Flood and Submerse: Distributed Key Generation and Robust Threshold Signature from Lattices

Thomas Espitau

Guilhem Niot

Thomas Prest

1. Background

(*T*-out-of-*N*) threshold signatures What are they?

An interactive protocol to distribute signature generation.

- I verification key vk
- I partial signing key sk_i per party
- Given at least *T*-out-of-*N* partial signing keys, we can sign.

(*T*-out-of-*N*) threshold signatures What are they?

An interactive protocol to distribute trust.

Signature σ on msg

Security properties

- o Unforgeability: The signature scheme remains unforgeable even if up to T' < T parties are corrupted. Often T' = T - 1.

• **Correctness:** Given at least T-out-of-N partial signing keys, we can sign.

It's not possible to forge a new signature, even by taking part in the signing protocol.

An active field of research

- Aggregating hash-based signatures: [KCLM22]
- Sequential TS scheme based on isogenies: [DM20]
- Lattice-based threshold signatures:

 - 2-round TS via FHE: [BGG+18], [ASY22], [GKS23] TS with noise flooding: 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

An active field of research

- Aggregating hash-based signatures: [KCLM22]
- Sequential TS scheme based on isogenies: [DM20]
- Lattice-based threshold signatures:

 - 2-round TS via FHE: [BGG+18], [ASY22], [GKS23] TS with noise flooding: 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

Open problems for lattice-based schemes

- **Distributed Key Generation** (DKG) \bullet
- **Robustness:** Guarantee valid signature in the presence of malicious signers

- Our techniques for DKG + robust signing are quite generic:
- in our paper, applied to Plover [EENP+24]: hash-and-sign scheme
- can be applied to all 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

Lyubashevsky's signature scheme (without aborts)

$$\mathbf{v}\mathbf{k} = \begin{bmatrix} \mathbf{t} \end{bmatrix} = \begin{bmatrix} \mathbf{A}' & \mathbf{I} \\ & & \\ &$$

$$\mathbf{r} \leftarrow \chi \\ \mathbf{w} = \mathbf{A} \cdot \mathbf{r} \qquad -\mathbf{W}$$

Secure if $\|\mathbf{r}\| = \mathcal{O}(\sqrt{Q_s} \cdot \|c\|)$

 $\mathbf{Z} = c \cdot \mathbf{S} + \mathbf{r}$

sk =
$$\mathbf{s} \in \mathscr{R}_q^{\mathscr{C}}$$
 short

- $c = H(vk, msg, w) \in \mathscr{R}_q$ "small" Accept if
 - z is short
 - $\mathbf{A} \cdot \mathbf{z} = c \cdot \mathbf{t} + \mathbf{w}$

Threshold signature: use (T, N)-Shamir sharing on secret

Sample polynomial $f \in \mathscr{R}_q^{\ell}[X]$ s.t.

- f(0) = s and $\deg f = T 1$
- Partial signing keys $\mathbf{sk}_i := [[\mathbf{s}]]_i = f(i)$

For any set S of T shares, reconstruct s:

$$\mathbf{s} = \sum_{i \in S} L_{S,i} \cdot [\mathbf{s}]_i$$
Lagrange coef

Threshold signature: use (T, N)-Shamir sharing on secret

$$\mathbf{r} \leftarrow \chi$$
$$\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$$

c = H(vk, msg, w) $\mathbf{Z} = \mathbf{C} \cdot \mathbf{S} + \mathbf{r}$

For any set S of T shares, reconstruct s:

$$\mathbf{s} = \sum_{i \in S} L_{S,i} \cdot [\![\mathbf{s}]\!]_i$$

Threshold signature: use (T, N)-Shamir sharing on secret

 $\mathbf{r_i} \leftarrow \chi$ $\mathbf{w_i} = \mathbf{A} \cdot \mathbf{r_i}$

$$\mathbf{r} \leftarrow \chi$$
$$\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$$

c = H(vk, msg, w) $\mathbf{Z} = c \cdot \mathbf{S} + \mathbf{r}$

For any set S of T shares, reconstruct s:

$$\mathbf{s} = \sum_{i \in S} L_{S,i} \cdot [[\mathbf{s}]]_i$$

$$cmt_{i} = H(\mathbf{w}_{i})$$

$$(cmt_{j})_{j \in S}$$

$$\mathbf{w}_{i}$$

$$(\mathbf{w}_{j})_{j \in S}$$

Threshold signature: use (T, N)-Shamir sharing on secret

2. Achieving additional threshold properties with Verifiable Secret Sharing

Achieving additional threshold properties with Verifiable Secret Sharing

Robust signing: Distributed short noise sampling

Verifiable Secret Sharing (VSS)

Distributed Key Generation (DKG) from VSS

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key s

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key $s = \sum s_i$

1.b) Send shares $(\llbracket \mathbf{s}_i \rrbracket_j, \pi_i^j)_j$ 1.a) Sample small secrets S_i

Distributed Key Generation (DKG) from VSS 1. Construct and share secret key $s = \sum s_i$ 1.a) Sample small secrets \mathbf{s}_i 1.b) Send shares $(\llbracket \mathbf{s}_i \rrbracket_i, \pi_i^j)_i$ 1.c) Verify shares ($[[\mathbf{s}_i]]_j, \pi_i^j$) and complain 1.d) Aggregate Final secret $\mathbf{s} = \sum_{\substack{i \neq 6}} \mathbf{s}_i$

Distributed Key Generation (DKG) from VSS 1. Construct and share secret key $\mathbf{s} = \sum \mathbf{s}_i$ 1.a) Sample small secrets \mathbf{s}_i 1.b) Send shares $(\llbracket \mathbf{s}_i \rrbracket_j, \pi_i^j)_j$

1.c) Verify shares ($[[\mathbf{s}_i]]_j, \pi_i^j$) and complain 1.d) Aggregate

Final secret

 $\mathbf{s} = \sum_{i \neq 6} \mathbf{s}_i$

 $\mathbf{s}_1 = \sum_{\substack{j \neq 6}} \left[\left[\mathbf{s}_j \right] \right]_1$

S3

Robust Signing with VSS

Threshold Raccoon

 $\mathbf{r_i} \leftarrow \chi$ $cmt_i = H(w_i)$ $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i$ $(\mathsf{cmt}_j)_{j\in S}$ **W**_i $(\mathbf{w}_j)_{j\in S}$ $\mathbf{w} = \sum \mathbf{w}_{j}$ j∈S c = H(vk, msg, w) $\llbracket \mathbf{z} \rrbracket_i = c \cdot L_{S,i} \cdot \llbracket \mathbf{s} \rrbracket_i + \mathbf{r}_i + \Delta_i \qquad \mathbf{z}_i$

Robust Signing with VSS

Threshold Raccoon

 $\mathbf{r_i} \leftarrow \chi$ $\operatorname{cmt}_{\mathbf{i}} = H(\mathbf{w}_{\mathbf{i}})$ $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i$ $(\mathsf{cmt}_j)_{j\in S}$ \mathbf{W}_i $(\mathbf{w}_j)_{j \in S}$ $\mathbf{w} = \sum \mathbf{w}_{j}$ j∈S c = H(vk, msg, w) $\llbracket \mathbf{z} \rrbracket_i = c \cdot L_{S,i} \cdot \llbracket \mathbf{s} \rrbracket_i + \mathbf{r}_i + \Delta_i \qquad \mathbf{z}_i$

Pelican

1) Use DKG to sample secret $\mathbf{r} = \sum_{i=1}^{n} \mathbf{r}_{i}$ and compute $\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$: 3 rounds

Robust Signing with VSS

Threshold Raccoon

 $\mathbf{r_i} \leftarrow \chi$ $\operatorname{cmt}_{\mathbf{i}} = H(\mathbf{w}_{\mathbf{i}})$ $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i$ $(\operatorname{cmt}_j)_{j \in S}$ \mathbf{W}_i $(\mathbf{W}_i)_{i \in S}$ $w = \sum w_j$ j∈S c = H(vk, msg, w) $\llbracket \mathbf{z} \rrbracket_i = c \cdot L_{S,i} \cdot \llbracket \mathbf{s} \rrbracket_i + \mathbf{r}_i + \Delta_i \qquad \mathbf{z}_i$

Pelican

1) Use DKG to sample secret $\mathbf{r} = \sum_{i=1}^{n} \mathbf{r}_{i}$ and compute $\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$: 3 rounds

Compute signature shares: 1 round

c = H(vk, msg, w) $\llbracket \mathbf{z} \rrbracket_i = c \cdot \llbracket \mathbf{s} \rrbracket_i + \llbracket \mathbf{r} \rrbracket_i$

If corruption threshold $T' \leq T/3$, Reed-Solomon error correction guarantees signature output.

3. A practical VSS with approximate shortness proof

Prior work on VSS

- Classical setting (uniform secret)
 - BGW VSS [BGW88]: IT security
 - Pedersen VSS [Ped92]: relies on DL
 - [ABCP23] based on hash functions
- VSS with shortness proof [GHL21]: quite large and DL aggregation

Our VSS

How to prove shortness of a vector s without revealing it?

Use a random projection to a smaller space!

Our VSS

How to prove shortness of a vector s without revealing it?

proba $\frac{1}{4}$, and 0 with proba $\frac{1}{2}$.

- Use a random projection to a smaller space!
- Modular Johnson-Lindenstrauss lemma with offset [Ngu22]: Take a vector y.
 - If a matrix \mathbf{R} is sampled from a discrete distribution with coefficients ± 1 with

- Then, $\|\mathbf{R} \cdot \mathbf{s} + \mathbf{y} \mod q\|_2$ is at least as large as $C \cdot \|\mathbf{s}\|_2$ for some $C = \omega(1)$.
 - Use small Gaussian noise keeping enough entropy in s instead of information theoretic.

Solution: hash-based verifiable randomness for $N \ge 2T'$ akin to [ABCP23].

Johnson-Lindenstrauss only applies if **R** is

Dealer owns S samples y

 $[[s]]_1, [[y]]_1$ $[[s]]_2, [[y]]_2$ $[[s]]_3, [[y]]_3$ $[[s]]_4, [[y]]_4$ $[[s]]_5, [[y]]_5$

Broadcast h = root Merkle tree containing $(\llbracket \mathbf{s} \rrbracket_i, \llbracket \mathbf{y} \rrbracket_i)_i$

Johnson-Lindenstrauss only applies if **R** is Solution: hash-based verifiable randomness for $N \ge 2T'$ akin to [ABCP23]. + individual proof membership in h $\mathbf{R} = H(h)$ Broadcast $\mathbf{R} \cdot [[\mathbf{s}]] + [[\mathbf{y}]]$

Our VSS

- Our VSS reveals $\mathbf{R} \cdot \mathbf{s} + \mathbf{y}$ where y is Gaussian: smaller shortness gap compared to rejection sampling.
 - Not purely ZK: reduce security to Hint-MLWE

• Approximation gap ~70, vs $\gg 2500$ in [GHL21] using JL lemma

Conclusion

Conclusion

- corruption threshold T' = T/3.
- **Pelican:** first lattice hash-and-sign threshold signature + DKG + robustness

Pelican = application to Plover, in this presentation applied to Raccoon

Practical VSS scheme with approximate shortness proof: slack ~70

K	max T'	vk	sig
128	16	12.8kB	12.3kB
196	1024	25.6kB	26.4kB

Proposed parameter sets for Pelican

Framework relying on VSS to achieve robust DKG and robust signature scheme with