ ev(, x) =		0

∀x ∉ A ⟹ ev(, x) ⊕ ev(, x) =		1

, ≈ $$,

boolean Function Secret Sharing (bFSS)
[BoyleGilboaIshai15] – style FSS for set membership in A function

given input A ∈ S from a class of structured sets

Structure-Aware PSI, with applications to Fuzzy Matching. CRYPTO 2022. Gayathri Garimella, Mike Rosulek and Jaspal Singh

25

boolean Function Secret Sharing

share(A) where

∀x ∈ A ⟹ ev(, x) ⊕ ev(, x) =		0

∀x ∉ A ⟹ ev(, x) ⊕ ev(, x) =		1

, ≈ $$,

boolean Function Secret Sharing (bFSS)
[BoyleGilboaIshai15] – style FSS for set membership in A function

given input A ∈ S from a class of structured sets

[BGI15,	BGI16,	BCG+21,	BGIK22] - PRG based constructions for set family membership functions
like {singleton, 1-d interval, d-dimensional interval..}

succinctness:

26

Oblivious Transfer [Rabin’81]

Oblivious
Transfer

s ∈ {0,	1}

,m0 m1

ms

OT can be instantiated efficiently (largely using symmetric key operations) from OT extension [IKNP03]

Extending Oblivious Transfers Efficiently. CRYPTO 2003. Yuval Ishai, Joe Kilian, Kobbi Nissim and Erez Petrank.
How to exchange secrets with oblivious transfer. Cryptology ePrint Archive, 2005. Michael O Rabin.

27

Now, let’s see how to realize sa-PSI

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

incremental
boolean Function Secret Sharing

+ Oblivious Transfer

from

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

boolean Function Secret Sharing
+ Oblivious Transfer

from2.	How

28

How does [GRS’22] work?
assumptions: OT-hybrid (Oblivious Transfer[Rabin81]), hamming correlation robust hash
input A input B

29

How does [GRS’22] work?
1. generates 𝜅 instances of bFSS shares

,
,

,

share(A)

share(A)

share(A)

⋮

1

2

1

2

𝜅 𝜅

2. picks 𝜅 choice bits to learn or
input A input B

30

How does [GRS’22] work?
1. generates 𝜅 instances of bFSS shares

,
,

,

share(A)

share(A)

share(A)

⋮

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

𝜅

2. picks 𝜅 choice bits to learn or

F(x)	=	H(ev(, x)∥ev(, x) ∥ ⋯ ev(, x))1 2 𝜅

Bob computes F(x) on all his inputs

input A input B

31

How does [GRS’22] work?
1. generates 𝜅 instances of bFSS shares

,
,

,

share(A)

share(A)

share(A)

⋮

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

𝜅

2. picks 𝜅 choice bits to learn or

F(x)	=	H(ev(, x)∥ev(, x) ∥ ⋯ ev(, x))1 2 𝜅

3. F(b1),	F(b2),	⋯

Bob computes F(x) on all his inputs

input A input B

32

How does [GRS’22] work?
1. generates 𝜅 instances of bFSS shares

,
,

,

share(A)

share(A)

share(A)

⋮

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

𝜅

2. picks 𝜅 choice bits to learn or

F(x)	=	H(ev(, x)∥ev(, x) ∥ ⋯ ev(, x))1 2 𝜅

3. F(b1),	F(b2),	⋯

Bob computes F(x) on all his inputs

input A input B

if x ∈ A ⟹Alice can compute F(x)	
if x ∉ A ⟹F(x)	≈ $$ looks random to Alice

ev(, x) = ev(, x)if x ∈ A ⟹

33

How does [GRS’22] work?
1. generates 𝜅 instances of bFSS shares

,
,

,

share(A)

share(A)

share(A)

⋮

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

𝜅

2. picks 𝜅 choice bits to learn or

F(x)	=	H(ev(, x)∥ev(, x) ∥ ⋯ ev(, x))1 2 𝜅

3. F(b1),	F(b2),	⋯

3. ∀a	∈ A, compute F(a)
4. locally compare to learn intersection

Bob computes F(x) on all his inputs

input A input B

ev(, x) = ev(, x)if x ∈ A ⟹

34

Computation scales with structured set size
1. generates 𝜅 instances of bFSS shares

,
,

,

share(A)

share(A)

share(A)

⋮

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

𝜅

2. picks 𝜅 choice bits to learn or

F(x)	=	H(ev(, x)∥ev(, x) ∥ ⋯ ev(, x))1 2 𝜅

3. F(b1),	F(b2),	⋯

3. ∀a	∈ A, compute F(a)
4. locally compare to learn intersection

Bob computes F(x) on all his inputs

input A input B

ev(, x) = ev(, x)if x ∈ A ⟹

computation scales with |A|

35

We present a new framework

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

incremental
boolean Function Secret Sharing

+ Oblivious Transfer

from

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

boolean Function Secret Sharing
+ Oblivious Transfer

from

NEW
	app

roac
h!

36

High-level idea
1. generates 𝜅 instances of bFSS shares

,
,

,

share(A)

share(A)

share(A)

⋮

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

𝜅

2. picks 𝜅 choice bits to learn or

3. F(b1),	F(b2),	⋯

input A input B

+
specially crafted hints

37

High-level idea
1. generates 𝜅 instances of bFSS shares

,
,

,

share(A)

share(A)

share(A)

⋮

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

𝜅

2. picks 𝜅 choice bits to learn or

3. F(b1),	F(b2),	⋯
3. can efficiently identify and

search for matching values

input A input B

+
specially crafted hints

38

Crafting hints from incremental bFSS

[GarimellaGoffMiao’24]
computation and

communication efficient
Structure-aware PSI framework

(semi-honest)

incremental
boolean Function Secret Sharing

+ Oblivious Transfer

from

[GarimellaRosulekSingh’22]
communication-efficient

Structure-aware PSI framework
(semi-honest)

boolean Function Secret Sharing
+ Oblivious Transfer

from

3.	What

4.	How

39

One-sided Interval Single-Point sa-PSI

input A = 0, 𝛼 input B = {b}

𝛼b U = 0, 1 u

Alice learns output A ∩ B

0

40

(previously) Boolean FSS for One-Sided Interval

input A

Recall definition:

U = 0, 1 u0

Alice must evaluate on her entire input

41

Identifying membership for One-sided Interval

one-sided interval 0, 𝛼

U = 0, 1 u0

critical path

How would we check if a point ‘b’ belongs to the interval?
bit-wise comparison with the critical path

42

Identifying membership for One-sided interval

critical prefixes span interval one-sided interval 0, 𝛼

U = 0, 1 u0 U = 0, 1 u0

deviate left of critical path

43

Identifying membership for One-sided interval

critical prefixes span interval one-sided interval 0, 𝛼

U = 0, 1 u0 U = 0, 1 u0

matching prefix implies set membership

U = 0, 1 u0

spans subset of interval

44

Incremental Boolean FSS for One-Sided Interval
input A

U = 0, 1 u0

0 U = 0, 1 u U = 0, 1 u0

DPF [BBC+21,	CMZ+24…]

45

Incremental Boolean FSS for One-Sided Interval
input A

U = 0, 1 u0

0 U = 0, 1 u U = 0, 1 u0

secret share such that:
• can evaluate on intermediate and leaf nodes
• evaluations match once you deviate left of critical path

46

Incremental Boolean FSS for One-Sided Interval
input A

share(A) where

∀x with special prefix ⟹ ev(, x) ⊕ ev(, x) = 0t

∀x w/o critical prefix ⟹ ev(, x) ⊕ ev(, x) ≠ 0t

, where 𝑥 ∈ ⋃)*+, 0, 1 𝑙

, ≈ $$,

incremental boolean Function Secret Sharing (ibFSS)
[BoyleGilboaIshai15] – style FSS for set membership in A function

given input A ∈ S from a class of structured sets

can evaluate on intermediate nodes

U = 0, 1 u0

0 U = 0, 1 u U = 0, 1 u0

47

Incremental Boolean FSS for One-Sided Interval
input A

share(A) where

∀x with special prefix ⟹ ev(, x) ⊕ ev(, x) = 0t

∀x w/o critical prefix ⟹ ev(, x) ⊕ ev(, x) ≠ 0t

, where 𝑥 ∈ ⋃)*+, 0, 1 𝑙

, ≈ $$,

incremental boolean Function Secret Sharing (ibFSS)
[BoyleGilboaIshai15] – style FSS for set membership in A function

given input A ∈ S from a class of structured sets

can evaluate on intermediate nodes

U = 0, 1 u0

0 U = 0, 1 u U = 0, 1 u0

[see paper] for definition and constructions

48

One-Sided Interval Single Point sa-PSI
input A = 0, 𝛼

OT
s1	=	0

10

input B = {b}

,0 1

0

U = 0, 1 u0

0 U = 0, 1 u U = 0, 1 u0

49

One-Sided Interval Single Point sa-PSI

input A = 0, 𝛼

OT
s1	=	0

input B = {b}, b = b0b1…bu

,0 1

0

U = 0, 1 u0

50

One-Sided Interval Single Point sa-PSI

input A = 0, 𝛼

OT
s1	=	0

input B = {b}, b = b0b1…bu

,0 1

0

Hints: Bob evaluates incremental boolean FSS on every prefix of his input b

ev(, b0)
ev(, b0b1)

ev(, b0b1…bu -1)
ev(, b0b1…bu)

U = 0, 1 u0

⋮

51

One-Sided Interval Single Point sa-PSI

input A = 0, 𝛼

OT
s1	=	0

input B = {b}, b = b0b1…bu

,0 1

0

Hints: Bob evaluates incremental boolean FSS on every prefix of his input b

Hints

ev(, b0)
ev(, b0b1)

ev(, b0b1…bu)
U = 0, 1 u0

⋮

52

One-Sided Interval Single Point sa-PSI

input A = 0, 𝛼

OT
s1	=	0

input B = {b}

,0 1

0

b
Hints

U = 0, 1 u0

U = 0, 1 u0

ev(, 00)
ev(, 010)

⋮
compare critical prefixes with hints

53

One-Sided Interval Single Point sa-PSI

input A = 0, 𝛼

OT
s1	=	0

input B = {b}

,0 1

0

b
Hints

b b
Case 1: computable by Alice Case 2: looks random to Alice

critical prefix

U = 0, 1 u0

54

One-Sided Interval Single Point sa-PSI
1. generates 𝜅 incremental bFSS shares

,
,

,

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

𝜅

2. picks 𝜅 choice bits to learn or
input A = 0, 𝛼 input B = {b}

⋮
b

b⋮ ⋮

55

One-Sided Interval Single Point sa-PSI
1. generates 𝜅 incremental bFSS shares

,
,

,

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

2. picks 𝜅 choice bits to learn or
input A = 0, 𝛼 input B = {b}, b = b0…bu

⋮
b

b⋮ ⋮

Bob defines, computes F(x) on all input prefixes
we have ‘u’ hints

𝜅

F(b0)	=	H(ev(, b0)∥ ⋯ ∥ev(, b0))1 𝜅

F(b0b1)	=	H(ev(, b0b1)∥ ⋯ ∥ev(, b0b1))1 𝜅

⋮
F(b0…bu)	=	H(ev(,b0…bu)∥ ⋯ ∥ev(, b0…bu))1 𝜅

56

One-Sided Interval Single Point sa-PSI
1. generates 𝜅 incremental bFSS shares

,
,

,

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

2. picks 𝜅 choice bits to learn or
input A = 0, 𝛼 input B = {b}, b = b0…bu

⋮
b

b⋮ ⋮

Bob defines, computes F(x) on all input prefixes
we have ‘u’ hints

𝜅

F(b0)	=	H(ev(, b0)∥ ⋯ ∥ev(, b0))1 𝜅

F(b0b1)	=	H(ev(, b0b1)∥ ⋯ ∥ev(, b0b1))1 𝜅

⋮
F(b0…bu)	=	H(ev(,b0…bu)∥ ⋯ ∥ev(, b0…bu))1 𝜅

3. can compute F(p0),
if p0 is a critical prefix of A

Hints

F(p0)	=	H(ev(, p0)∥ ⋯ ∥ev(, p0))1 𝜅

57

One-Sided Interval Single Point sa-PSI
1. generates 𝜅 incremental bFSS shares

,
,

,

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

2. picks 𝜅 choice bits to learn or
input A = 0, 𝛼 input B = {b (= b0…bu)}

⋮
b

b⋮ ⋮

Bob defines, computes F(x) on all input prefixes
we have ‘u’ hints

𝜅

F(b0)	=	H(ev(, b0)∥ ⋯ ∥ev(, b0))1 𝜅

F(b0b1)	=	H(ev(, b0b1)∥ ⋯ ∥ev(, b0b1))1 𝜅

⋮
F(b0…bu)	=	H(ev(,b0…bu)∥ ⋯ ∥ev(, b0…bu))1 𝜅

Hints

or

3. can compute F(p0),
if p0 is a critical prefix of A
4. locally compare with hints

58

One-Sided Interval Single Point sa-PSI
1. generates 𝜅 incremental bFSS shares

,
,

,

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

2. picks 𝜅 choice bits to learn or
input A = 0, 𝛼 input B = {b}, b = b0…bu

⋮
b

b⋮ ⋮𝜅

Hints

or [see paper] how does Alice efficiently find ‘b’, if matching prefix is found?

3. can compute F(p0),
if p0 is a critical prefix of A
4. locally compare with hints

59

One-Sided Interval Single Point sa-PSI
1. generates 𝜅 incremental bFSS shares

,
,

,

1

2

1

2

𝜅 𝜅

OT

OT

OT

s1

s2

s𝜅

1

2

2. picks 𝜅 choice bits to learn or
input A = 0, 𝛼 input B = {b}, b = b0…bu

⋮
b

b⋮ ⋮𝜅

Hints

Cost comparison with[GRS22]

• Alice’s	computation	reduces	
from 𝑂(u . 𝛿. 𝜅) to 𝑂(u+ u . 𝜅)

• Bob’s	communication	increases	
from 𝑂(hout) to 𝑂(u . hout) bits

, where 𝛿 = interval length, 𝜅 = security
parameter, hout = hash output length

3. can compute F(p0),
if p0 is a critical prefix of A
4. locally compare with hints

60

In the paper, we also show…

61

ibFSS for d-dimensional interval

L∞ ball (of diameter 𝛿)
intersection of 2.d intervals

interval X

in
te

rv
al

 Y

𝛼1 𝛼2

𝛽1

𝛽2

input A ibFSS scheme for Alice’s structure

AND observation: [GRS22,	GRS23]
(b0	>	𝛼1) ∧ (b0<	𝛼2) ∧ (b1	>	𝛽1) ∧ (b1<	𝛼1) ?

one-sided interval

[see paper]

62

Multi-ball Multi-point sa-PSI

union of L∞ balls
ibFSS scheme for Alice’s structure

OR observation: [our contribution]
(b∈ ball1) ∨ (b∈ ball2) ∨ (b ∈ ball3) ∨ (b ∈ ball4) ∨ (b ∈ ball5)

Spatial	Hashing:	[GRS22,	GRS23]
can handle overlapping structures, improve concrete efficiency

ball2

ball1

ball3

ball4 ball5
d-dimensional interval

[see paper]

63

Extending Functionality

How can Bob (with unstructured input) learn the intersection?

How can Alice (or Bob) learn PSI-Cardinality or PSI-Sum?

[see paper]

[see paper]

64

Future Directions

Questions?

• Can we construct ibFSS for other structures (motivated by real world applications)?

• Can we extend our techniques to other distance metrics like L2 norm, Hamming
distance metrics?

• Can we extend our ideas to the malicious setting? Can we improve the existing
malicious framework?

65

BACKUP slides

66

67

68

69

70

Related work for sa-PSI

• Hamming distance – [FNP04, CH08, YSPW10] – polynomial evaluate
using AHE
• Fuzzy PSI for hamming and l2 metric [IW06] – generic MPC,

decryption circuit for homomorphic encryption
• Fuzzy PSI using homomorphic encryption[BCRT16]
• Chakroborti et al – [CFR21] fuzzy psi for 1-d integers and hamming

distance, [UCK+21] uses FHE

71

Single ball vs single point

72

Multi ball vs multi point

73

