Computation-Efficient Structure-Aware PSI from Incremental Function Secret Sharing

Gayathri Garimella

Benjamin Goff Peihan Miao

Brown University

*thank you Peihan Miao for the pictures

Private Set Intersection (PSI)

{p, r, i, v, a, t, e}

special case of two-party secure computation

input **B**

{s, e, c, u, r, i, t, y}

Private Set Intersection (PSI)

PSI Research

Approaches:

Diffie-Hellman [Mea86, HFH99, JL10, DKT10, IKN+20, RT21...] Oblivious Polynomial Evaluation [FNP04, KS05, dMRY11...] RSA [DT10, ADT11] Bloom Filters [DCW13, RR17a] FHE [CLR17, CHLR18, CMDG+21] Circuit-based [HEK12, PSSZ15, PSWW18, PSTY19, GMR+21] OT [PSZ14, PSSZ15, KKRT16, RR17, PRTY19, CM20, PRTY20, RS21, GPR+21] Vector OLE [RS21, GPR+21, CRR21, RR22, BPSY23...]

Settings:

Semi-honest/Malicious [RR17, OOS17, CHLR18, PRTY20, RS21, GPR+21, BPSY23...] Plain/Cardinality/Associated-sum: [PSTY19, KK20, MPR+20, IKN+20, GMR+21, RS21, CGS22...] PS Union: [DC17, KRTY19, GPR+21, JSZ+22, LG23, BPSY23, GNT24...] Balanced/Unbalaned/Laconic: [ABD+21, ALOS22, DKL+23, GHMM24..] Two-party/Multi-party: [HV17, NTY21, BMRR21, CDG+21, GPR+21, ENOP22, BHV+23, GTY24..] Updatable: [KLS+17, ATD20, BMX22..] Fuzzy PSI: [CFR+21,UCK+21 ..]

Structure-Aware Private Set Intersection (sa-PSI)

[GRS22, GRS23, vBP24] a variant of PSI where Alice's input has a publicly known structure

Examples - interval, ball or union of balls in some metric space, ...

Structure-Aware PSI, with applications to Fuzzy Matching. CRYPTO 2022. Gayathri Garimella, Mike Rosulek and Jaspal Singh

Structure-Aware Private Set Intersection (sa-PSI)

[GRS22, GRS23, vBP24] a variant of PSI where Alice's input has a publicly known structure

Examples - interval, ball or union of balls in some metric space, ...

Structure-Aware Private Set Intersection (sa-PSI)

[GRS22, GRS23, vBP24] a variant of PSI where Alice's input has a publicly known structure

Examples - interval, ball or union of balls in some metric space, ...

Fuzzy matching

privacy-preserving ride hailing service

SANTA BARBARA

SANTA BARBARA

Fuzzy matching

privacy-preserving ride hailing service

Fuzzy matching

privacy-preserving ride hailing service

Naïve solution

Alice's enumerates her structured input A, reduces to plain PSI

Naïve solution

Alice's enumerates her structured input A, reduces to plain PSI

Comm and / or Comp cost O((|A| + |B|)). κ), ~total volume |A| of balls in Alice's input

Naïve solution

Alice's enumerates her structured input A, reduces to plain PSI Comm and / or Comp cost $O((|A| + |B|). \kappa)$, ~total volume |A| of balls in Alice's input instead, cost scale with # of balls (description size) in Alice's input?

State of the art

public knowledge: structured set family

advantage: lightweight symmetric key based operations

State of the art

advantage: lightweight symmetric key based operations

Our Contribution

public knowledge: structured set family

from

advantage: lightweight symmetric key based operations

[GarimellaRosulekSingh'22] communication-efficient <u>Structure-aware PSI framework</u> (semi-honest) [GarimellaGoffMiao'24] computation and communication efficient <u>Structure-aware PSI framework</u> (semi-honest)

from

boolean Function Secret Sharing + Oblivious Transfer from

incremental boolean Function Secret Sharing

+ Oblivious Transfer

First, we look at

boolean Function Secret Sharing

given input $A \in S$ from a class of structured sets

<u>boolean Function Secret Sharing</u> (bFSS) [BoyleGilboaIshai15] – style FSS for set membership in A function

boolean Function Secret Sharing

boolean Function Secret Sharing

[BGI15, BGI16, BCG+21, BGIK22] - PRG based constructions for set family membership functions like {singleton, 1-d interval, d-dimensional interval..}

Oblivious Transfer [Rabin'81]

OT can be instantiated efficiently (largely using symmetric key operations) from OT extension [IKNP03]

How to exchange secrets with oblivious transfer. Cryptology ePrint Archive, 2005. Michael O Rabin. Extending Oblivious Transfers Efficiently. CRYPTO 2003. Yuval Ishai, Joe Kilian, Kobbi Nissim and Erez Petrank.

Now, let's see how to realize sa-PSI

assumptions: OT-hybrid (Oblivious Transfer[Rabin81]), hamming correlation robust hash

input A

input A

1. generates κ instances of bFSS shares

$$F(x) = H(ev(1), x) ||ev(2, x) || \cdots ev(\kappa, x))$$

$$F(x) = H(ev(1), x) ||ev(2, x)|| \cdots ev(\kappa, x))$$

if
$$x \in A \implies$$
 Alice can compute $F(x)$
if $x \notin A \implies F(x) \approx$ \$\$ looks random to Alice

 $\text{if } x \in A \implies \mathbf{ev}(\begin{subarray}{c} x, x \end{subarray}) = \mathbf{ev}(\begin{subarray}{c} x, x \end{subarray})$

$$F(x) = H(ev(1, x) || ev(2, x) || \cdots ev(\kappa, x))$$

3. ∀a ∈ A, compute F(a)
4. locally compare to learn intersection

 $\text{if } x \in A \implies \mathbf{ev}([], x) = \mathbf{ev}([], x)$

$$F(x) = H(ev(1, x) || ev(2, x) || \cdots ev(k, x))$$

Computation scales with structured set size

3. ∀a ∈ A, compute F(a)
4. locally compare to learn intersection

if $x \in A \implies ev(\square, x) = ev(\square, x)$

$$F(x) = H(ev(1, x) || ev(2, x) || \cdots ev(\kappa, x))$$

High-level idea

High-level idea

Crafting hints from incremental bFSS

Alice learns output $A \cap B$

(previously) Boolean FSS for One-Sided Interval

Identifying membership for One-sided Interval

How would we check if a point 'b' belongs to the interval? bit-wise comparison with the critical path

one-sided interval $[0, \alpha)$

Identifying membership for One-sided interval

Identifying membership for One-sided interval

Incremental Boolean FSS for One-Sided Interval

Incremental Boolean FSS for One-Sided Interval

Incremental Boolean FSS for One-Sided Interval

Hints: Bob evaluates incremental boolean FSS on every prefix of his input b

Hints: Bob evaluates incremental boolean FSS on every prefix of his input b

input A = $[0, \alpha)$ 1. generates κ incremental bFSS shares 1 1 2 к κ 3. can compute $F(p_0)$, Hints if p_0 is a critical prefix of A 4. locally compare with hints

input $B = \{b\}, b = b_0...b_u$ 2. picks κ choice bits to learn \Box or \Box <u>Cost comparison with</u>[GRS22]

h

- Alice's computation reduces from $O(u \cdot \delta \cdot \kappa)$ to $O(u + u \cdot \kappa)$
- Bob's communication increases from $O(h_{out})$ to $O(u \cdot h_{out})$ bits

, where δ = interval length, κ = security parameter, h_{out} = hash output length

In the paper, we also show \cdots

ibFSS for d-dimensional interval

Multi-ball Multi-point sa-PSI

Extending Functionality

How can Bob (with unstructured input) learn the intersection? [see paper]

How can Alice (or Bob) learn PSI-Cardinality or PSI-Sum? [see paper]

Future Directions

- Can we construct ibFSS for other structures (motivated by real world applications)?
- Can we extend our techniques to other distance metrics like L2 norm, Hamming distance metrics?
- Can we extend our ideas to the malicious setting? Can we improve the existing malicious framework?

Questions?

BACKUP slides

Comp	omp. & Comm. Costs [GRS22]		[GRS22]	[GRS23]	Ours	
Comp.	Alice	FSS	$\mathcal{O}(N_A \cdot (4 \log \boldsymbol{\delta})^{\boldsymbol{d}} \cdot \ell_{OT})$	$\mathcal{O}(N_A \cdot oldsymbol{u} \cdot oldsymbol{d} \cdot (\log oldsymbol{\delta})^{oldsymbol{d}} \cdot \ell_{OT})$	$\mathcal{O}(N_A \cdot oldsymbol{\log} oldsymbol{\delta} oldsymbol{\cdot} oldsymbol{d} \cdot \ell_{OT})$	
		Intersection	$\mathcal{O}(m{S}_{m{A}} \cdot(2\log\delta)^d\cdot\ell_{OT})$	$\mid \mathcal{O}(oldsymbol{S_A} \cdot oldsymbol{u} \cdot oldsymbol{d} \cdot (2\log \delta)^d \cdot \ell_{OT})$	$\mathcal{O}(N_A \cdot (\log \delta)^d + N_B \cdot \log \delta \cdot d \cdot \ell_{OT})$	
	Bob's Eval		$\mathcal{O}(N_B \cdot (2 \log \delta)^d \cdot \ell_{OT})$	$\mathcal{O}(N_B \cdot \boldsymbol{u} \cdot \boldsymbol{d} \cdot (2 \log \boldsymbol{\delta})^{\boldsymbol{d}} \cdot \ell_{OT})$	$\mathcal{O}(N_B \cdot 2^d \cdot ((\log \delta)^d + \log \delta \cdot d \cdot \ell_{OT}))$	
Comm.	ОТ		$\mathcal{O}(\kappa \cdot N_A \cdot (4 \log \boldsymbol{\delta})^{\boldsymbol{d}} \cdot \ell_{OT})$	$O(\kappa \cdot N_A \cdot \boldsymbol{u} \cdot \boldsymbol{d} \cdot (\log \boldsymbol{\delta})^{\boldsymbol{d}} \cdot \ell_{OT})$	$\mathcal{O}(\kappa \cdot N_A \cdot oldsymbol{\log} oldsymbol{\delta} \cdot oldsymbol{d} \cdot \ell_{OT})$	
(bits)	Bol	o's Hashes	$\mathcal{O}(N_B \cdot h_{out})$	$\mathcal{O}(N_B \cdot h_{out})$	$\mathcal{O}(N_B \cdot (2 \log \delta)^d \cdot h_{out})$	

Table 3: Summary of computation and communication costs for spatial hashing. $h_{out} = \mathcal{O}(\lambda)$ is the output length of the final hash function. $\ell_{OT} = \mathcal{O}(\kappa)$ is the number of OTs. $|S_A|$ is upper bounded by $2^{u \cdot d}$. Prior work [GRS22, GRS23] only allows Alice to hold *disjoint* balls with *fixed diameter* δ while our protocol also supports *overlapping* balls with *different diameters*.

Comp. & Comm. Costs			d=2		d = 3		d = 5	
			[GRS23]	Ours	[GRS23]	Ours	[GRS23]	Ours
Comp	Alice	FSS	86M	840K	516M	1.3M	13.8B	2.1M
$(PBC_{c} SHA256)$		Intersection	352B	2.8B	$135\mathrm{T}$	4.2B	1478Q	7.0B
$\left(1103, 5117250\right)$	Bob's Eval		$1.2\mathrm{T}$	11.3B	$13.8\mathrm{T}$	34.6B	1468T	324B
Comm	ОТ		$1.3 \mathrm{GB}$	12.5MB	7.7GB	18.8MB	$205 \mathrm{GB}$	31.3MB
	Bob's Hashes		4.77MB	477MB	4.77MB	4.77GB	4.77MB	477GB

Table 4: Suppose Alice has $N_A = 300$ balls with fixed diameter $\delta = 32$ and Bob has a collection of $N_B = 10^6$ points in $d = \{2, 3, 5\}$ dimensional space over $\mathcal{U} = \{0, 1\}^u$, u = 32. Let computational security parameter $\kappa = 128$ and statistical security parameter $\lambda = 40$. We estimate the computation and communication cost of our new, spatial hashing technique and compare against the previous best construction [GRS23]. Our unit of computation cost is one PRG or hash operation. K, M, B, T, Q stand for thousand, million, billion, trillion, quadrillion respectively in computation units. For example, 1K means 1000 AES/SHA256 calls.

Constraint: Each ball can be assigned to a distinct Origin/mini-universe

OR Observation

Related work for sa-PSI

- Hamming distance [FNP04, CH08, YSPW10] polynomial evaluate using AHE
- Fuzzy PSI for hamming and I2 metric [IW06] generic MPC, decryption circuit for homomorphic encryption
- Fuzzy PSI using homomorphic encryption[BCRT16]
- Chakroborti et al [CFR21] fuzzy psi for 1-d integers and hamming distance, [UCK+21] uses FHE

Single ball vs single point

Comp.	& Co	omm. Costs	[38]	Ours	
	Alice	FSS	$\mathcal{O}(u \cdot d \cdot \ell_{OT})$	$\mathcal{O}(u \cdot d \cdot \ell_{OT})$	
Comp.	Ance	Intersection	$\mathcal{O}(\min(\mathbf{S}_{\mathbf{A}} \cdot u, 2^u) \cdot d \cdot \ell_{OT})$	$\mathcal{O}(\boldsymbol{u^d} + u \cdot d \cdot \ell_{OT})$	
	Bob's Eval		$\mathcal{O}(u \cdot d \cdot \ell_{OT})$	$\mathcal{O}(\boldsymbol{u^d} + u \cdot d \cdot \ell_{OT})$	
Comm.	ОТ		$\mathcal{O}(\kappa \cdot u \cdot d \cdot \ell_{OT})$	$\mathcal{O}(\kappa \cdot u \cdot d \cdot \ell_{OT})$	
(bits)	Bol	b's Hashes	$\mathcal{O}(h_{out})$	$\mathcal{O}(oldsymbol{u^d}\cdot h_{out})$	

Table 1: Summary of computation and communication costs for the setting where Alice holds a single ℓ_{∞} ball in the *d*-dimensional universe $(\{0,1\}^u)^d$ and Bob holds a single point in the universe. $h_{\text{out}} = \mathcal{O}(\lambda)$ is the output length of the final hash function. $\ell_{\text{OT}} = \mathcal{O}(\kappa)$ is the number of OTs. $|S_A|$ is upper bounded by $2^{u \cdot d}$.
Multi ball vs multi point

Comp. & Comm. Costs			[38, 39]	Ours
Comp.	Alice	\mathbf{FSS}	$\mathcal{O}(N_A \cdot \boldsymbol{u^d} \cdot \ell_{OT})$	$\mathcal{O}(N_A \cdot \boldsymbol{u} \cdot \boldsymbol{d} \cdot \ell_{OT})$
		Intersection	$\mathcal{O}(\mathbf{S}_{A} \cdot N_{A} \cdot \boldsymbol{u}^{\boldsymbol{d}} \cdot \ell_{OT})$	$\mathcal{O}(N_A \cdot \boldsymbol{u^d} + N_B \cdot \boldsymbol{u \cdot d} \cdot \ell_{OT})$
	Bob's Eval		$\mathcal{O}(N_A \cdot N_B \cdot \boldsymbol{u^d} \cdot \ell_{OT})$	$\mathcal{O}(N_A \cdot N_B \cdot (\boldsymbol{u^d} + \boldsymbol{u \cdot d} \cdot \ell_{OT}))$
Comm.	OT		$\mathcal{O}(\kappa \cdot N_A \cdot \boldsymbol{u^d} \cdot \ell_{OT})$	$\mathcal{O}(\kappa \cdot N_A \cdot \boldsymbol{u} \cdot \boldsymbol{d} \cdot \ell_{OT})$
(bits)	Bol	o's Hashes	$\mathcal{O}(N_B \cdot h_{out})$	$\mathcal{O}(N_B \cdot N_A \cdot u^d \cdot h_{out})$

Table 2: Summary of computation and communication costs for the setting where Alice holds N_A number of ℓ_{∞} balls in the *d*-dimensional universe $(\{0,1\}^u)^d$ and Bob holds N_B points in the universe. $h_{out} = \mathcal{O}(\lambda)$ is the output length of the final hash function. $\ell_{OT} = \mathcal{O}(\kappa)$ is the number of OTs. $|S_A|$ is upper bounded by $2^{u \cdot d}$. Prior work [38,39] only allows Alice to hold *disjoint* balls while our protocol also supports *overlapping* balls.