#### Information-Theoretic Security with Asymmetries

Tim Beyne<sup>1</sup> Yu Long Chen<sup>12</sup>

COSIC, KU Leuven

NIST

August 22, 2024

### Hypothesis Testing



#### A Practical Example: COVID 19



# $H_0$ : Patient should be placed in an ICU vs $H_1$ : Patient shouldn't be placed in an ICU

### A Practical Example: COVID 19 (2)

False positives (α): loss of patients
False negatives (β): unnecessary expenses
Trade-off between α and β

### A Practical Example: COVID 19 (2)



 $1 - \beta =$  power of the test (function of  $\alpha$ )

#### Another Example: CRYPTO Reviewing

#### $H_0$ : This paper should be accepted vs $H_1$ : This paper should be rejected

#### **Review form**

#### ③ Click on a field to edit it.

Recommendation \* (hidden from authors)

- 1. Strong reject (suitability, novelty, methodology, or correctness issues)
- Reject (editorial quality requires significant improvement, or substantial technical details are missing)
- 3. Slightly lean toward reject but I could be convinced otherwise
- 4. Slightly lean toward accept but I could be convinced otherwise
- 5. Accept (the paper improves the state-of-the-art on an important research question)
- 6. Strong accept (breakthrough paper, best paper award candidate)

#### Score justification (hidden from authors)

Explain why this is your recommendation; you'll give the details below. This field is and will always remain hidden from the authors, so you can be direct. List specific pluses and minuses here.

Text field

#### Confidence level \* (hidden from authors)

Confidence relates to the rigor of your review (and to an extent, the rigor of the submission itself). If you feel you don't have enough expertise to evaluate the paper, your "Review Confidence" should be 1. [Note: if your "Review Confidence" is 1 or 2, please try to boost it by reading the submission more closely or finding a subreviewer who can do so.]

- 1. Not familiar (an educated guess)
- 2. Low (skimmed over, not familiar with the details)
- 3. Medium (read most of it, got stuck here and there)
- 4. High (carefully read and understood the submission)

### Indistinguishability



- Deterministic information-theoretical distinguisher
  - = Hypothesis test between transcript distributions P and Q
- Traditionally we measure security by  $\Delta(\textit{P};\textit{Q}) = (1-\beta) \alpha$

#### Asymmetrical Costs

- $\bullet$  Cost of an attack is application-dependent: cost function  $\mathscr{C}(\alpha,\beta)$
- Advantage corresponds to  $\mathscr{C}(\alpha,\beta)=\alpha+\beta$ 
  - $\rightarrow$  Minimized for  $\alpha=\beta$

#### Asymmetrical Costs

- $\bullet$  Cost of an attack is application-dependent: cost function  $\mathscr{C}(\alpha,\beta)$
- Advantage corresponds to  $\mathscr{C}(\alpha,\beta)=\alpha+\beta$ 
  - $\rightarrow$  Minimized for  $\alpha=\beta$

# However ...

#### Asymmetrical Costs

- $\bullet$  Cost of an attack is application-dependent: cost function  $\mathscr{C}(\alpha,\beta)$
- Advantage corresponds to  $\mathscr{C}(\alpha,\beta)=\alpha+\beta$ 
  - $\rightarrow$  Minimized for  $\alpha=\beta$

# However ...

- $\bullet$  Cost function is usually not symmetric in  $\alpha$  and  $\beta$
- Choice of null hypothesis matters
- Can we lower bound <u>all possible</u> cost functions?
- Solution: power bound

$$1-\beta \leq f(\alpha)$$

#### Power bounds

Power bound  $1 - \beta \le f(\alpha)$ 

#### Power bounds



#### Only Modular Approach For Standard Model Multi-User Security



power bound  $1 - \beta \leq \frac{\alpha}{1 - \epsilon(q)}$ 

mu power bound  $1 - \beta \le \max \prod_{i=1}^{u} \frac{\alpha}{1 - \epsilon(q_i)}$ 

#### Only Modular Approach For Standard Model Multi-User Security





#### Only Modular Approach For Standard Model Multi-User Security



#### What's the Catch?

- Is it more difficult to prove power bounds?
- In many cases it is not; we show exising proofs can be adapted:
  - Hybrid arguments carry over
  - H-coefficient method carries over
- Examples in our paper:
  - PRP-PRF switching lemma
  - Even-Mansour (EM)
  - Sum-of-Permutations (SoP)

- Difference between the worlds: collision event
- Replace the PRF transcript distribution P by  $P_{\mathcal{T} \setminus B}$  with  $B \subseteq \mathcal{T}$

$$1 - \beta \le \frac{\alpha}{1 - \varepsilon}$$

• B = collision event of PRF with  $P(B) \le \varepsilon = \frac{q(q-1)}{2N}$ 

### Application: PRP-PRF Switching Lemma (2)

• Power bound (null hypothesis = outputs from PRF):

$$1-\beta \leq \frac{\alpha}{1-\frac{q(q-1)}{2N}}$$



• Swapping of null and alternative hypothesis (null hypothesis = outputs from PRP)

$$1 - \beta \le \frac{q(q-1)}{2N} + \left(1 - \frac{q(q-1)}{2N}\right) \alpha$$

Observation of a collision  $\rightarrow$  null hypothesis can be rejected with certainty

• Advantage bound:

$$\Delta(P; Q) \le \Delta(P; X) + \Delta(X; Q)$$

• Power bound:

- Every distinguisher from *P* to *X* with  $\alpha_1$  and  $\beta_1$  satisfies  $1 \beta_1 \le f(\alpha_1)$
- Every distinguisher from X to Q with  $\alpha_2$  and  $\beta_2$  satisfies  $1 \beta_2 \leq g(\alpha_2)$
- All distinguishers from P to Q

$$1-\beta \leq \textit{g}(\textit{f}(\alpha))$$

#### Application to CTR Mode



#### Application to CTR Mode

$$1 - \beta \le \mathbf{g}(\mathbf{f}(\alpha)) = \frac{\alpha}{1 - \frac{\sigma(\sigma - 1)}{2N}}$$

- Security in statistical distance
- Multi-user security bound
- Security bounds in other models e.g. message recovery

#### Application to CTR Mode Message Recovery

- An unknown message can take  $2^b$  possible values
- $\bullet$  Message-recovery security: adversary must output a list of  $\alpha 2^b$  candidate values for unknown message
- Probability that distinguisher incorrectly guess the message:  $\leq \alpha 2^b/2^b = \alpha$
- Probability that message-recovery attack succeeds:

$$1 - \beta \le \frac{\alpha}{1 - \frac{\sigma(\sigma - 1)}{2N}}$$

### Application to CTR Mode Message Recovery (2)

 $\bullet\,$  The adversary has to uniquely recover b bits  $\to \alpha = 2^{-b}$ 

$$\varepsilon = \frac{\sigma(\sigma-1)}{2N}$$

• Advantage bound: probability of recovering the message is

$$2^{-\tilde{b}}(1+\varepsilon+\tilde{\mathcal{O}(\varepsilon^2)})$$

 $2^{-b} + \varepsilon$ 

Probability of succesfully recovering a *b*-bit message



#### Conclusion

#### .....New results

.....Future research

- Power bounds instead of advantage bounds
- Hybrid arguments and H-coefficient method in power model + application to PRP-PRF, EM, and SoP
- Methods to convert single-user power bounds into multi-user power bounds

- Adapting other security notions to power bound model
- Adapting other proof techniques to power bound
- Prove power bound of constructions outside of symmetric-key cryptography

#### Conclusion

#### .....New results

.....Future research

- Power bounds instead of advantage bounds
- Hybrid arguments and H-coefficient method in power model + application to PRP-PRF, EM, and SoP
- Methods to convert single-user power bounds into multi-user power bounds

- Adapting other security notions to power bound model
- Adapting other proof techniques to power bound
- Prove power bound of constructions outside of symmetric-key cryptography

## Thank you for your attention!